Advertisement

Mucin and Goblet Cell Function

  • Samuel B. Ho
  • Laurie L. Shekels

Abstract

The intestine and colon are coated by a protective mucous gel. The mucous gel consists of a variety of large mucin glycoproteins, trefoil factors (TFF), defensins, secreted immunoglobulins (Ig), electrolytes, sloughed epithelial cells, phospholipids, commensal bacteria, and other components. These factors form a dynamic barrier that protects epithelial surfaces from toxins, harmful bacteria, parasites, and digestive chemicals. Mucous gel components are largely derived from the secretory products of goblet cells. The protective functions of goblet cell products make them an integral part of the innate immune response of the gut. This review will focus on recent insights into the function of intestinal goblet cells and their secretory products that contribute to the protective mucous layer.

Keywords

Goblet Cell Mucin Gene Mucin Glycoprotein Intestinal Mucin Intestinal Trefoil Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neutra M, Forstner JF. Gastrointestinal mucus: synthesis, secretion, and function. In Physiology of the Digestive Tract. Johnson L (ed.), Raven Press, New York, NY, 1987, pp. 975–1009.Google Scholar
  2. 2.
    Cheng H, LeBlond CP. Origin, differentiation and renewal of the four main epithelial cell types of the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am. J. Anat., 141 (1974) 537–562.PubMedCrossRefGoogle Scholar
  3. 3.
    Specian RD, Oliver MG. Functional biology of intestinal goblet cells. Am. J. Physiol., 260 (1991) C183 - C193.PubMedGoogle Scholar
  4. 4.
    Lipkin M. Growth and development of gastrointestinal cells. Annu. Rev. Physiol., 47 (1985) 175–197.PubMedCrossRefGoogle Scholar
  5. 5.
    Akamatsu T, Ota T, Ishii K et al. Histochemical study of the surface mucous gel layer of the human large intestine. In Cytoprotection and Cytobiology. Yunoki K (ed.), Excerpta Medica, Amsterdam, 1991, pp. 90–95.Google Scholar
  6. 6.
    Matsuo K, Ota H, Akamatsu T, Sugiyama A, Katsuyama T. Histochemistry of the surface mucous gel layer of the human colon. Gut, 40 (1997) 782–789.PubMedCrossRefGoogle Scholar
  7. 7.
    Pullan RD, Thomas GAO, Rhodes M, et al. Thickness of adherant mucus gel on colonic mucosa in humans and its relevance to colitis. Gut, 35 (1994) 353–359.PubMedCrossRefGoogle Scholar
  8. 8.
    Phillips TE, Wilson J. Morphometric analysis of mucous granule depletion and replenishment in rat colon. Dig. Dis. Sci., 38 (1993) 2299–2304.PubMedCrossRefGoogle Scholar
  9. 9.
    Phillips T, Wilson J. Signal transduction pathways mediating mucin secretion from intestinal goblet cells. Dig. Dis. Sci., 38 (1993) 1046–1054.PubMedCrossRefGoogle Scholar
  10. 10.
    Neutra MR, O’Malley LJ, Specian RD. Regulation of intestinal goblet cell secretion. II. A survey of potential secretagogues. Am. J. Physiol., 242 (1982) G380 - G387.PubMedGoogle Scholar
  11. Castagliuolo I, Leeman S, Bartolak-Suki E, et al. A neurotensin antagonist, SR48692, inhibits colonic responses to immobilization stress in rats. Proc. Natl. Acad. Sci. USA,93 (1996) 12,611–12,615.Google Scholar
  12. 12.
    Bou-Hanna C, Berthon B, Combettes L, Claret M, Laboisse C. Role of calcium in carbachol-and neurotensininduced mucin exocytosis in a human colonic goblet cell line and cross-talk with the cyclic AMP pathway. Biochem. J., 299 (1994) 579–585.PubMedGoogle Scholar
  13. 13.
    Moore B, Sharkey K, Mantle M. Role of 5-HT in cholera toxin-induced mucin secretion in the rat small intestine. Am. J. Physiol., 270 (1996) G1001 - G1009.PubMedGoogle Scholar
  14. 14.
    Rozee KR, Cooper D, Lam K, Costerton JW. Microbial flora of the mouse ileum mucous layer and epithelial surface. Appl. Environ. Microbiol., 43 (1982) 1451–1463.PubMedGoogle Scholar
  15. 15.
