Skip to main content

Cellular Autoimmunity in Myocarditis

  • Chapter
  • 197 Accesses

Abstract

To understand how autoimmunity occurs, one first needs to review the basic processes of immune response and immune regulation. Host defense mechanisms can be broadly defined as 2 types: innate and adaptive (or antigen-specific) immunity.1,2 Although adaptive immunity is usually the most effective mechanism for eliminating invading organisms, this response is relatively slow, taking up to 7 to 10 days for effective primary immune responses and 2 to 3 days for anamnestic or memory responses. During this time, rapidly proliferating infectious agents could produce significant tissue injury and possibly death of the organism if left uncontrolled. For this reason, broadly reactive host responses, which are constantly maintained or can be rapidly induced, are essential in containing infections until the adaptive immune response “kicks in.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science 1996;272:50–53.

    Article  PubMed  CAS  Google Scholar 

  2. Mantegazza R, Bernasconi P, Confalonieri P, Cornelio F. Inflammatory myopathies and systemic disorders: a review of immunopathogenetic mechanisms and clinical features. J Neurol 1997;244:277–287.

    Article  PubMed  CAS  Google Scholar 

  3. Gribaudo G, Lembo D, Cavallo G, Landolfo S, Lengyel P. Interferon action: binding of viral RNA to the 40-kilodalton 2′-5′-oligoadenylate synthetase in interferon-treated HeLa cells infected with encephalomyocarditis virus. J Virol 1991;65:1748–1757.

    PubMed  CAS  Google Scholar 

  4. Hiraoka Y, Kishimoto C, Takada H, Nakamura M, Kurokawa M, Ochiai H, Shiraki K. Nitric oxide and murine coxsackievirus B3 myocarditis: aggravation of myocarditis by inhibition of nitric oxide synthase. J Am Coll Cardiol 1996;28:1610–1615.

    Article  PubMed  CAS  Google Scholar 

  5. Hirasawa K, Jun HS, Maeda K, Kawaguchi Y, Itagaki S, Mikami T, Baek HS, Doi K, Yoon JW. Possible role of macrophage-derived soluble mediators in the pathogenesis of encephalomyocarditis virus-induced diabetes in mice. J Virol 1997;71:4024–4031.

    PubMed  CAS  Google Scholar 

  6. Huot AE, Hacker MP. Nitric oxide. In: Craighead JE, ed. Pathology of environmental and occupational disease. St. Louis: Mosby, 1995:357–372.

    Google Scholar 

  7. Lowenstein CJ, Hill SL, Lafond-Walker A, Wu J, Allen G, Landavere M, Rose NR, Herskowitz A. Nitric oxide inhibits viral renlication in murine mvocarditis. J Clin Invect 1996–97.1 837–1843

    Google Scholar 

  8. Lo D, Feng L, Li L, Carson MJ, Crowley M, Pauza M, Nguyen A, Reilly CR. Integrating innate and adaptive immunity in the whole animal. Immunol Rev 1999;169:225–239.

    Article  PubMed  CAS  Google Scholar 

  9. Yokoyama WM, Seaman WE. The Ly-49 and NKR-P1 gene families encoding lectin-like receptors on natural killer cells: the NK gene complex. Annu Rev Immunol 1993;11:613–635.

    Article  PubMed  CAS  Google Scholar 

  10. Ferrick DA, Braun RK, Lepper HD, Schrenzel MD. Gamma delta T cells in bacterial infections. Res Immunol 1996;147:532–541.

    Article  PubMed  CAS  Google Scholar 

  11. Haas W, Pereira P, Tonegawa S. Gamma/delta cells. Annu Rev Immunol 1993;11:637–685.

    Article  PubMed  CAS  Google Scholar 

  12. Born W, Happ MP, Dallas A, Reardon C, Kubo R, Shinnick T, Brennan P, O’Brien R. Recognition of heat shock proteins and gamma delta cell function. Immunol Today 1990;11:40–43.

