Advertisement

Genetic Basis of Altered Responsiveness of Cancer Cells to Their Microenvironment

  • Amato J. Giaccia
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

One insight into how oxygen deficiency may affect the aggressiveness of tumors is through the modulation of apoptosis. In experimental tumors, hypoxia can provide a selective pressure for the expansion of populations of oncogenically transformed rodent cells with reduced apoptotic sensitivity, not only to hypoxia (1), but to chemotherapeutic agents as well (2).

Keywords

Vascular Endothelial Growth Factor Tumor Hypoxia Farnesyltransferase Inhibitor Cervical Epithelial Cell Hypoxia Responsive Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Graeber TG, Osmanian C, Jacks T, et al. Hypoxia mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 1996; 379: 88–91.PubMedCrossRefGoogle Scholar
  2. 2.
    Lowe SW, Bodis S, McClatchey A, et al. p53 status and the efficacy of cancer therapy in vivo. Science 1994; 266: 807–810.PubMedCrossRefGoogle Scholar
  3. 3.
    Alarcon RM, Denko NC, Giaccia AJ. Genetic determinants that influence hypoxia-induced apoptosis. In. The Tumour Microenvironment: Causes and Consequences of Hypoxia and Acidity. Goode, J. A. and Chadwick, D.J. (eds), John Wiley & Sons, Ltd., Chichester, United Kingdom, pp 115–132, 2001.CrossRefGoogle Scholar
  4. 4.
    Kim CY, Tsai MH, Osmanian C, et al. Selection of human cervical epithelial cells that possess reduced apoptotic potential to low-oxygen conditions. Cancer Res 1997; 57: 4200–4204.PubMedGoogle Scholar
  5. 5.
    Hockel M, Schlenger K, Hockel S, Vaupel P. Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res 1999; 59: 4525–4528.PubMedGoogle Scholar
  6. 6.
    Hockel M, Vaupel P. Biological consequences of tumor hypoxia. Semin Oncol 2001; 28: 36–41.PubMedCrossRefGoogle Scholar
  7. 7.
    Evan GI, Wyllie AH, Gilbert CS, et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992; 69: 119–128.PubMedCrossRefGoogle Scholar
  8. 8.
    Hermeking H, Eick D. Mediation of c-Myc-induced apoptosis by p53. Science 1994; 265: 2091–2093.PubMedCrossRefGoogle Scholar
  9. 9.
    Lowe SW, Ruley HE. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 EIA and accompanies apoptosis. Genes Dev 1993; 7: 535–545.PubMedCrossRefGoogle Scholar
  10. 10.
    Lowe SW, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993; 74: 957–967.PubMedCrossRefGoogle Scholar
  11. 11.
    Wagner AJ, Kokontis JM, Hay N. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell-cycle arrest and the ability of p53 to induce p2lwaf-1/cipl. Genes Dev 1994; 8: 2817–2830.PubMedCrossRefGoogle Scholar
  12. 12.
    Debbas M, White E. Wild-type p53 mediates apoptosis by EIA, which is inhibited by El B. Genes Dev 1993; 7: 546–554.PubMedCrossRefGoogle Scholar
  13. 13.
    Lowe SW, Jacks T, Housman DE, Ruley HE. Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc Natl Acad Sci USA 1994; 91: 2026–2030.PubMedCrossRefGoogle Scholar
  14. 14.
    Zindy F, Quelle DE, Roussel MF, Sher- CJ. Expression of the pl6INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 1997; 15: 203–211.PubMedCrossRefGoogle Scholar
  15. 15.
    Kamijo T, Zindy F, Roussel MF, et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p 19A. Cell 1997; 91: 649–659.PubMedCrossRefGoogle Scholar
  16. 16.
    Zindy F, Eischen CM, Randle DH, et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 1998; 12: 2424–2433.PubMedCrossRefGoogle Scholar
  17. 17.
    Alarcon RM, Rupnow BA, Graeber TG, Knox SJ, Giaccia AJ. Modulation of c-Myc activity and apoptosis in vivo. Cancer Res 1996; 56: 4315–4319.PubMedGoogle Scholar
  18. 18.
