Advertisement

Micronutrients

  • Emmanuel C. Opara

Abstract

Micronutrients are essential dietary factors, which cannot be synthesized in the human body and other vertebrate animals. They are required only in small quantities for the enhancement of a diverse array of metabolic processes in the body. They include vitamins and trace elements, and a significant deficiency of these essential micronutrients in the body results in disease (1). The abundance or deficiency of any given essential micronutrient in the body is determined by dietary sources, and by their utilization for different biological processes. It is, therefore, difficult to have a complete directory of trace elements, as there is significant diversity in the types of diets consumed by different individuals. In this chapter, we will limit the discussion to antioxidant vitamins and certain trace elements, which are involved in biological processes that have pathophysiological implications for the colon.

Keywords

Antioxidant Vitamin Recommend Dietary Allowance Colonic Disease Dietary Reference Intake Micronutrient Supplementation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lehninger AL, Nelson DL, Cox MM (eds.). In Principles of Biochemistry. 2nd ed., Worth Publishers, New York, NY, 1993.Google Scholar
  2. 2.
    Opara EC. Oxidative stress, micronutrients, diabetes and its complications. J. R. Soc. Health, 122 (2002) 28–34.CrossRefGoogle Scholar
  3. 3.
    Rock CL, Jacob RA, Bowen PE. Update on biological characteristics of the antioxidant micronutrients: vitamin C, vitamin E, and the carotenoids. J. Am. Diet Assoc., 96 (1996) 693–702.PubMedCrossRefGoogle Scholar
  4. 4.
    Eisenberg DM, Davis RB, Ettner SL, et al. Trends in alternative medicine use in the United States, 1990–1997. Results of a follow-up national survey. DAMA, 280 (1998) 1569–1575.Google Scholar
  5. 5.
    Thomson A, Hemphill D, Jeejeebhoy KN. Oxidative stress and antioxidants in intestinal disease. Dig. Dis., 16 (1998) 152–168.PubMedCrossRefGoogle Scholar
  6. 6.
    Ames BN, Shigenaga MK. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA, 90 (1993) 7915–7922.PubMedCrossRefGoogle Scholar
  7. 7.
    Machlin U, Bendich A. Free radical tissue damage: protective role of antioxidant nutrients. FASEB J., 1 (1987) 441–445.Google Scholar
  8. 8.
    Cross CE, Halliwell B, Borish ET, et al. Oxygen radicals and human disease. Ann. Intern. Med., 107 (1987) 526–545.PubMedGoogle Scholar
  9. 9.
    Emerit I, Chance B (eds.), In Free Radicals and Aging, Birkhauser Verlag, Basel, 1992.Google Scholar
  10. 10.
    Yu, BY (ed.), In Free Radicals in Aging, CRC Press, Boca Raton, FL, 1993.Google Scholar
  11. 11.
    Julius M, Lang CA, Gleiberman L, Harburg E, DiFranceisco W, Schork A. Glutathione and morbidity in a community-based sample of elderly. J. Clin. Epidemiol., 47 (1994) 1021–1026.PubMedCrossRefGoogle Scholar
  12. 12.
    Rikans LE, Hornbrook KR. Lipid peroxidation, antioxidant protection and aging. Biochim. Biophy. Acta., 1362 (1997) 116–127.CrossRefGoogle Scholar
  13. Traber MG. Vitamin E, oxidative stress and healthy aging. Eur. J. Clin. Invest.,27 (1997) 822–824.Google Scholar
  14. 14.
    Otamiri T, Sjodahl R. Oxygen radicals: their role in selected gastrointestinal disorders. Dig. Dis., 9 (1991) 133–141.PubMedCrossRefGoogle Scholar
  15. 15.
    Garewal HS, Diplock AT. How safe are antioxidant vitamins? Drug Safety, 13 (1995) 8–14.PubMedCrossRefGoogle Scholar
  16. 16.
    Girodon F, Blanche D, Monget AL, et al. Effect of a two-year supplementation with low doses of antioxidant vitamins and/or minerals in elderly subjects on levels of nutrients and antioxidant defense parameters. J. Am. Coll. Nutr., 16 (1997) 357–365.PubMedGoogle Scholar
  17. 17.
    Ward JA. Should antioxidant vitamins be routinely recommended for older people? Drugs Aging, 12 (1998) 169–175.CrossRefGoogle Scholar
  18. 18.