    Article  PubMed  CAS  Google Scholar 

  13. Belmant C, Espinosa E, Poupot R, Peyrat MA, Guiraud M, Poquet Y, Bonneville M, Fournié J-J. 3-Formyl-1-butyl pyrophosphate A novel mycobacterial metabolite-activating human γδ T cells. J Biol Chem 1999;274:32079–32084.

    Article  PubMed  CAS  Google Scholar 

  14. Constant P, Davodeau F, Peyrat MA, Poquet Y, Puzo G, Bonneville M, Fournie JJ. Stimulation of human gamma delta T cells by nonpeptidic mycobacterial ligands. Science 1994;264:267–270.

    Article  PubMed  CAS  Google Scholar 

  15. Morita CT, Lee HK, Leslie DS, Tanaka Y, Bukowski JF, Marker-Hermann E. Recognition of nonpeptide prenyl pyrophosphate antigens by human gammadelta T cells. Microbes Infect 1999;1:175–186.

    Article  CAS  Google Scholar 

  16. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci U S A 1999;96:6879–6884.

    Article  PubMed  CAS  Google Scholar 

  17. Sciammas R, Johnson RM, Sperling AI, Brady W, Linsley PS, Spear PG, Fitch FW, Bluestone JA. Unique antigen recognition by a herpesvirus-specific TCR-gamma delta cell. J Immunol 1994;152:5392–5397.

    PubMed  CAS  Google Scholar 

  18. Sell S. Immunology, immunopathology, and immunity. 4th ed. New York: Elsevier, 1987.

    Google Scholar 

  19. Huber SA. Immunopathology. In: Craighead JE, ed. Pathology of environmental and occupational disease. St. Louis: Mosby, 1995:397–409.

    Google Scholar 

  20. Castellino F, Zhong G, Germain RN. Antigen presentation by MHC class II molecules: invariant chain function, protein trafficking, and the molecular basis of diverse determinant capture. Hum Immunol 1997;54:159–169.

    Article  PubMed  CAS  Google Scholar 

  21. York IA, Goldberg AL, Mo XY, Rock KL. Proteolysis and class I major histocompatibility complex antigen presentation. Immunol Rev 1999;172:49–66.

    Article  PubMed  CAS  Google Scholar 

  22. Ludewig B, Odermatt B, Ochsenbein AF, Zinkernagel RM, Hengartner H. Role of dendritic cells in the induction and maintenance of autoimmune diseases. Immunol Rev 1999;169:45–54.

    Article  PubMed  CAS  Google Scholar 

  23. Masurier C, Pioche-Durieu C, Colombo BM, Lacave R, Lemoine FM, Klatzmann D, Guigon M. Immunophenotypical and functional heterogeneity of dendritic cells generated from murine bone marrow cultured with different cytokine combinations: implications for anti-tumoral cell therapy. Immunology 1999;96:569–577.

    Article  PubMed  CAS  Google Scholar 

  24. Reid SD, Penna G, Adorini L. The control of T cell responses by dendritic cell subsets. Curr Opin Immunol 2000;12:114–121.

    Article  PubMed  CAS  Google Scholar 

  25. Cella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 1997;9:10–16.

    Article  PubMed  CAS  Google Scholar 

  26. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245–252.

    Article  PubMed  CAS  Google Scholar 

  27. Bell D, Young JW, Banchereau J. Dendritic cells. Adv Immunol 1999;72:255–324.

    Article  PubMed  CAS  Google Scholar 

  28. Kane LP, Lin J, Weiss A. Signal transduction by the TCR for antigen. Curr Opin Immunol 2000;12:242–249.

    Article  PubMed  CAS  Google Scholar 

  29. Lanzavecchia A, Sallusto F. From synapses to immunological memory: the role of sustained T cell stimulation. Curr Opin Immunol 2000;12:92–98.