    Shim H, Chun Y, Lewis B, Dang CV. A unique glucose-dependent apoptotic pathway induced by cMyc. Proc Natl Acad Sci USA 1998; 95: 1511–1516.PubMedCrossRefGoogle Scholar
  19. 19.
    Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES. Autoactivation of procaspase-9 by Apaf-l-mediated oligomerization. Mol Cell 1998; 1: 949–957.PubMedCrossRefGoogle Scholar
  20. 20.
    Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90: 405–413.PubMedCrossRefGoogle Scholar
  21. 21.
    Soengas MS, Alarcon RM, Yoshida H, et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 1999; 284: 156–159.PubMedCrossRefGoogle Scholar
  22. 22.
    Schmitt CA, Rosenthal CT, Lowe SW. Genetic analysis of chemoresistance in primary murine lymphomas. Nat Med 2000; 6: 1029–1035.PubMedCrossRefGoogle Scholar
  23. 23.
    Hueber A-O, Zornig M, Lyon D, Suda T, Nagata S, Evan GI. Requirement for the CD95 receptor-ligand pathway in c-myc induced apoptosis. Science 1997; 278: 1305–1309.PubMedCrossRefGoogle Scholar
  24. 24.
    Klefstrom J, Arighi E, Littlewood T, et al. Induction of TNF-sensitive cellular phenotype by c-myc involves p53 and impaired NF-KB activation. EMBO J 1997; 24: 7382–7392.CrossRefGoogle Scholar
  25. 25.
    Xiao Q, Claassen G, Shi J, Adachi S, Sedivy J, Hann SR. Transactivation-defective c-MycS retains the ability to regulate proliferation and apoptosis. Genes Dey 1998; 12: 3803–3808.CrossRefGoogle Scholar
  26. 26.
    Janssen-Heininger YM, Poynter ME, Baeuerle PA. Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med 2000; 28: 1317–1327.PubMedCrossRefGoogle Scholar
  27. 27.
    Koong AC, Chen EY, Giaccia AJ. Hypoxia causes the activation of nuclear factor-KB through the phosphorylation of IKBŒ on tyrosine residues. Cancer Res 1994; 54: 1425–1430.PubMedGoogle Scholar
  28. 28.
    Beraud C, Henzel WJ, Baeuerle PA. Involvement of regulatory and catalytic subunits of phosphoinositide 3-kinase in NF-kappaB activation. Proc Natl Acad Sci USA 1999; 96: 429–434.PubMedCrossRefGoogle Scholar
  29. 29.
    Digicaylioglu M, Lipton SA. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature 2001; 412: 641–647.PubMedCrossRefGoogle Scholar
  30. 30.
    Siebenlist U. Signal transduction. Barriers come down. Nature 2001; 412: 601–602.PubMedCrossRefGoogle Scholar
  31. 31.
    Finco TS, Baldwin AS, Jr. Kappa B site-dependent induction of gene expression by diverse inducers of nuclear factor kappa B requires Raf-1. J Biol Chem 1993; 268: 17676–17679.PubMedGoogle Scholar
  32. 32.
    Finco TS, Westwick JK, Norris JL, Beg AA, Der CJ, Baldwin AS Jr. Oncogenic Ha-Ras-induced signaling activates NF-kappaB transcriptional activity, which is required for cellular transformation. J Biol Chem 1997; 272: 24113–24116.PubMedCrossRefGoogle Scholar
  33. 33.
    Koong AC, Chen EY, Mivechi NF, Denko NC, Stambrook P, Giaccia AJ. Hypoxic activation of nuclear factor-kB is mediated by a Ras and Raf signaling pathway and does not involve MAP kinase (ERK1 or ERK2). Cancer Res 1994; 54: 5273–5279.PubMedGoogle Scholar
  34. 34.
    Mayo MW, Baldwin AS. The transcription factor NF-kappaB: control of oncogenesis and cancer therapy resistance. Biochim Biophys Acta 2000; 1470: M55 - M62.PubMedGoogle Scholar
  35. 35.
    Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 2001; 13: 167–171.PubMedCrossRefGoogle Scholar
  36. 36.