    Poulson LK, Lan F, Kristensen CS, Hobolth P, Molin S, Krogfelt KA. Spatial distribution of E. coli in the mouse large intestine inferred from rRNA in situ hybridization. Infect Immun., 62 (1994) 5191–5194.Google Scholar
  16. 16.
    Ensgraber M, Genitsariotis R, Storkel S, Loos M. Purification and characterization of a Salmonella typhimurium agglutinin from gut mucus secretions. Microb. Pathog., 12 (1992) 255–266.PubMedCrossRefGoogle Scholar
  17. 17.
    Sajjan SU, Forstner JF. Role of the putative link glycopeptide of intestinal mucin in binding of piliated Escherichia coli serotype O157:H7 strain CL-49. Infect. Immun., 58 (1990) 868–873.PubMedGoogle Scholar
  18. 18.
    Chadee K, Petri WA, Innes DJ, Ravdin JI. Rat and human colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica. J. Clin. Invest., 80 (1987) 1245–1254.CrossRefGoogle Scholar
  19. 19.
    Smith CJ, Kaper JB, Mack DR. Intestinal mucin inhibits adhesion of human enteropathogenic E. coli to HEp2 cells. J. Pediatr. Gastroenterol. Nutr., 21 (1995) 269–276.PubMedCrossRefGoogle Scholar
  20. 20.
    Belley A, Keller K, Grove J, Chadee K. Interaction of LS 174T human colon cancer cell mucins with Entamoeba histolytica: an in vitro model for colonic disease. Gastroenterology, 111 (1996) 1484–1492.PubMedCrossRefGoogle Scholar
  21. 21.
    Sajjan SU, Forstner JF. Characteristics of binding of Escherichia coli serotype O157:H7 strain CL-49 to purified intestinal mucin. Infect. Immunol., 58 (1990) 860–867.Google Scholar
  22. 22.
    Yolken RH, Ojeh C, Khatri IA, Sajjan U, Forstner JF. Intestinal mucin inhibits rotavirus infection in an oligosaccharide-dependent manner. J. Infect. Dis., 169 (1994) 1002–1006.PubMedCrossRefGoogle Scholar
  23. 23.
    Magnusson KE, Stjemstrom I. Mucosal barrier mechanisms. Interplay between secretory IgA (SIgA), IgG and mucins on the surface properties and association of salmonellae with intestine and granulocytes. Immunology, 45 (1982) 239–248.PubMedGoogle Scholar
  24. 24.
    Mack DR, Michail S, Wei S, McDougall L, Hollingsworth MA. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am. J. Physiol. 276 (1999) G941 - G950.PubMedGoogle Scholar
  25. 25.
    Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science,291 (2001)881–884.Google Scholar
  26. 26.
    Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl. Acad. Sci. USA, 96 (1999) 9833–9838.PubMedCrossRefGoogle Scholar
  27. 27.
    Ho SB, Ewing S, Montgomery CK, et al. Mucin core peptide expression in the colon polyp-carcinoma sequence. Gastroenterology, 100 (1991) A370.Google Scholar
  28. 28.
    Strous GJ, Dekker J. Mucin-type glycoproteins. Crit. Rev. Biochem. Mol. Biol., 27 (1992) 57–92.PubMedCrossRefGoogle Scholar
  29. 29.
    Gendler SJ, Spicer AP. Epithelial mucin genes. Annu. Rev. Physiol., 57 (1995) 607–634.PubMedCrossRefGoogle Scholar
  30. 30.
    Hilkens J, Buijs F, Ligtenberg M. Complexity of MAM-6, an epithelial sialomucin associated with carcinomas. Cancer Res., 49 (1989) 786–793.PubMedGoogle Scholar
  31. Gendler SJ, Lancaster CA, Taylor-Papdimitriou J, et al. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem.,265 (1990) 15,286–15,293.Google Scholar
  32. 32.
    Siddiqui J, Abe M, Hayes D, Shani E, Yunis E, Kufe D. Isolation and sequencing of a cDNA coding for the human DF3 breast carcinoma-associated antigen. Proc. Natl. Acad. Sci. USA, 85 (1988) 2320–2323.PubMedCrossRefGoogle Scholar
  33. 33.
    Ligtenberg MJL, Vos HL, Gennissen AMC, Hilkens J. Episialin, a carcinoma-associated mucin, is generated by a polymorphic gene encoding splice variants with alternative amino termini. J. Biol. Chem., 265 (1990) 5573–5578.PubMedGoogle Scholar
  34. Baeckstrom D, Karlsson N, Hansson GC. purification and characterization of sialyl-LeA-carrying mucins of human bile. Evidence for the presence of MUC1 and MUC3 apoproteins. J. Biol. Chem.,269 (1994) 14,430–14,437.Google Scholar
  35. 35.