    Article  PubMed  CAS  Google Scholar 

  30. Janes PW, Ley SC, Magee AI, Kabouridis PS. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol 2000;12:23–34.

    Article  PubMed  CAS  Google Scholar 

  31. Pivniouk VI, Geha RS. The role of SLP-76 and LAT in lymphocyte development. Curr Opin Immunol 2000;12:173–178.

    Article  PubMed  CAS  Google Scholar 

  32. Horwitz MS, Sarvetnick N. Viruses, host responses, and autoimmunity. Immunol Rev 1999;169:241–253.

    Article  PubMed  CAS  Google Scholar 

  33. Ferber I, Schonrich G, Schenkel J, Mellor AL, Hammerling GJ, Arnold B. Levels of peripheral T cell tolerance induced by different doses of tolerogen. Science 1994;263:674–676.

    Article  PubMed  CAS  Google Scholar 

  34. Kurts C, Miller JF, Subramaniam RM, Carbone FR, Heath WR. Major histocompatibility complex class I-restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction. J Exp Med 1998;188:409–414.

    Article  PubMed  CAS  Google Scholar 

  35. Lo D, Freedman J, Hesse S, Brinster RL, Sherman L. Peripheral tolerance in transgenic mice: tolerance to class II MHC and non-MHC transgene antigens. Immunol Rev 1991;122:87–102.

    Article  PubMed  CAS  Google Scholar 

  36. Gimmi CD, Freeman GJ, Gribben JG, Gray G, Nadler LM. Human T- cell clonal anergy is induced by antigen presentation in the absence of B7 costimulation. Proc Natl Acad Sci U S A 1993;90:6586–6590.

    Article  PubMed  CAS  Google Scholar 

  37. Rocha B, Tanchot C, Von Boehmer H. Clonal anergy blocks in vivo growth of mature T cells and can be reversed in the absence of antigen. J Exp Med 1993;177:1517–1521.

    Article  PubMed  CAS  Google Scholar 

  38. Theofilopoulos AN. The basis of autoimmunity: Part I. Mechanisms of aberrant self-recognition. Part II. Genetic predisposition. Immunol Today 1995;16:90–98, 150–159.

    Google Scholar 

  39. Barker CF, Billingham RE. Immunologically privileged sites. Adv Immunol 1977;25:1–54.

    Article  PubMed  CAS  Google Scholar 

  40. Oldstone MB, Nerenberg M, Southern P, Price J, Lewicki H. Virus infection triggers insulindependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 1991;65:319–331.

    Article  PubMed  CAS  Google Scholar 

  41. Chan LS, Vanderlugt CJ, Hashimoto T, Nishikawa T, Zone JJ, Black MM, Wojnarowska F, Stevens SR, Chen M, Fairley JA, Woodley DT, Miller SD, Gordon KB. Epitope spreading: lessons from autoimmune skin diseases. J Invest Dermatol 1998;110:103–109.

    Article  PubMed  CAS  Google Scholar 

  42. Warnock MG, Goodacre JA. Cryptic T- cell epitopes and their role in the pathogenesis of autoimmune diseases. Br J Rheumatol 1997;36:1144–1150.

    Article  PubMed  CAS  Google Scholar 

  43. Sercarz EE, Lehmann PV, Ametani A, Benichou G, Miller A, Moudgil K. Dominance and crypticity of T cell antigenic determinants. Annu Rev Immunol 1993;11:729–766.

    Article  PubMed  CAS  Google Scholar 

  44. Diment S. Different roles for thiol and aspartyl proteases in antigen presentation of ovalbumin. J Immunol 1990;145:417–422.

    PubMed  CAS  Google Scholar 

  45. Barker RN, Elson CJ. Multiple self epitopes on the Rhesus polypeptides stimulate immunologically ignorant human T cells in vitro. Eur J Immunol 1994;24:1578–1582.