    Mazure NM, Chen EY, Yeh P, Laderoute KR, Giaccia AJ. Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res 1996; 56: 3436–3440.PubMedGoogle Scholar
  37. 37.
    Mazure NM, Chen EY, Laderoute KR, Giaccia AJ. Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 1997; 90: 3322–3331.PubMedGoogle Scholar
  38. 38.
    Stacey DW, Feig LA, Gibbs JB. Dominant inhibitory Ras mutants selectively inhibit the activity of either cellular or oncogenic Ras. Mol Cell Biol 1991; 11: 4053–4064.PubMedGoogle Scholar
  39. 39.
    Rodriguez-Viciana P, Warne PH, Dhand R, et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 1994; 370: 527–532.PubMedCrossRefGoogle Scholar
  40. 40.
    Rodriguez-Viciana P, Vanhaesebroeck B, Waterfield MD, Downward J. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J 1996; 15: 2442–2451.PubMedGoogle Scholar
  41. 41.
    Franke TF, Yang S-I, Chan TO, et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 1995; 81: 727–736.PubMedCrossRefGoogle Scholar
  42. 42.
    Chen EY, Mazure NM, Cooper JA, Giaccia AJ. Hypoxia activates a platelet-derived growth factor receptor/phosphatidylinositol 3-kinase/Akt pathway that results in glycogen synthase kinase-3 inactivation. Cancer Res 2001; 61: 2429–2433.PubMedGoogle Scholar
  43. 43.
    Gibbs JB, Oliff A, Kohl NE. Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell 1994; 77: 175–178.PubMedCrossRefGoogle Scholar
  44. 44.
    Rak J, Mitsuhashi Y, Bayko L, et al. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 1995; 55: 4575–4580.PubMedGoogle Scholar
  45. 45.
    Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A. Regulation of glut1 mRNA by hypoxiainducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem 2001; 276: 9519–9525.PubMedCrossRefGoogle Scholar
  46. 46.
    Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 2001; 12: 363–369.PubMedGoogle Scholar
  47. 47.
    Blancher C, Moore JW, Robertson N, Harris AL. Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-lalpha, HIF-lalpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3’-kinase/Akt signaling pathway. Cancer Res 2001; 61: 7349–7355.PubMedGoogle Scholar
  48. 48.
    Cohen-Jonathan E, Evans SM, Koch CJ, et al. The farnesyltransferase inhibitor L744,832 reduces hypoxia in tumors expressing activated H-ras. Cancer Res 2001; 61: 2289–2293.PubMedGoogle Scholar
  49. 49.
    Brown JM. Therapeutic targets in radiotherapy. Int J Radiant Oncol Biol Phys 2001; 49: 319–326.CrossRefGoogle Scholar
  50. 50.
    Zundel W, Schindler C, Haas-Kogan D, et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 2000; 14: 391–396.PubMedGoogle Scholar
  51. 51.
    Semenza GL. Hif-1, 0(2), and the 3 phds. how animal cells signal hypoxia to the nucleus. Cell 2001; 107: 1–3.PubMedCrossRefGoogle Scholar
  52. 52.
    Iyer NV, Kotch LE, Agani F, et al. Cellular and developmental control of 02 homeostasis by hypoxiainducible factor 1 alpha. Genes Dey 1998; 12: 149–162.CrossRefGoogle Scholar
  53. 53.
    Ryan HE, Lo J, Johnson RS. HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 1998; 17: 3005–3015.PubMedCrossRefGoogle Scholar
  54. 54.
    Kozak KR, Abbott B, Hankinson O. ARNT-deficient mice and placental differentiation. Dey Biol 1997; 191: 297–305.CrossRefGoogle Scholar
  55. 55.
    Maltepe E, Schmidt JV, Baunoch D, Bradfield CA, Simon MC. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 1997; 386: 403–407.PubMedCrossRefGoogle Scholar
  56. 56.
    Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for 02 sensing. Science 2001; 292: 464–468.PubMedCrossRefGoogle Scholar
  57. 57.
    Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by 02-regulated prolyl hydroxylation. Science 2001; 292: 468–472.PubMedCrossRefGoogle Scholar
  58. 58.
    Yu F, White SB, Zhao Q, Lee FS. HIF-lalpha binding to VHL is regulated by stimulus-sensitive pro-line hydroxylation. Proc Natl Acad Sci USA 2001; 98: 9630–9635.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang GL, Jiang BH, Semenza GL. Effect of protein kinase and phosphatase inhibitors on expression of hypoxia-inducible factor 1. Biochem Biophys Res Commun 1995; 216: 669–675.PubMedCrossRefGoogle Scholar
  60. 60.
    Salceda S, Beck I, Srinivas V, Caro J. Complex role of protein phosphorylation in gene activation by hypoxia. Kidney Im’ 1997; 51: 556–559.CrossRefGoogle Scholar
  61. 61.
    Minet E, Arnould T, Michel G, et al. ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett 2000; 468: 53–58.PubMedCrossRefGoogle Scholar
  62. 62.
    Sodhi A, Montaner S, Miyazaki H, Gutkind JS. MAPK and Akt act cooperatively but independently on hypoxia inducible factor-lalpha in ras V12 upregulation of VEGF. Biochem Biophys Res Commun 2001; 287: 292–300.PubMedCrossRefGoogle Scholar
  63. 63.
    Minet E, Michel G, Mottet D, Raes M, Michiels C. Transduction pathways involved in hypoxiainducible factor-1 phosphorylation and activation. Free Radic Biol Med 2001; 31: 847–855.PubMedCrossRefGoogle Scholar
  64. 64.
    Hofer T, Desbaillets I, Hopfl G, Gassmann M, Wenger RH. Dissecting hypoxia-dependent and hypoxia-independent steps in the HIF-la activation cascade: implications for HIF-la gene therapy. FASEB J 2001; 15: 2715–2717.PubMedGoogle Scholar
  65. 65.
    Czyzyk-Krzeska ME. Molecular aspects of oxygen sensing in physiological adaptation to hypoxia. Respir Physiol 1997; 110: 99–111.PubMedCrossRefGoogle Scholar
  66. 66.
    Coffer PJ, Jin J, Woodgett JR. Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J 1998; 335: 1–13.PubMedGoogle Scholar
  67. 67.
    Alessi DR, Deak M, Casamayor A, et al. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 1997; 7: 776–789.PubMedCrossRefGoogle Scholar
  68. 68.
    Klippel A, Kavanaugh WM, Pot D, Williams LT. A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol Cell Biol 1997; 17: 338–344.PubMedGoogle Scholar
  69. 69.
    Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF. Activation of Raf as a result of recruitment to the plasma membrane. Science 1994; 264: 1463–1467.PubMedCrossRefGoogle Scholar
  70. 70.
    van Weeren PC, de Bruyn KM, de Vries-Smits AM, van Lint J, Burgering BM. Essential role for protein kinase B (PKB) in insulin-induced glycogen synthase kinase 3 inactivation. Characterization of dominant-negative mutant of PKB. JBiol Chem 1998; 273: 13150–13156.CrossRefGoogle Scholar
  71. 71.
    Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–789.PubMedCrossRefGoogle Scholar
  72. 72.
    Wang Q, Somwar R, Bilan PJ, et al. Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts. Mol Cell Biol 1999; 19: 4008–4018.PubMedGoogle Scholar
  73. 73.
    Tanti JF, Grillo S, Gremeaux T, Coffer PJ, Van Obberghen E, Le Marchand-Brustel Y. Potential role of protein kinase B in glucose transporter 4 translocation in adipocytes. Endocrinology 1997; 138: 2005–2010.PubMedCrossRefGoogle Scholar
  74. 74.
    Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH. Phosphorylation and activation of heart 6phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem 1997; 272: 17269–17275.PubMedCrossRefGoogle Scholar
  75. 75.
    Kennedy SG, Wagner AJ, Conzen SD, et al. The PI 3-kinase/Akt signaling pathway delivers an antiapoptotic signal. Genes Dev 1997; 11: 701–713.PubMedCrossRefGoogle Scholar
  76. 76.
    Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, et al. Suppression of c-Myc-induced apoptosis by Ras signaling through PI(3)K and PKB. Nature 1997; 385: 544–548.PubMedCrossRefGoogle Scholar
  77. 77.
    Peli J, Schroter M, Rudaz C, et al. Oncogenic Ras inhibits Fas ligand-mediated apoptosis by down-regulating the expression of Fas. EMBO J 1999; 18: 1824–1831.PubMedCrossRefGoogle Scholar
  78. 78.
    Romashkova JA, Makarov SS. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 1999; 401: 86–90.PubMedCrossRefGoogle Scholar
  79. 79.
    Sabbatini P, McCormick F. Phosphoinositide (3-OH kinase (PI3K) and PKB/Akt delay the onset of p53-mediated, transcriptionally dependent apoptosis. J Biol Chem 1999; 274: 24263–24269.PubMedCrossRefGoogle Scholar
  80. 80.
    Jiang BH, Agani F, Passaniti A, Semenza GL. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res 1997; 57: 5328–5335.PubMedGoogle Scholar
  81. 81.
    Richard DE, Berra E, Gothie E, Roux D, Pouyssegur J. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor lalpha (HIF-lalpha) and enhance the transcriptional activity of HIF-1. JBiol Chem 1999; 274: 32631–32637.CrossRefGoogle Scholar
  82. 82.
    Gleadle JM, Ratcliffe PJ. Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: evidence against a regulatory role for Src kinase. Blood 1997; 89: 503–509.PubMedGoogle Scholar
  83. 83.
    Rosette C, Karin M. Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science 1996; 274: 1194–1197.PubMedCrossRefGoogle Scholar
  84. 84.
    Lin RZ, Hu ZW, Chin JH, Hoffman BB. Heat shock activates c-Src tyrosine kinases and phosphatidylinositol 3-kinase in NIH3T3 fibroblasts. J Biol Chem 1997; 272: 31196–31202.PubMedCrossRefGoogle Scholar
  85. 85.
    Coffer PJ, Burgering BM, Peppelenbosch MP, Bos JL, Kruijer W. UV activation of receptor tyrosine kinase activity. Oncogene 1995; 11: 561–569.PubMedGoogle Scholar
  86. 86.
    Huang RP, Wu JX, Fan Y, Adamson ED. UV activates growth factor receptors via reactive oxygen intermediates. J Cell Biol 1996; 133: 211–220.PubMedCrossRefGoogle Scholar
  87. 87.
    Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem 1998; 273: 18092–18098.CrossRefGoogle Scholar
  88. 88.
    Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 1998; 95: 11715–11720.PubMedCrossRefGoogle Scholar
  89. 89.
    Duranteau J, Chandel NS, Kulisz A, Shao Z, Schumacker PT. Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. JBiol Chem 1998; 273: 11619–11624.CrossRefGoogle Scholar
  90. 90.
    Semenza GL, Roth PH, Fang H-M, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 1994; 269: 23757–23767.PubMedGoogle Scholar
  91. 91.
    Shweiki D, Itin A, Soifer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359: 843–845.PubMedCrossRefGoogle Scholar
  92. 92.
    Graham CH, Fitzpatrick TE, McCrae KR. Hypoxia stimulates urokinase receptor expression through a heme-dependent pathway. Blood 1998; 91: 3300–3307.PubMedGoogle Scholar
  93. 93.
    Bodi I, Bishopric NH, Discher DJ, Wu X, Webster KA. Cell-specificity and signaling pathway of endothelin-1 gene regulation by hypoxia. Cardiovas Res 1995; 30: 975–984.Google Scholar
  94. 94.
    Czyzyk-Krzeska MF, Furnari BA, Lawson EE, Millhorn DE. Hypoxia increases rate of transcription and stability of tyrosine hydroxylase mRNA in pheochromocytoma (PC12) cells. J Biol Chem 1994; 269:760–764.PubMedGoogle Scholar
  95. 95.
    Goldberg MA, Glass GA, Cunningham JM, Bunn HF. The regulated expression of erythropoietin by two human hepatoma cell lines. Proc Natl Acad Sci USA 1987; 84: 7972–7976.PubMedCrossRefGoogle Scholar
  96. 96.