    Patton S, Gendler SJ, Spicer AP. The epithelial mucin MUC1, of milk, mammary gland, and other tissues. Biochim. Biophys. Acta.,1241 (1995) 407–424:Google Scholar
  36. 36.
    Zhang K, Baeckstrom D, Breving H, Hansson GC. Secreted MUC1 mucins lacking their cytoplasmic part and carrying sialyl-Lewis a and x epitopes from a tumor cell line and sera of colon carcinoma patients can inhibit HL-60 leukocyte adhesion to E selectin-expressing endothelial cells. J. Cell. Biochem., 60 (1996) 538–549.Google Scholar
  37. 37.
    Boshell M, Lalani E-N, Pemberton L, Burchell J, Gendler SJ, Taylor-Papadimitriou J. The product of the human MUC 1 gene when secreted by mouse cells transfected with the full-length cDNA lacks the cytoplasmic tail. Biochem. Biophys. Res. Commun., 185 (1992) 1–8.PubMedCrossRefGoogle Scholar
  38. Gum JR, Ho JJL, Pratt WS, et al. MUC3 human intestinal mucin. Analysis of gene structure, the carboxyl terminus, and a novel upstream repetitive region. J. Biol. Chem.,272 (1997) 26,678–26,686.Google Scholar
  39. 39.
    Crawley SC, Gum JR, Hicks JW, et al. Genomic organization and structure of the 3’ region of human MUC3: alternative splicing predicts membrane-bound and soluble forms of the mucin. Biochem. Biophys. Res. Commun., 263 (1999) 728–736.PubMedCrossRefGoogle Scholar
  40. 40.
    Shekels LL, Hunninghake DA, Tisdale AS, et al. Cloning and characterization of mouse intestinal MUC3 mucin: 3’ sequence contains epidermal-growth-factor-like domains. Biochem. J., 330 (1998) 1301–1308.PubMedGoogle Scholar
  41. Sheng Z, Wu K, Carraway K, Fregien N. Molecular cloning of the transmembrane component of the 13762 mammary adenocarcinoma sialomucin complex. J. Biol. Chem.,267 (1992) 16,341–16,346.Google Scholar
  42. Rossi EA, McNeer RR, Price-Schiavi S, et al. Sialomucin complex, a heterodimeric glycoprotein complex. J. Biol. Chem.,271 (1996) 33,476–33,485.Google Scholar
  43. 43.
    Nollet S, Moniaux N, Maury J, et al. Human mucin gene MUC4: organization of its 5’-region and polymorphisms of its central tandem repeat array. Biocehm. J., 332 (1998) 739–748.Google Scholar
  44. 44.
    Moniaux N, Nollet S, Porchet N, Degand P, Laine A, Aubert J-P. Complete sequence of the human mucin MUC4: a putative cell membrane-associated mucin. Biochem. J., 338 (1999) 325–333.PubMedCrossRefGoogle Scholar
  45. 45.
    Williams S, McGuckin M, Gotley D, Eyre H, Sutherland G, Antalis TM. Two novel mucin genes downregulated in colorectal cancer identified by differential display. Cancer Res. 59 (1999) 4083–4089.PubMedGoogle Scholar
  46. 46.
    Mcneer RR, Price-Schiavi SA, Komatsu M, Fregien N, Carraway CAC, Carraway KL. Sialomucin complex in tumors and tissues. Front. Biosci., 2 (1998) 449–459.Google Scholar
  47. 47.
    Carlstedt I, Sheehan JK. Structure and macromolecular properties of mucus glycoproteins. Monogr. Allergy, 24 (1988) 16–24.PubMedGoogle Scholar
  48. Gum JR, Hicks JW, Toribara NW, Rothe E-M, Lagace RE, Kim YS. The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J. Biol. Chem.,267 (1992) 21,375–21,383.Google Scholar
  49. 49.
    Desseyn J-P, Guyonnet-Duperat, V, Porchet N, Aubert J-P, Laine A. Human mucin gene MUC5B, the 10.7-kb large central exon encodes various alternate subdomains resulting in a super-repeat. J. Biol. Chem., 272 (1997) 3168–3178.PubMedCrossRefGoogle Scholar
  50. Desseyn J-L, Aubert J-P, Van Seuningen I, Porchet N, Laine A. Genomic organization of the 3’ region of the human mucin gene MUC5B. J. Biol. Chem.,272 (1997) 16,873–16,883.Google Scholar
  51. 51.