    Article  PubMed  CAS  Google Scholar 

  46. Markovic-Plese S, Fukaura H, Zhang J, al-Sabbagh A, Southwood S, Sette A, Kuchroo VK, Hafler DA. T cell recognition of immunodominant and cryptic proteolipid protein epitopes in humans. J Immunol 1995;155:982–992.

    PubMed  CAS  Google Scholar 

  47. Matsuo H, Batocchi AP, Hawke S, Nicolle M, Jacobson L, Vincent A, Newsom-Davis J, Willcox N. Peptide-selected T cell lines from myasthenia gravis patients and controls recognize epitopes that are not processed from whole acetylcholine receptor. J Immunol 1995;155:3683–3692.

    PubMed  CAS  Google Scholar 

  48. Quaratino S, Feldmann M, Dayan CM, Acuto O, Londei M. Human self-reactive T cell clones expressing identical T cell receptor beta chains differ in their ability to recognize a cryptic self-epitope. J Exp Med 1996;183:349–358.

    Article  PubMed  CAS  Google Scholar 

  49. Casciola-Rosen L, Wigley F, Rosen A. Scleroderma autoantigens are uniquely fragmented by metalcatalyzed oxidation reactions: implications for pathogenesis. J Exp Med 1997;185:71–79.

    Article  PubMed  CAS  Google Scholar 

  50. Goodacre JA, Middleton S, Lynn S, Ross DA, Pearson J. Human cartilage aggrecan CS 1 region contains cryptic T- cell recognition sites. Immunology 1993;78:586–591.

    PubMed  CAS  Google Scholar 

  51. Baum H, Davies H, Peakman M. Molecular mimicry in the MHC: hidden clues to autoimmunity? Immunol Today 1996;17:64–70.

    Article  PubMed  CAS  Google Scholar 

  52. von Herrath MG, Oldstone MB. Virus-induced autoimmune disease. Curr Opin Immunol 1996;8:878–885.

    Article  Google Scholar 

  53. Oldstone MB, von Herrath M. Virus-induced autoimmune diseases: transgenic approach to mimic insulin-dependent diabetes mellitus and other autoimmune diseases. APMIS 1996;104:689–697.

    Article  PubMed  CAS  Google Scholar 

  54. Wang R, Wang-Zhu Y, Gabaglia CR, Kimachi K, Grey HM. The stimulation of low-affinity, non- tolerized clones by heteroclitic antigen analogues causes the breaking of tolerance established to an immunodominant T cell epitope. J Exp Med 1999;190:983–994.

    Article  PubMed  CAS  Google Scholar 

  55. Tough DF, Borrow P, Sprent J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 1996;272:1947–1950.

    Article  PubMed  CAS  Google Scholar 

  56. Matsuzawa A, Katagiri T, Ogata Y, Kominami R, Kimura M. Lymphadenopathy induced by the cooperation between 1prcg and gld genes is of 1pr but not of gld phenotype. Eur J Immunol 1994;24:1714–1716.

    Article  PubMed  CAS  Google Scholar 

  57. McRae BL, Vanderlugt CL, Dal Canto MC, Miller SD. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med 1995;182:75–85.

    Article  PubMed  CAS  Google Scholar 

  58. Miller SD, Vanderlugt CL, Begolka WS, Pao W, Yauch RL, Neville KL, Katz-Levy Y, Carrizosa A, Kim BS. Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope spreading. Nat Med 1997;3:1133–1136.

    Article  PubMed  CAS  Google Scholar 

  59. Anderson J, Hammond E, Menlove R. Determining humoral and cellular-immune components in myocarditis: complementary diagnostic role of immunofluorescence microscopy in the evaluation of endomyocardial biopsy specimens. In: Kawai C, Abelmann WH, eds. Pathogenesis of myocarditis and cardiomyopathy: recent experimental and clinical studies. Tokyo: University of Tokyo Press, 1987:233–244.