    Goldberg MA, Dunning SP, Bunn HF. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 1988; 242: 1412–1415.PubMedCrossRefGoogle Scholar
  97. 97.
    Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia-inducible nuclear factors bind to an enhancer element located 3’ to the erythropoietin gene. Proc Natl Acad Sci USA 1991; 88: 5680–5684.PubMedCrossRefGoogle Scholar
  98. 98.
    Imagawa S, Goldberg MA, Doweiko J, Bunn HF. Regulatory elements of the erythropoietin gene. Blood 1991; 77: 278–285.PubMedGoogle Scholar
  99. 99.
    Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 1995; 270: 1230–1237.PubMedCrossRefGoogle Scholar
  100. 100.
    Hoffman EC, Reyes H, Chu FF, et al. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 1991; 252: 954–958.PubMedCrossRefGoogle Scholar
  101. 101.
    Hirose K, Morita M, Etna M, et al. cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS factor (Arnt2) with close sequence similarity to the aryl hydrocarbon receptor nuclear translocator (Amt). Mol Cell Biol 1996; 16: 1706–1713.PubMedGoogle Scholar
  102. 102.
    Drutel G, Kathmann M, Heron A, Schwartz JC, Arrang JM. Cloning and selective expression in brain and kidney of ARNT2 homologous to the Ah receptor nuclear translocator (ARNT). Biochem Biophys Res Commun 1996; 225: 333–339.PubMedCrossRefGoogle Scholar
  103. 103.
    Hogenesch JB, Chan WK, Jackiw VH, et al. Characterization of a subset of the basic-helix-loophelix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem 1997; 272: 8581–8593.PubMedCrossRefGoogle Scholar
  104. 104.
    Ikeda M, Nomura M. cDNA cloning and tissue-specific expression of a novel basic helix-loophelix/PAS protein (BMAL1) and identication of alternatively spliced variants with alternative translation initiation site usage. Biochem Biophys Res Commun 1997; 233: 258–264.PubMedCrossRefGoogle Scholar
  105. 105.
    Takahata S, Sogawa K, Kobayashi A, et al. Transcriptionally active heterodimer formation of an Amt-like PAS protein, Arnt3, with HIF-la, HLF, and clock. Biochem Biophys Res Commun 1998; 248: 789–794.PubMedCrossRefGoogle Scholar
  106. 106.
    Hogenesch JB, Gu YZ, Jain S, Bradfield CA. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA 1998; 95: 5474–5479.PubMedCrossRefGoogle Scholar
  107. 107.
    Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 2000; 40: 519–561.PubMedCrossRefGoogle Scholar
  108. 108.
    Goldberg MA, Schneider TJ. Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J Biol Chem 1994; 269: 4355–4359.PubMedGoogle Scholar
  109. 109.
    Wenger RH, Kvietikova I, Rolfs A, Gassmann M, Marti HH. Hypoxia-inducible factor-1 alpha is regulated at the post-mRNA level. Kidney Int 1997; 51: 560–563.PubMedCrossRefGoogle Scholar
  110. 110.
    Huang LE, Arany Z, Livingston DM, Bunn HF. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 1996; 271: 32253–32259.PubMedCrossRefGoogle Scholar
  111. 111.
    Jiang BH, Rue E, Wang GL, Roe R, Semenza GL. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 1996; 271: 17771–17778.PubMedCrossRefGoogle Scholar
  112. 112.
    Pugh CW, O’Rourke JF, Nagao M, Gleadle JM, Ratcliffe PJ. Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem 1997; 272: 11205–11214.PubMedCrossRefGoogle Scholar
  113. 113.
    Srinivas V, Zhang LP, Zhu XH, Caro J. Characterization of an oxygen/redox-dependent degradation domain of hypoxia-inducible factor alpha (HIF-alpha) proteins. Biochem Biophys Res Commun 1999; 260: 557–561.PubMedCrossRefGoogle Scholar
  114. 114.