    Inatomi T, Tisdale AS, Zhan Q, Spurr-Michaud S, Gipson IK. cloning of rat Muc5AC mucin gene: Comparison of its structure and tissue distribution to that of human and mouse homologues. Biochem. Biophys. Res. Commun., 236 (1997) 789–797.PubMedCrossRefGoogle Scholar
  52. Toribara NW, Ho SB, Gum E, Gum JR, Lau P, Kim YS. The carboxyl-terminal sequence of the human secretory mucin, MUC6: Analysis of the primary amino acid sequence. J. Biol. Chem.,272 (1997) 16,398–16,403.Google Scholar
  53. Perez-Vilar J, Hill RL. Identification of the half-cystine residues in porcine submaxillary mucin critical for multimerization through the D-domains. J. Biol. Chem.,273 (1998) 34,527–34,534.Google Scholar
  54. Perez-Vilar J, Hill RL. The structure and assembly of secreted mucins. J. Biol. Chem.,274 (1999) 31,75131,754.Google Scholar
  55. 55.
    Wesley A, Mantle M, Man D, Qureshi R, Forstner G, Forstner J. Neutral and acidic species of human intestinal mucin. Evidence for different core peptides. J. Biol. Chem., 260 (1985) 7955–7959.PubMedGoogle Scholar
  56. 56.
    Van Klinken BJ-W, Dekker J, Buller HA, De Bolos C, Einerhand AWC. Biosynthesis of mucins (MUC2–6) along the longitudinal axis of the human gastrointestinal tract. Am. J. Physiol., 273 (1997) G296 - G302.PubMedGoogle Scholar
  57. Asker N, Axelsson MAB, Olofsson S-O, Hansson GC. Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono-and dimers to the golgi apparatus. J. Biol. Chem.,273 (1998) 18,857–18,863.Google Scholar
  58. 58.
    Sheehan JK, Thornton DJ, Howard M, Carlstedt I, Corfield AP, Paraskeva C. Biosynthesis of the MUC2 mucin: evidence for a slow assembly of fully glycosylated units. Biochem. J., 315 (1996) 1055–1060.PubMedGoogle Scholar
  59. Axelsson MAB, Asker N, Hansson GC. 0-glycosylated MUC2 monomer and dmer from LS 174T cells are water soluble, whereas larger MUC2 species formed early during biosynthesis are insoluble and contain nonreducible intermolecular bonds. J. Biol. Chem.,273 (1998) 18,864–18,870.Google Scholar
  60. Herrmann A, Davies JR, Lindell G, et al. Studies on the “insoluble” glycoprotein complex from human colon. J. Biol. Chem.,274 (1999) 15,828–15,836.Google Scholar
  61. 61.
    Khatri IA, Forstner GG, Forstner JF. Susceptibility of the cysteine-rich N-terminal and C-terminal ends of rat intestinal mucin Muc2 to proteolytic cleavage. Biochem. J., 331 (1998) 323–330.PubMedGoogle Scholar
  62. Karlsson NG, Herrmann A, Karlsson H, Johansson MEV, Carlstedt I, Hansson GC. The glycosylation of rat intestinal Muc2 mucin varies between rat strains and the small and large intestine. J. Biol. Chem.,272 (1997) 27,025–27,034.Google Scholar
  63. 63.
    Van Klinken BJ-W, Dekker J, Van Gool SA, Van Marie J, Buller HA, Einerhand AWC. MUC5B is the prominent mucin in human gallbladder and is also expressed in a subset of colonic goblet cells. Am. J. Physiol., 274 (1998) G871 - G878.PubMedGoogle Scholar
  64. 64.
    Winterford CM, Walsh MD, Leggett BA, Jass JR. Ultrastructural localization of epithelial mucin core proteins in colorectal tissues. J. Histochem. Cytochem., 47 (1999) 1063–1074.PubMedCrossRefGoogle Scholar
  65. 65.
    Kovarik A, Peat N, Wilson D, Gendler SJ, Taylor-Papadimitriou J. Analysis of the tissue-specific promoter of the MUC1 gene. J. Biol. Chem., 268 (1993) 9917–9926.PubMedGoogle Scholar
  66. 66.
    Abe M, Kufe D. Characterization of cis-acting elements regulating transcription of the human DF3 breast carcinoma-associated antigen (MUCI) gene. Proc. Natl. Acad. Sci. USA, 90 (1993) 282–286.PubMedCrossRefGoogle Scholar
  67. 67.