    McKay DL, Perrone G, Rasmussen H, et al. The effects of a multivitamin/mineral supplement on micronutrient status, antioxidant capacity and cytokine production in healthy older adults consuming a fortified diet. J. Am. Coll. Nutr., 19 (2000) 613–621.PubMedGoogle Scholar
  19. 19.
    Halliwell B. The antioxidant paradox. Lancet, 355 (2000) 1179–1180.PubMedCrossRefGoogle Scholar
  20. 20.
    National Research Council. Recommended Dietary Allowances, 10th ed., National Academy Press, Washington, DC, 1989.Google Scholar
  21. 21.
    Keshavarzian A, Mobarhan S. Inflammatory bowel disease in the elderly. In Digestive diseases and the elderly. Vellas BJ, Russel R, Dyard F, Garry PJ, Albarede JL (eds.), Springer, New York, NY, 1996, pp. 35–52.Google Scholar
  22. 22.
    Bunout D, Garrido A, Suazo M, et al. Effects of supplementation with folic acid and antioxidant vitamins on homocysteine levels and LDL oxidation in coronary patients. Nutrition, 16 (2000) 107–110.PubMedCrossRefGoogle Scholar
  23. 23.
    Elkin AC, Higham J. Folic acid supplements are more effective than increased dietary folate intake in elevating serum folate levels. Br. J. Obstetr. Gynalcol., 107 (2000) 285–289.CrossRefGoogle Scholar
  24. 24.
    Powell SR. The antioxidant properties of zinc. J. Nutr., 130 (2000) 14475–1454S.Google Scholar
  25. 25.
    DiSilvestro RA. Zinc in relation to diabetes and oxidative stress. J. Nutr., 130 (2000) 1509S - 1511S.PubMedGoogle Scholar
  26. 26.
    Rossman TG, Goncharova El. Spontaneous mutagenesis in mammalian cells is caused mainly by oxidative events and can be blocked by antioxidants and metal-lothionein. Mutat. Res., 402 (1998) 103–111.PubMedCrossRefGoogle Scholar
  27. 27.
    Sato M, Brenner I. Oxygen free radicals and metallothionein. Free Radic. Biol. Med., 14 (1993) 325–342.PubMedCrossRefGoogle Scholar
  28. 28.
    DiSilvestro RA, Cousind RJ. Mediation of endotoxin-induced changes in zinc metabolism in rats. Am. J. Physiol., 247 (1984) E436 - E441.PubMedGoogle Scholar
  29. 29.
    Oury TD, Day BJ, Crapo JD. Extracellular superdioxide dismutase: a regulator of nitric oxide availability. Lab. Invest., 75 (1996) 617–636.PubMedGoogle Scholar
  30. 30.
    Craig GM, Evans SJ, Brayshaw BJ, Raina SK. A study of serum zinc, albumin, alpha-2-macroglobulin and tranferrin levels in acute and long-stay elderly hospital patients. Postgrad. Med. J., 66 (1990) 205–209.PubMedCrossRefGoogle Scholar
  31. 31.
    Prasad AS, Fitsgerald JT, Hess JW, et al. Zinc deficiency in elderly patients. Nutrition, 9 (1993) 218–224.PubMedGoogle Scholar
  32. 32.
    Sanstead HH. Zinc interference with copper metabolism. JAMA, 240 (1978) 188–189.Google Scholar
  33. 33.
    Galan P, Preziosi P, Monget AL, et al. Effects of trace element and/or vitamin supplementation on vitamin and mineral status, free-radical metabolism, and immunological markers in elderly long-term-hospitalized subjects. Geriatric Network MIN.VIT.AOX Int. J. Vitam. Nutr. Res., 67 (1997) 450–460.PubMedGoogle Scholar
  34. 34.
    Clark L, Combs GF, Turnbull B W, et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. JAMA, 276 (1996) 1957–1963.PubMedCrossRefGoogle Scholar
  35. 35.
    Kiremidjian-Schumacher L, Glickman R, Schneider K, et al. Selenium and immunocompetence in patients with head and neck cancer. Biol. Trace Elem. Res., 73 (2000) 97–111.PubMedCrossRefGoogle Scholar
  36. 36.
    Horvath PM, Ip C. Synergistic effect of vitamin E and selenium on the chemoprevention of mammary carcinogenesis in rats. Cancer Res., 43 (1983) 693–792.Google Scholar
  37. 37.
    Johnson VJ, Tsunoda M, Sharma RP. Increased production of proinflammatory cytokines by murine macrophages following oral exposure to sodium selenite but not to seleno-L-methionine. Arch. Environ. Contam. Toxicol., 39 (2000) 243–250.PubMedCrossRefGoogle Scholar
  38. 38.
    Rice-Evans CA, Diplock AT. Current status of antioxidant therapy. Free Rad. Biol. Med., 15 (1993) 77–96.PubMedCrossRefGoogle Scholar