    Google Scholar 

  60. Bolte HD, Schultheiss P. Immunological results in myocardial diseases. Postgrad Med J 1978;54:500–504.

    Article  PubMed  CAS  Google Scholar 

  61. Caforio AL, Bauce B, Boffa GM, De Cian F, Angelini A, Melacini P, Razzolini R, Fasoli G, Chioin R, Schiaffino S, Thiene G, Dalla Volta S. Autoimmunity in myocarditis and dilated cardiomyopathy: cardiac autoantibody frequency and clinical correlates in a patient series from Italy. G Ital Cardiol 1997;27:106–112.

    PubMed  CAS  Google Scholar 

  62. Caforio ALP, Goldman JH, Haven AJ, Baig KM, Libera LD, McKenna WJ, and the Myocarditis Treatment Trial Investigators. Circulating cardiac-specific autoantibodies as markers of autoimmunity in clinical and biopsy-proven myocarditis. Eur Heart J 1997;18:270–275.

    Article  PubMed  CAS  Google Scholar 

  63. Limas CJ, Limas C. Immune-mediated modulation of beta-adrenoceptor function in human dilated cardiomyopathy. Clin Immunol Immunopathol 1993;68:204–207.

    Article  PubMed  CAS  Google Scholar 

  64. Maisch B. Autoreactivity to the cardiac myocyte, connective tissue and the extracellular matrix in heart disease and postcardiac injury. Springer Semin Immunopathol 1989;11:369–395.

    PubMed  CAS  Google Scholar 

  65. Maisch B, Herzum M, Hufnagel G, Bethge C, Schonian U. Immunosuppressive treatment for myocarditis and dilated cardiomyopathy. Eur Heart J 1995;16 Suppl O:153–161.

    Article  PubMed  CAS  Google Scholar 

  66. Neumann DA, Allen GS, Narins CR, Rose NR, Herskowitz A. Idiopathic dilated cardiomyopathy. In: Figulla H-R, Kandolf R, McManus B, eds. Idiopathic dilated cardiomyopathy. Berlin: Springer-Verlag, 1993:325–334.

    Chapter  Google Scholar 

  67. Neumann DA, Burek CL, Baughman KL, Rose NR, Herskowitz A. Circulating heart-reactive antibodies in patients with myocarditis or cardiomyopathy. J Am Coll Cardiol 1990;16:839–846.

    Article  PubMed  CAS  Google Scholar 

  68. Schultheiss HP. The significance of autoantibodies against the ADP/ATP carrier for the pathogenesis of myocarditis and dilated cardiomyopathy-clinical and experimental data. Springer Semin Immunopathol 1989;11:15–30.

    Article  PubMed  CAS  Google Scholar 

  69. Schwimmbeck PL, Schwimmbeck NK, Schultheiss HP, Strauer BE. Mapping of antigenic determinants of the adenine-nucleotide translocator and coxsackie B3 virus with synthetic peptides: use for the diagnosis of viral heart disease. Clin Immunol Immunopathol 1993;68:135–140.

    Article  PubMed  CAS  Google Scholar 

  70. Wallukat G, Kayser A, Wollenberger A. The beta 1-adrenoceptor as antigen: functional aspects. Eur Heart J 1995;16 Suppl 0:85–88.

    Google Scholar 

  71. Gauntt CJ, Sakkinen PA, Rose NR, Huber SA. Picornaviruses: immunopathology and autoimmunity. In: Cunningham MW, Fujinami RS, eds. Effects of microbes on the immune system. Philadelphia: Lippincott Williams &Wilkins, 2000:313–329.

    Google Scholar 

  72. Wolff PG, Kuhl U, Schultheiss HP. Laminin distribution and autoantibodies to laminin in dilated cardiomyopathy and myocarditis. Am Heart J 1989;117:1303–1309.