    Gum JR, Hicks JW, Gillespie A-M, et al. Goblet cell-specific expression mediated by the MUC2 mucin gene promoter in the intestine of transgenic mice. Am. J. Physiol., 276 (1999) G666 - G676.PubMedGoogle Scholar
  68. 68.
    Price-Schiavi SA, Perez A, Barco R, Carraway KL. Cloning and characterization of the 5’ flanking region of the sialomucin complex/rat Muc4 gene: promoter activity in cultured cells. Biochem. J., 349 (2000) 641–649.PubMedCrossRefGoogle Scholar
  69. 69.
    Li J-D, Feng W, Gallup M, et al. Activation of NF-kB via a Src-dependent RasMAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc. Natl. Acad. Sci. USA, 95 (1998) 5718–5723.PubMedCrossRefGoogle Scholar
  70. 70.
    Temann U-A, Prasad B, Gallup MW, et al. A novel role for murine IL-4 in vivo: Induction of MUC5AC gene expression and mucin hypersecretion. Am. J. Respir. Cell Mol. Biol., 16 (1997) 471–478.PubMedGoogle Scholar
  71. 71.
    Levine SJ, Larivee P, Logun C, Angus CW, Ognibene FP, Shelhamer JH. Tumor necrosis factor-alpha induces mucin hypersecretion and MUC2 gene expression by human airway epithelial cells. Am. J. Resp. Cell Mol. Biol. 12 (1995) 196–204.Google Scholar
  72. 72.
    Fischer BM, Krunkosky TM, Wright DT, Dolan-O’Keefe M, Adler KB. Tumor necrosis factor-alpha stimulates mucin secretion and gene expression in airway epithelium in vitro. Chest, 107 (1995) 133S - 135S.PubMedCrossRefGoogle Scholar
  73. 73.
    Nielsen OH, Koppen T, Rudiger N, Horn T, Eriksen J, Kirman I. Involvement of interleukin-4 and-10 in inflammatory bowel disease. Dig. Dis. Sci., 41 (1996) 1786–1793.PubMedCrossRefGoogle Scholar
  74. 74.
    Kusugami K, Haruta J, Ieda M, Shioda M, Ando T, Kuroiwa A. Phenotypic and functional characterization of T-cell lines generated from colonoscopic biopsy specimens in patients with ulcerative colitis. Dig. Dis. Sci., 40 (1995) 198–210.PubMedCrossRefGoogle Scholar
  75. 75.
    Shim J, Dabbagh K, Ueki I, et al. IL-13 induces mucin production by stimulating epidermal growth factor receptors and by activating neutrophils. Am. J. Physiol. Lung Cell Mol. Physiol., 280 (2001) L134 - L140.PubMedGoogle Scholar
  76. 76.
    Shekels LL, Anway RE, Lin J, et al. Coordinated Muc2 and Muc3 mucin gene expression in Trichinella spiralis infection in wild-type and cytokine deficient mice. Dig. Dis. Sci., 46 (2001) 1757–1764.PubMedCrossRefGoogle Scholar
  77. 77.
    Podolsky DK. Mucosal immunity and inflammation V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense. Am. J. Physiol., 277 (1999) G495 - G499.Google Scholar
  78. 78.
    Lefebvre O, Wolf C, Kedinger M, et al. The mouse one P-domain (pS2) and two P-domain (mSP) genes exhibit distinct patterns of expression. J. Cell Biol., 122 (1993) 191–198.PubMedCrossRefGoogle Scholar
  79. Suemori S, Lynch-Devaney K, Podolsky DK. Identification and characterization of rat intestinal trefoil factor: tissue-and cell-specific member of the trefoil protein family. Proc. Natl. Acad. Sci. USA,88 (1991) 11,017–11,021.Google Scholar
  80. 80.
    Ho SB, Shekels LL, Toribara NW, et al. Mucin gene expression in normal, preneoplastic, and neoplastic human gastric epithelium. Cancer Res. 55 (1995) 2681–2690.PubMedGoogle Scholar
  81. 81.
    Chang S-Y, Dohrman AF, Basbaum CB, et al. Localization of mucin (MUC2 and MUC3) messenger RNA and peptide expression in human normal intestine and colon cancer. Gastroenterology, 107 (1994) 28–36.PubMedGoogle Scholar
  82. 82.
    Mashimo H, Wu D-C, Podolsky DK, Fishman MC. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science, 274 (1996) 262–265.PubMedCrossRefGoogle Scholar
  83. 83.