  39. 39.
    Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause or consequence? Lancet, 344 (1994) 721–724.PubMedCrossRefGoogle Scholar
  40. 40.
    Meydani SN, Meydani M, Blumberg JB, et al. Assessment of safety of supplementation with different amounts of vitamin E in healthy older adults. Am. J. Clin. Nutr., 68 (1998) 311–318.Google Scholar
  41. 41.
    Meydani M. Dietary antioxidants modulation of aging and immune-endothelial cell interaction. Mech. Ageing Dev., 111 (1999) 123–132.PubMedCrossRefGoogle Scholar
  42. 42.
    Bendich A, Machlin LJ. Safety of oral intake of vitamin E. Am. J. Clin. Nutr., 48 (1988) 612–619.Google Scholar
  43. 43.
    Farrell PM, Bieri JG. Megavitamin E supplementation in man. Am. J. Clin. Nutr., 28 (1975) 1381–1386.PubMedGoogle Scholar
  44. 44.
    Shearer MJ, McBurney A, Barkhan P. Studies on the absorption and metabolism of phylloquine (vitamin K) in man. Vitam. Horm., 32 (1974) 513–514.PubMedCrossRefGoogle Scholar
  45. 45.
    Martensson J, Jain A, Meister A. Glutathione is required for intestinal function. Proc. Natl. Acad. Sci. USA, 87 (1990) 1715–1719.PubMedCrossRefGoogle Scholar
  46. 46.
    White AC, Thannickal VJ, Fanburg BL. Glutathione deficiency in human disease. J. Nutr. Biochem., 5 (1994) 218–226.CrossRefGoogle Scholar
  47. 47.
    Ruan EA, Rao S, Burdick JS, et al. Glutathione levels in chronic inflammatory disorders of the human colon. Nutr. Res. 17 (1997) 463–473.CrossRefGoogle Scholar
  48. 48.
    Miralles-Barrachina O, Savoye G, Belmonte-Zalar L, et al. Low levels of glutathione in endoscopic biopsies of patients with Crohns colitis: role of malnutrition. Clin. Nutr. 18 (1999) 313–317.PubMedCrossRefGoogle Scholar
  49. 49.
    Iantomasi T, Marraccini P, Favilli F, Vincenzini MT, Ferretti P, Tonelli F. Glutathione metabolism in Crohns disease. Biochem. Med. Metabol. Biol., 53 (1994) 87–91.CrossRefGoogle Scholar
  50. 50.
    Koch TR, Schulte-Bockholt A, Otterson MF, et. Decreased vasoactive intestinal peptide levels and glutathione depletion in acquired megacolon. Dig. Dis. Sci., 41 (1996) 1409–1416.PubMedCrossRefGoogle Scholar
  51. 51.
    Lih-Brody L, Powell SR, Collier KP, et al. Increased oxidative stress and decreased antioxidant defenses in mucosa of inflammatory bowel disease. Dig. Dis. Sci., 41 (1996) 2078–2086.PubMedCrossRefGoogle Scholar
  52. 52.
    Stoll R, Schmidt H, Stern H, Ruppin H, Domschke W. Functional defect of zinc transport in patients with Crohns disease. Hepatogastroenterology, 34 (1987) 178–181.PubMedGoogle Scholar
  53. 53.
    Sturniolo GC, Mestriner C, Lecis PE, et al. Altered plasma and mucosal concentrations of trace elements and antioxidants in active ulcerative colitis. Scand. J. Gastroenterol., 33 (1998) 644–649.PubMedCrossRefGoogle Scholar
  54. 54.
    Longnecker M, Martin-Moreno J-M, Knekt P, et al. Serum alpha tocopherol concentration in relation to subsequent colorectal cancer: Pooled data from five cohorts. J. Natl. Cancer. Inst., 84 (1992) 430–435.PubMedCrossRefGoogle Scholar
  55. 55.
    Knekt P, Aromaa A, Maatela J, et al. Serum vitamin A, and subsequent risk of cancer: cancer incidence follow-up of the Mobile Clinic Health Examination Survey. Am. J. Epidemiol., 132 (1990) 857–870.PubMedGoogle Scholar
  56. 56.
    Stahelin H, Gey F, Eicholzer M, Ludin E. Beta carotene and cancer prevention: the Basel Study. Am. J. Clin. Nutr., 53 (Suppl) (1991) 265–269.Google Scholar
  57. 57.
    Wright JP, Mee AS, Parfitt A, et al. Vitamin A therapy in patients with Crohn’ s Disease. Gastroenterology, 88 (1985) 512–514.PubMedGoogle Scholar
  58. 58.
    Emerit J, Pelletier S, Tosoni-Verlignue D, Mollet M. Phase II trial of copper zinc superoxide dismutase (CuZnSOD) in treatment of Crohns disease. Free Rad. Biol. Med., 7 (1989) 145–149.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Emmanuel C. Opara

There are no affiliations available

Personalised recommendations