    Article  PubMed  CAS  Google Scholar 

  73. Maisch B, Bauer E, Cirsi M, Kochsiek K. Cytolytic cross-reactive antibodies directed against the cardiac membrane and viral proteins in coxsackievirus B3 and B4 myocarditis. Characterization and pathogenetic relevance. Circulation 1993;87 Suppl 4:IV49-IV65.

    PubMed  CAS  Google Scholar 

  74. Gauntt CJ, Arizpe HM, Higdon AL, Wood HJ, Bowers DF, Rozek MM, Crawley R. Molecular mimicry, anti-coxsackievirus B3 neutralizing monoclonal antibodies, and myocarditis. J Immunol 1995;154:2983–2995.

    PubMed  CAS  Google Scholar 

  75. Neu N, Beisel KW, Traystman MD, Rose NR, Craig SW. Autoantibodies specific for the cardiac myosin isoform are found in mice susceptible to Coxsackievirus B3-induced myocarditis. J Immunol 1987;138:2488–2492.

    PubMed  CAS  Google Scholar 

  76. Neumann DA, Lane JR, Wulff SM, Allen GS, LaFond-Walker A, Herskowitz A, Rose NR. In vivo deposition of myosin-specific autoantibodies in the hearts of mice with experimental autoimmune myocarditis. J Immunol 1992;148:3806–3813.

    PubMed  CAS  Google Scholar 

  77. Neumann DA, Rose NR, Ansari AA, Herskowitz A. Induction of multiple heart autoantibodies in mice with coxsackievirus B3- and cardiac myosin-induced autoimmune myocarditis. J Immunol 1994;152:343–350.

    PubMed  CAS  Google Scholar 

  78. Rose N, Neu N, Neumann D, Herskowitz A. Myocarditis: a postinfectious autoimmune disease. In: Schultheiss H-P, ed. New concepts in viral heart disease: virology, immunology, and clinical management. Berlin: Springer-Verlag, 1988:139–147.

    Chapter  Google Scholar 

  79. Schwimmbeck PL, Schultheiss H-P, Strauer BE. Identification of a main autoimmunogenic epitope of the adenine nucleotide translocator which cross-reacts with Coxsackie B3 virus: use in the diagnosis of myocarditis and dilative cardiomyopathy (abstract). Circulation 1989;80 Suppl 2:II665.

    Google Scholar 

  80. Traystman MD, Beisel KW. Genetic control of Coxsackievirus B3-induced heart-specific autoantibodies associated with chronic myocarditis. Clin Exp Immunol 1991;86:291–298.

    Article  PubMed  CAS  Google Scholar 

  81. Gauntt CJ, Higdon AL, Arizpe HM, Tamayo MR, Crawley R, Henkel RD, Pereira ME, Tracy SM, Cunningham MW. Epitopes shared between coxsackievirus B3 (CVB3) and normal heart tissue contribute to CVB3-induced murine myocarditis. Clin Immunol Immunopathol 1993;68:129–134.

    Article  PubMed  CAS  Google Scholar 

  82. Gauntt C, Higdon A, Bowers D, Maull E, Wood J, Crawley R. What lessons can be learned from animal model studies in viral heart disease? Scand J Infect Dis Suppl 1993;88:49–65.

    PubMed  CAS  Google Scholar 

  83. Saegusa J, Prabhakar BS, Essani K, McClintock PR, Fukuda Y, Ferrans VJ, Notkins AL. Monoclonal antibody to coxsackievirus B4 reacts with myocardium. J Infect Dis 1986;153:372–373.

    Article  PubMed  CAS  Google Scholar 

  84. Kuan AP, Chamberlain W, Malkiel S, Lieu HD, Factor SM, Diamond B, Kotzin BL. Genetic control of autoimmune myocarditis mediated by myosin-specific antibodies. Immunogenetics 1999;49:79–85.