    Kindon H, Pothoulakis C, Thim L, Lynch-Devaney K, Podolsky DK. Trefoil peptide protection of intestinal epithelial barrier function: cooperative interaction with mucin glycoprotein. Gastroenterology, 109 (1995) 516–523.PubMedCrossRefGoogle Scholar
  84. 84.
    Tomasetto C, Masson R, Linares J-S, et al. pS2/TFF1 interacts directly with the VWFC cysteine-rich domains of mucins. Gastroenterology, 118 (2000) 70–80.PubMedCrossRefGoogle Scholar
  85. 85.
    Efstathiou JA, Noda M, Rowan A, et al. Intestinal trefoil factor controls the expression of the adenomatous polyposis coli-catenin and the E-cadherin-catenin complexes in human colon carcinoma cells. Proc. Natl. Acad. Sci. USA, 95 (1998) 3122–3127.PubMedCrossRefGoogle Scholar
  86. 86.
    Mack DR, Neumann AW, Policova Z, Sherman PM. Surface hydrophobicity of the intestinal tract. Am. J. Physiol., 262 (1992) G171 - G177.PubMedGoogle Scholar
  87. 87.
    Schacter M, Peret MW, Billing AG, Wheeler GD. Immunolocalization of the protease kallikrein in the colon. J. Histochem. Cytochem., 31 (1983) 1255–1260.CrossRefGoogle Scholar
  88. 88.
    Beyer EC, Tokuyasu KT, Barondes SA. Localization of an endogenous lectin in chick liver, intestine, and pancreas. J. Cell. Biol., 82 (1979) 565–571.PubMedCrossRefGoogle Scholar
  89. 89.
    Kudo H, Inada M, Ohshio G, et al. Immunohistochemical localization of vitamin B12 R-binder in the human digestive tract. Gut, 28 (1987) 339–345.PubMedCrossRefGoogle Scholar
  90. 90.
    Nexo E, Poulsen SS, Hansen SN, Kirkegaard P, Olsen PS. Characterization of a novel proteolytic enzyme localized to goblet cells in rat and man. Gut, 25 (1984) 656–664.PubMedCrossRefGoogle Scholar
  91. 91.
    Ogata H, Inoue N, Podolsky DK. Identification of a goblet cell-specific enhancer element in the rat intestinal trefoil factor gene promoter bound by a goblet cell nuclear protein. J. Biol. Chem., 273 (1998) 3060–3067.PubMedCrossRefGoogle Scholar
  92. 92.
    Itoh H, Inoue N, Podolsky DK. Goblet-cell specific transcription of mouse intestinal trefoil factor gene results from collaboration of distinctive positive and negative regulatory elements. Biochem. J. 341 (1999) 461–472.PubMedCrossRefGoogle Scholar
  93. 93.
    Itoh H, Beck PL, Inoue N, Xavier R, Podolsky DK. A paradoxical reduction in susceptibility to colonic injury upon targeted transgenic ablation of goblet cells. J. Clin. Invest., 104 (1999) 1539–1547.PubMedCrossRefGoogle Scholar
  94. 94.
    Tornita M, Itoh H, Ishikawa N, et al. Molecular cloning of mouse intestinal trefoil factor and its expression during goblet cell changes. Biochem. J., 311 (1995) 293–297.Google Scholar
  95. 95.
    Itoh H, Tornita M, Uchino H, et al. cDNA cloning of rat pS2 peptide and expression of trefoil peptides in acetic acid-induced colitis. Biochem. J. 318 (1996) 939–944.PubMedGoogle Scholar
  96. 96.
    Tytgat KMAJ, Opdam FJM, Einerhand AWC, Buller HA, Dekker J. MUC2 is the prominent colonic mucin expressed in ulcerative colitis. Gut, 38 (1996) 554–563.PubMedCrossRefGoogle Scholar
  97. 97.
    Weiss AA, Babyatsky MW, Ogata S, Chen A, Itzkowitz SH. Expression of MUC2 and MUC3 mRNA in human normal, malignant, and inflammatory intestinal tissues. J. Histochem. Cytochem., 44 (1996) 1161–1166.PubMedCrossRefGoogle Scholar
  98. Spicer AP, Rowse GJ, Lidner TK, Gendler SJ. Delayed mammary tumor progression in Mud 1 null mice. J. Biol. Chem.,270 (1995) 30,093–30,101.Google Scholar
  99. 99.