    Jiang BH, Zheng JZ, Leung SW, Roe R, Semenza GL. Transactivation and inhibitory domains of hypoxia-inducible factor lalpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem 1997; 272: 19253–19260.PubMedCrossRefGoogle Scholar
  115. 115.
    Erna M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor lalpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 1997; 94: 4273–4278.CrossRefGoogle Scholar
  116. 116.
    Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 1997; 11: 72–82.PubMedCrossRefGoogle Scholar
  117. 117.
    Flamme I, Frohlich T, von Reutern M, Kappel A, Damert A, Risau W. HRF,a putative basic helixloop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev 1997; 63: 51–60.PubMedCrossRefGoogle Scholar
  118. 118.
    Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 1998; 7: 205–213.PubMedGoogle Scholar
  119. 119.
    Salceda S, Caro J. Hypoxia-inducible factor lalpha (HIF-lalpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 1997; 272: 22642–22647.PubMedCrossRefGoogle Scholar
  120. 120.
    Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia-inducible factor lalpha is mediated by an 02-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 1998; 95: 7987–7992.PubMedCrossRefGoogle Scholar
  121. 121.
    Wiesener MS, Turley H, Allen WE, et al. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-lalpha. Blood 1998; 92: 2260–2268.PubMedGoogle Scholar
  122. 122.
    Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxiainducible factors for oxygen-dependent proteolysis [see comments]. Nature 1999; 399: 271–275.Google Scholar
  123. 123.
    Ohh M, Park CW, Ivan M, et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein [see comments]. Nat Cell Biol 2000; 2: 423–427.PubMedCrossRefGoogle Scholar
  124. 124.
    Gassmann M, Chilov D, Wenger RH. Regulation of the hypoxia-inducible factor-1 alpha. ARNT is not necessary for hypoxic induction of HIF-1 alpha in the nucleus [in process citation]. Adv Exp Med Biol 2000; 475: 87–99.PubMedCrossRefGoogle Scholar
  125. 125.
    Fox ME, Lemmon MJ, Mauchline ML, et al. Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia [published erratum appears in Gene Ther 1996 Aug;3(8):7411. Gene Ther 1996; 3: 173–178.PubMedGoogle Scholar
  126. 126.
    Lemmon MJ, van Zijl P, Fox ME, et al. Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment. Gene Ther 1997; 4: 791–796.PubMedCrossRefGoogle Scholar
  127. 127.
    Schwarze SR, Hruska KA, Dowdy SF. Protein transduction: unrestricted delivery into all cells? Trends Cell Biol 2000; 10: 290–295.PubMedCrossRefGoogle Scholar
  128. 128.
    Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988; 55: 1189–1193.PubMedCrossRefGoogle Scholar
  129. 129.
    Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 1988; 55: 1179–1188.PubMedCrossRefGoogle Scholar
  130. 130.
    Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes.JBiol Chem 1994; 269: 10444–10450.Google Scholar
  131. 131.
    Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 1996; 271: 18188–18193.PubMedCrossRefGoogle Scholar
  132. 132.
    Elliott G, O’Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 1997; 88: 223–233.PubMedCrossRefGoogle Scholar
  133. 133.
    Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 2000; 97: 13003–13008.PubMedCrossRefGoogle Scholar
  134. 134.
    Rothbard JB, Garlington S, Lin Q, et al. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med 2000; 6: 1253–1257.PubMedCrossRefGoogle Scholar
  135. 135.
    Derossi D, Chassaing G, Prochiantz A. Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol 1998; 8: 84–87.PubMedGoogle Scholar
  136. 136.
    Elliott G, O’Hare R Intercellular trafficking of VP22-GFP fusion proteins. Gene Ther 1999; 6: 149–151.PubMedCrossRefGoogle Scholar
  137. 137.
    Nagahara H, Vocero-Akbani AM, Snyder EL, et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kipl induces cell migration. Nat Med 1998; 4: 1449–1452.PubMedCrossRefGoogle Scholar
  138. 138.
    Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 1999; 285: 1569–1572.PubMedCrossRefGoogle Scholar
  139. 139.
    Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 1998; 58: 1408–1416.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Amato J. Giaccia

There are no affiliations available

Personalised recommendations