    Article  PubMed  CAS  Google Scholar 

  85. Liao L, Sindhwani R, Rojkind M, Factor S, Leinwand L, Diamond B. Antibody-mediated autoimmune myocarditis depends on genetically determined target organ sensitivity. J Exp Med 1995;181:1123–1131.

    Article  PubMed  CAS  Google Scholar 

  86. Schwimmbeck PL, Badorff C, Schultheiss HP, Strauer BE. Transfer of human myocarditis into severe combined immunodeficiency mice. Circ Res 1994;75:156–164.

    Article  PubMed  CAS  Google Scholar 

  87. Horn GT, Bugawan TL, Long CM, Erlich HA. Allelic sequence variation of the HLA-DQ loci: relationship to serology and to insulin-dependent diabetes susceptibility. Proc Natl Acad Sci U S A 1988;85:6012–6016.

    Article  PubMed  CAS  Google Scholar 

  88. Tiwari JL, Terasaki PI. HLA and disease associations. New York: Springer-Verlag, 1985.

    Book  Google Scholar 

  89. Limas CJ. Autoimmunity in dilated cardiomyopathy and the major histocompatibility complex. Int J Cardiol 1996;54:113–116.

    Article  PubMed  CAS  Google Scholar 

  90. Lozano MD, Rubocki RJ, Wilson JE, McManus BM, Wisecarver JL. Human leukocyte antigen class II associations in patients with idiopathic dilated cardiomyopathy. Myocarditis Treatment Trial Investigators. J Card Fail 1997;3:97–103.

    Article  PubMed  CAS  Google Scholar 

  91. Bachmaier K, Neu N, Yeung RS, Mak TW, Liu P, Penninger JM. Generation of humanized mice susceptible to peptide-induced inflammatory heart disease. Circulation 1999;99:1885–1891.

    Article  PubMed  CAS  Google Scholar 

  92. Schwimmbeck P, Badorff C, Schulze K, Schultheiss H-P. The significance of T cell responses in human myocarditis. In: Schultheiss H-P, Schwimmbeck P, eds. The role of immune mechanisms in cardiovascular disease. Berlin: Springer-Verlag, 1997:65–76.

    Chapter  Google Scholar 

  93. Liao L, Sindhwani R, Leinwand L, Diamond B, Factor S. Cardiac alpha-myosin heavy chains differ in their induction of myocarditis. Identification of pathogenic epitopes. J Clin Invest 1993;92:2877–2882.

    Article  PubMed  CAS  Google Scholar 

  94. Neu N, Rose NR, Beisel KW, Herskowitz A, Gurri-Glass G, Craig SW. Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol 1987;139:3630–3636.

    PubMed  CAS  Google Scholar 

  95. Smith SC, Allen PM. Myosin-induced acute myocarditis is a T cell-mediated disease. J Immunol 1991;147:2141–2147.

    PubMed  CAS  Google Scholar 

  96. Smith SC, Allen PM. Expression of myosin-class II major histocompatibility complexes in the normal myocardium occurs before induction of autoimmune myocarditis. Proc Natl Acad Sci U S A 1992;89:9131–9135.

    Article  PubMed  CAS  Google Scholar 

  97. Donermeyer DL, Beisel KW, Allen PM, Smith SC. Myocarditis-inducing epitope of myosin binds constitutively and stably to I-Akon antigen-presenting cells in the heart. J Exp Med 1995;182:1291–1300.

    Article  PubMed  CAS  Google Scholar 

  98. Pummerer CL, Luze K, Grassi G, Bachmaier K, Offner F, Burrell SK, Lenz DM, Zamborelli TJ, Penninger JM, Neu N. Identification of cardiac myosin peptides capable of inducing autoimmune myocarditis in BALB/c mice. J Clin Invest 1996;97:2057–2062.

    Article  PubMed  CAS  Google Scholar 

  99. Shi Y, Radvanyi LG, Sharma A, Shaw P, Green DR, Miller RG, Mills GB. CD28-mediated signaling in vivo prevents activation-induced apoptosis in the thymus and alters peripheral lymphocyte homeostasis. J Immunol 1995;155:1829–1837.