    Parmley RR, Gendler SJ. Cystic fibrosis mice lacking Muc1 have reduced amounts of intestinal mucus. J. Clin. Invest., 102 (1998) 1798–1806.PubMedCrossRefGoogle Scholar
  100. 100.
    Velcich A, Yang WC, Heyer J, et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Sci., 295 (2002) 1726–1729.CrossRefGoogle Scholar
  101. 101.
    Ho SB, Kim YS. Carbohydrate antigens on cancer-associated mucin-like molecules. Semin. CancerBiol., 2 (1991) 389–400.Google Scholar
  102. 102.
    Hakomori SI. Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv. Cancer Res., 52 (1989) 257–331.PubMedCrossRefGoogle Scholar
  103. 103.
    Bartman AE, Sanderson SJ, Ewing SL, et al. Aberrant expression of MUCSAC and MUC6 gastric mucin genes in colorectal polyps. Int. J. Cancer, 80 (1999) 210–218.PubMedCrossRefGoogle Scholar
  104. 104.
    Devine PL, McKenzie IFC. Mucins: structure, function, and associations with malignancy. BioEssays, 14 (1992) 619–625.PubMedCrossRefGoogle Scholar
  105. 105.
    Jass JR, Roberton AM. Colorectal mucin histochemistry in health and disease:a critical review. Pathol. Int., 44 (1994) 487–504.PubMedCrossRefGoogle Scholar
  106. Ho SB. The use of mucosal biopsy markers to predict colon cancer risk. Gastroenterol. Clin. N. Am.,3 (1 993) 623–638.Google Scholar
  107. 107.
    Karlen P, Young E, Brostrom O, et al. Sialyl-Tn antigen as a marker of colon cancer risk in ulcerative colitis: relation to dysplasia and DNA aneuploidy. Gastroenterology, 115 (1998) 1395–1404.PubMedCrossRefGoogle Scholar
  108. 108.
    Podolsky DK. Role of mucins in inflammatory bowel disease. In Inflammatory Bowel Disease. MacDermott RP, Stenson WF (eds.), Elsevier, New York, NY, 1992, pp. 311–322.Google Scholar
  109. 109.
    Boland CR, Lance P, Levin B, Riddell RH, Kim YS. Abnormal goblet cell glycoconjugates in rectal biopsies associated with an increased risk for neoplasia in patients with ulcerative colitis. Early results of a prospective study. Gut, 25 (1984) 1364–1371.PubMedCrossRefGoogle Scholar
  110. 110.
    Jacobs LR, Huber PW. Regional distribution and alterations of lectin binding to colorectal mucin in mucosal biopsies from controls and subjects with inflammatory bowel disease. J. Clin. Invest. 75 (1985) 112–118.PubMedCrossRefGoogle Scholar
  111. 111.
    Filipe M. Mucins in the gastrointestinal epithelium. A review. Invest. Cell Pathol. 2 (1979) 195–216.PubMedGoogle Scholar
  112. 112.
    Culling CFA, Reid PE, Dunn WL, Clay MG. Histochemical comparison of the epithelial mucins in the ileum in Crohn’s disease and in normal controls. J. Clin. Pathol., 30 (1977) 1063–1067.PubMedCrossRefGoogle Scholar
  113. 113.
    Ehsanullah M, Filipe MI, Gazzard B. Mucin secretion in inflammatory bowel disease: correlation with disease activity and dysplasia. Gut, 23 (1982) 485–489.PubMedCrossRefGoogle Scholar
  114. 114.
    Clamp JR, Fraser G, Read AE. Study of the carbohydrate content of mucus glycoproteins from normal and diseased colons. Clin. Sci., 61 (1981) 229–234.PubMedGoogle Scholar
  115. 115.
    Boland CR, Deshmukh GD. The carbohydrate composition of mucin in colonic cancer. Gastroenterology, 98 (1990) 1170–1177.PubMedGoogle Scholar
  116. 116.
    Podolsky D, Isselbacher K. Composition of human colonic mucin. Selective alteration in inflammatory bowel disease. J. Clin. Invest. 72 (1983) 142–153.PubMedCrossRefGoogle Scholar
  117. 117.
    Podolsky DK, Isselbacher KJ. Glycoprotein composition of colonic mucosa. Specific alterations in ulcerative colitis. Gastroenterology, 87 (1984) 991–998.PubMedGoogle Scholar
  118. 118.
    Tysk C, Riedesel H, Lindberg E, Panzini B, Podolsky D, Jarnerot G. Colonic glycoproteins in monozygotic twins with inflammatory bowel disease. Gastroenterology, 100 (1991) 419–423.PubMedGoogle Scholar
  119. 119.
    Podolsky DK, Madara JL, King N, Sehgal P, Moore R, Winter HS. Colonic mucin composition in primates. Gastroenterology, 88 (1985) 20–25.PubMedGoogle Scholar
  120. 120.
    Podolsky D. Oligosaccharide structures of human colonic mucin. J. Biol. Chem., 260 (1985) 8262–8271.PubMedGoogle Scholar
  121. Podolsky D. Oligosaccharide structures of isolated human colonic mucin species. J. Biol. Chem.,260 (1985) 15,510–15,515.Google Scholar
  122. 122.
    Raouf A, Parker N, Idden D, et al. Ion exchange chromatography of purified colonic mucus glycoproteins in inflammatory bowel disease: absence of a selective sublcass defect. Gut, 32 (1991) 1139–1145.PubMedCrossRefGoogle Scholar
  123. 123.
    Gendler SJ, Burchell JM, Duhig T, et al. Cloning of partial cDNA encoding differentiation and tumor-associated mucin glycoproteins expressed by human mammary epithelium. Proc. Natl. Acad. Sci. USA, 84 (1987) 6060–6064.PubMedCrossRefGoogle Scholar
  124. 124.
    Gum JR, Byrd JC, Hicks JW, Toribara NW, Lamport DTA, Kim YS. Molecular cloning of human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism. J. Biol. Chem., 264 (1989) 6480–6487.PubMedGoogle Scholar
  125. 125.
    Gum JR, Hicks JW, Swallow DM, et al. Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochem. Biophys. Res. Commun., 171 (1990) 407–415.PubMedCrossRefGoogle Scholar
  126. 126.
    Porchet N, Cong NV, Dufosse J,et al. Molecular cloning and chromosomal localization of a novel human tracheo-bronchial mucin eDNA containing tandemly repeated sequences of 48 base pairs. Biochem. Biophys. Res. Communo., 175 (1991) 414–422.CrossRefGoogle Scholar
  127. 127.
    Ho SB, Roberton AM, Shekels LL, Lyftogt CT, Niehans GA, Toribara NW. Expression cloning of gastric mucin complementary DNA and localization of mucin gene expression. Gastroenterology, 109 (1995) 735–747.PubMedCrossRefGoogle Scholar
  128. 128.
    Dufosse J, Porchet N, Aubert J-P, et al. Degenerate 87-base-pair tandem repeats create hydrophilic/hydrophobic alternating domains in human mucin peptides mapped to l 1p15. Biochem. J., 293 (1993) 329–337.PubMedGoogle Scholar
  129. 129.
    Toribara NW, Roberton AM, Ho SB, et al. Human gastric mucin; identification of a unique species by expression cloning. J. Biol. Chem., 268 (1993) 5879–5885.PubMedGoogle Scholar
  130. Bobek LA, Tsai H, Biesbrock AR, Levine MJ. Molecular cloning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin (MUC7). J. Biol. Chem.,268 (1993) 20,563–20,569.Google Scholar
  131. 131.
    Shankar V, Gilmore MS, Elkins RC, Sachdev GP. A novel human airway mucin cDNA encodes a protein with unique tandem-repeat organization. Biochem. J., 300 (1994) 295–298.PubMedGoogle Scholar
  132. 132.
    Lapensee L, Paquette Y, Bleau G. Allelic polymorphism and chromosomal localization of the human oviductin gene (MUC9). Fertil. Steril., 68 (1997) 702–708.PubMedCrossRefGoogle Scholar
  133. 133.
    Ho SB, Niehans GA, Lyftogt C, et al. Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res., 53 (1993) 641–651.PubMedGoogle Scholar
  134. 134.
    Carrato C, Balague C, De Bolos C, et al. Differential apomucin expression in normal and neoplastic human gastrointestinal tissues. Gastroenterology, 107 (1994) 160–172.PubMedGoogle Scholar
  135. 135.
    Balague C, Gambus G, Carrato C, et al. Altered expression of MUC2, MUC4, and MUC5 mucin genes in pancreas tissues and cancer cell lines. Gastroenterology, 106 (1994) 1054–1061.PubMedGoogle Scholar
  136. 136.
    Gipson IK, Ho SB, Spurr-Michaud SJ, et al. Mucin genes expressed by human female reproductive tract epithelia. Biol. Reprod., 56 (1997) 999–1011.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Samuel B. Ho
  • Laurie L. Shekels

There are no affiliations available

Personalised recommendations