    PubMed  CAS  Google Scholar 

  100. Yu JZ, Wilson JE, Wood SM, Kandolf R, Klingel K, Yang D, McManus BM. Secondary heterotypic versus homotypic infection by Coxsackie B group viruses: impact on early and late histopathological lesions and virus genome prominence. Cardiovasc Pathol 1999;8:93–102.

    Article  PubMed  CAS  Google Scholar 

  101. Kandolf R, Klingel K, Zell R, Selinka HC, Raab U, Schneider-Brachert W, Bultmann B. Molecular pathogenesis of enterovirus-induced myocarditis: virus persistence and chronic inflammation. Intervirology 1993;35:140–151.

    PubMed  CAS  Google Scholar 

  102. Huber SA, Polgar J, Schultheiss P, Schwimmbeck P. Augmentation of pathogenesis of coxsackievirus B3 infections in mice by exogenous administration of interleukin-1 and interleukin-2. J Virol 1994:68:195–206.

    PubMed  CAS  Google Scholar 

  103. Oldstone MB. Molecular mimicry and autoimmune disease. Cell 1987;50:819–820.

    Article  PubMed  CAS  Google Scholar 

  104. von Herrath MG, Dockter J, Oldstone MB. How virus induces a rapid or slow onset insulindependent diabetes mellitus in a transgenic model. Immunity 1994;1:231–242.

    Article  Google Scholar 

  105. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 1992;257:387–389.

    Article  PubMed  CAS  Google Scholar 

  106. Freeman GL, Colston JT, Zabalgoitia M, Chandrasekar B. Contractile depression and expression of proinflammatory cytokines and iNOS in viral myocarditis. Am J Physiol 1998;274:H249–258.

    PubMed  CAS  Google Scholar 

  107. Liu P. The role of cytokines in the pathogenesis of myocarditis. In: Schultheiss H-P, Schwimmbeck P, eds. The role of immune mechanisms in cardiovascular disease. Berlin: SpringerVerlag, 1997:44–56.

    Chapter  Google Scholar 

  108. Song HK, Lin TH, Noorchashm H, Greeley SA, Moore DJ. Specialized CC-chemokine secretion by heart-specific CD4+ T cells contributes to their pathogenic potential in a novel model of autoimmune myocarditis (abstract). Circulation 1999;100 Suppl 1:I-614.

    Article  Google Scholar 

  109. Kishimoto C, Kawamata H, Sakai S, Shinohara H, Ochiai H. Role of MIP-2 in coxsackievirus B3 myocarditis. J Mol Cell Cardiol 2000;32:631–638.

    Article  PubMed  CAS  Google Scholar 

  110. Cook DN, Beck MA, Coffman TM, Kirby SL, Sheridan JF, Pragnell IB, Smithies O. Requirement of MIP-1 alpha for an inflammatory response to viral infection. Science 1995;269:1583–1585.

    Article  PubMed  CAS  Google Scholar 

  111. Kolattukudy PE, Quach T, Bergese S, Breckenridge S, Hensley J, Altschuld R, Gordillo G, Klenotic S, Orosz C, Parker-Thornburg J. Myocarditis induced by targeted expression of the MCP-1 gene in murine cardiac muscle. Am J Pathol 1998;152:101–111.

    PubMed  CAS  Google Scholar 

  112. Friman G, Wesslen L, Fohlman J, Karjalainen J, Rolf C. The epidemiology of infectious myocarditis, lymphocytic myocarditis and dilated cardiomyopathy. Eur Heart J 1995;16 Suppl 0:36–41.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huber, S.A. (2003). Cellular Autoimmunity in Myocarditis. In: Cooper, L.T. (eds) Myocarditis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-319-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-319-4_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-366-4

  • Online ISBN: 978-1-59259-319-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics