Advertisement

Oncogenic Receptor Tyrosine Kinases

  • Mark H. Kirschbaum
  • Mina D. Marmor
  • Yosef Yarden
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Polypeptide growth factors are relatively small and stable molecules that communicate short range signals for cell fate determination. Unlike steroid hormones, which penetrate through the plasma membrane due to their hydrophobic character, these factors must bind a cell surface-localized receptor. In contrast to multispan receptors for neuropeptides and chemical transmitters, growth factor receptors transverse the plasma membrane only once, and their cytoplasmic domains harbor a tyrosine-specific catalytic activity, called protein tyrosine kinase. Ligand binding to a receptor tyrosine kinase (RTK) initiates a cascade of biochemical and phenotypic events known as the pleiotropic response. In addition to ion channels and membrane enzymes, cytoskeletal rearrangements, cytoplasmic enzymes, and adhesive properties of the growth factor-stimulated cell are also modified within seconds to hours. This plethora of surface and cytoplasmic events culminates in the regulation of gene transcription, eventually leading to alterations in cellular behavior ranging from entry into the cell cycle to terminal differentiation (for a specific example of the pleiotropic response to a growth factor see ref. 1).

Keywords

Epidermal Growth Factor Receptor Hepatocyte Growth Factor Papillary Thyroid Carcinoma Fibroblast Growth Factor Receptor Juxtamembrane Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carpenter G, Cohen S. Epidermal growth factor. Ann Rev Biochem 1979; 48: 193–216.PubMedCrossRefGoogle Scholar
  2. 2.
    Feramisco J, Ozanne B, Stiles C. Cancer Cells: Growth Factors and Transformation. Vol. 3. CSH Laboratory Press, Cold Spring Harbor, NY, 1985.Google Scholar
  3. 3.
    Waterfield MD, Scarce T, Whittle N, et al. Platelet-derived growth factor is structurally related to the putative transforming protein of simian sarcoma virus. Nature 1983; 304: 35–39.PubMedCrossRefGoogle Scholar
  4. 4.
    Downward J, Yarden Y, Mayes E, et al. Close similarity of epidermal growth factor receptor and verb-B oncogene protein sequences. Nature 1984; 307: 521–527.PubMedCrossRefGoogle Scholar
  5. 5.
    Coussens L, Van Beveren C, Smith D, et al. Structural alteration of viral homologue of receptor proto-oncogene fms at carboxyl terminus. Nature 1986; 320: 277–280.PubMedCrossRefGoogle Scholar
  6. 6.
    Yarden Y, Kuang W-J, Yang-Feng T, et al. Human protooncogene c-kit: a new cell surface tyrosine kinase for unidentified ligand. EMBO J 1987; 6: 3341–3351.PubMedGoogle Scholar
  7. 7.
    Varmus HE, Brown PO. Retroviruses. In: Howe M, Berg D, eds. Mobile DNA. American Society for Microbiology Publications, Washington, DC, 1989, pp. 53–108.Google Scholar
  8. 8.
    Shih C, Padhy LC, Murray M, Weinberg RA. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 1981; 290: 261–264.PubMedCrossRefGoogle Scholar
  9. 9.
    Bargmann CI, Hung MC, Weinberg RA. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of pí85. Cell 1986; 45: 649–657.PubMedCrossRefGoogle Scholar
  10. 10.
    Cooper CS, Park M, Blair DG, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 1984; 311: 29–33.PubMedCrossRefGoogle Scholar
  11. 11.
    Martin-Zanca D, Hughes SH, Barbacid M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature 1986; 319: 743–748.PubMedCrossRefGoogle Scholar
  12. 12.
    Takahasi M, Rich J, Copper MG. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 1985; 42: 581–588.CrossRefGoogle Scholar
  13. 13.
    Blume-Jensen P, Hunter T. Oncogenic kinase signaling. Nature 2001; 411: 355–365.PubMedCrossRefGoogle Scholar
  14. 14.
    Yarden Y, Ullrich A. Growth factor receptor tyrosine kinases. Ann Rev Biochem 1988; 57: 443–478.PubMedCrossRefGoogle Scholar
  15. 15.
    Cohen S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid openig in new-born animal. J Biol Chem 1962; 237: 1555–1562.PubMedGoogle Scholar
  16. 16.
    Burgess WH, Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 1989; 58: 575–606.PubMedCrossRefGoogle Scholar
  17. 17.
    Levyi-Montalcini R, Hamburger V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J Exp Zool 1951; 116: 321–351.CrossRefGoogle Scholar
  18. 18.
    Sporn MB, Todaro GJ. Autocrine secretion and malignant transformation of cells. N Eng J Med 1980; 308: 878–880.CrossRefGoogle Scholar
  19. 19.
    Shilo B-Z, Raz E. Developmental control by the Drosophila EGF receptor homolog DER. Trends Genet 1991; 7: 388–392.PubMedGoogle Scholar
  20. 20.
    Sternberg PW, Horvitz R. Signal transduction during C. elegans vulva] induction. Trends Genet 1991; 7: 366–371.PubMedGoogle Scholar
  21. 21.
    Massague J, Pandiella A. Membrane-anchored growth factors. Ann Rev Biochem 1993; 62: 515–541.PubMedCrossRefGoogle Scholar
  22. 22.
    Groenen LC, Nice EC, Burgess AW. Structure-function relationships for the EGF/TGF-a family of mitogens. Growth Factors 1994; 11: 235–257.PubMedCrossRefGoogle Scholar
  23. 23.
    Riese DJ, II, Stern DF. Specificity within the EGF family/ErbB receptor family signaling network. Bioessays 1998; 20: 41–48.PubMedCrossRefGoogle Scholar
  24. 24.
    Harari D, Tzahar E, Romano J, et al. Neuregulin-4: a novel growth factor that acts through the ErbB4 receptor tyrosine kinase. Oncogene 1999; 18: 2681–2689.PubMedCrossRefGoogle Scholar
  25. 25.
    Tzahar E, Moyer JD, Waterman H, et al. Pathogenic poxviruses reveal viral strategies to exploit the ErbB signaling network. EMBO J 1998; 17: 5948–5963.PubMedCrossRefGoogle Scholar
  26. 26.
    Schweitzer R, Howes R, Smith R, Shilo B-Z, Freeman M. Inhibition of Drosophila EGF receptor activation by the secreted Argos protein. Nature 1995; 376: 699–702.PubMedCrossRefGoogle Scholar
  27. 27.
    Tzahar E, Yarden Y. The ErbB-2/HER2 oncogenic receptor of adenocarcinomas: from orphanhood to multiple stromal ligands. Biochim Biophys Acta 1998; 1377: M25 - M37.PubMedGoogle Scholar
  28. 28.
    Lenferink AE, Pinkas Kramarski R, van de Poll ML, et al. Differential endocytic routing of homo-and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J 1998; 17: 3385–3397.PubMedCrossRefGoogle Scholar
  29. 29.
    Schreiber AB, Winkler ME, Derynck R. Transforming growth factor a: more potent angiogenic mediator than epidermal growth factor. Science 1986; 232: 1250–1253.PubMedCrossRefGoogle Scholar
  30. 30.
    Raab G, Klagsbrun M. Heparin-binding EGF-like growth factor. Biochem Biophys Acta 1997; 1333: 179–199.Google Scholar
  31. 31.
    Heldin C-H, Wesremark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999; 79: 1283–1316.PubMedGoogle Scholar
  32. 32.
    Andersson M, Ostman A, Westermark B, Heldin CH. Characterization of the retention motif in the C-terminal part of the long splice form of platelet-derived growth factor A-chain. J Biol Chem 1994; 269: 926–930.PubMedGoogle Scholar
  33. 33.
    Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991; 64: 841–848.PubMedCrossRefGoogle Scholar
  34. 34.
    Bennett KL, Modrell B, Greenfield B, et al. Regulation of CD44 binding to hyaluronan by glycosylation of variably spliced exons. J Cell Biol 1995; 131: 1623–1633.PubMedCrossRefGoogle Scholar
  35. 35.
    Lax I, Bellot F, Howk R, Ullrich A, Givol D, Schlessinger J. Functional analysis of the ligand binding site of EGF-receptor utilizing chicken/human receptor molecules. EMBO J 1989; 8: 421–427.PubMedGoogle Scholar
  36. 36.
    Lev S, Blechmann J, Nishikawa S-I, Givol D, Yarden Y. Interspecies molecular chimeras of Kit help define the binding site of the stem cell factor. Mol Cell Biol 1993; 13: 2224–2234.PubMedGoogle Scholar
  37. 37.
    Wiesmann C, Fuh G, Christinger HW, Eigenbrot C, Wells JA, de Vos AM. Crystal structure at 1.7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 1997; 91: 695–704.PubMedCrossRefGoogle Scholar
  38. 38.
    Blechman JM, Lev S, Barg J, et al. The fourth immunoglobulin domain of the stem cell factor receptor couples ligand binding to signal transduction. Cell 1995; 80: 103–113.PubMedCrossRefGoogle Scholar
  39. 39.
    Wiesmann C, Ultsch MH, Bass SH, de Vos AM. Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature 1999; 401: 184–188.PubMedCrossRefGoogle Scholar
  40. 40.
    Plotnikov AN, Schlessinger J, Hubbard SR, Mohammadi M. Structural basis for FGF receptor dimerization and activation. Cell 1999; 98: 641–650.PubMedCrossRefGoogle Scholar
  41. 41.
    Burke CL, Stern DF. Activation of Neu (ErbB-2) mediated by disulfide bond-induced dimerization reveals a receptor tyrosine kinase dimer interface. Mol Cell Biol 1998; 18: 5371–5379.PubMedGoogle Scholar
  42. 42.
    Smith SO, Smith CS, Bormann BJ. Strong hydrogen bonding interactions involving a buried glutamic acid in the transmembrane sequence of the neu/erbB-2 receptor. Nat Struct Biol 1996; 3: 252–258.PubMedCrossRefGoogle Scholar
  43. 43.
    Sternberg MJ, Gullick WJ. A sequence motif in the transmembrane region of growth factor receptors with tyrosine kinase activity mediates dimerization. Protein Eng 1990; 3: 245–248.PubMedCrossRefGoogle Scholar
  44. 44.
    Binns KL, Taylor PP, Sicheri F, Pawson T, Holland SJ. Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors. Mol Cell Biol 2000; 20: 4791–4805.PubMedCrossRefGoogle Scholar
  45. 45.
    Bao J, Alroy I, Waterman H, et al. Threonine phosphorylation diverts internalized epidermal growth factor receptors from a degradative pathway to the recycling endosome. J Biol Chem 2000; 275: 26178–26186.PubMedCrossRefGoogle Scholar
  46. 46.
    Hubbard SR, Till JH. Protein tyrosine kinase structure and function. Ann Rev Biochem 2000; 69: 373–398.PubMedCrossRefGoogle Scholar
  47. 47.
    Hubbard SR, Wei L, Ellis L, Hendrickson WA. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 1994; 372: 746–754.PubMedCrossRefGoogle Scholar
  48. 48.
    Mohammadi M, Schlessinger J, Hubbard SR. Structure of the FGF receptor tyrosine kinase domain reveals a novel autoinhibitory mechanism. Cell 1996; 86: 577–587.PubMedCrossRefGoogle Scholar
  49. 49.
    Yarden Y, Schlessinger J. Epidermal growth factor induces rapid, reversible aggregation of purified epidermal growth factor receptors. Biochemistry 1987; 26: 1443–1445.PubMedCrossRefGoogle Scholar
  50. 50.
    Yarden Y, Schlessinger J. Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation. Biochemistry 1987; 26: 1434–1442.PubMedCrossRefGoogle Scholar
  51. 51.
    Heldin CH. Dimerization of cell surface receptors in signal transduction. Cell 1995; 80: 213–223.PubMedCrossRefGoogle Scholar
  52. 52.
    Tzahar E, Pinkas Kramarski R, Moyer JD, et al. Bivalence of EGF-like ligands drives the ErbB signaling network. EMBO J 1997; 16: 4938–4950.PubMedCrossRefGoogle Scholar
  53. 53.
    Lemmon MA, Bu Z, Ladbury JE, et al. Two EGF molecules contribute additively to stabilization of the EGFR dimer. EMBO J 1997; 16: 281–294.PubMedCrossRefGoogle Scholar
  54. 54.
    Songyang Z, Shoelson SE, Chaudhuri M, et al. SH-2 domains recognize specific phosphopeptide sequences. Cell 1993; 72: 767–778.PubMedCrossRefGoogle Scholar
  55. 55.
    Pawson T, Nash P. Protein-protein interactions define specificity in signal transduction. Genes Dev 2000; 14: 1027–1047.PubMedGoogle Scholar
  56. 56.
    Kim HK, Kim JW, Zilberstein A, et al. PDGF stimulation of inositol phospholipid hydrolysis requires PLC-gamma I phosphorylation on tyrosine residues 783 and 1254. Cell 1991; 65: 435–441.PubMedCrossRefGoogle Scholar
  57. 57.
    Anderson KE, Coadwell J, Stephens LR, Hawkins PT. Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B. Curr Biol 1998; 8: 684–691.PubMedCrossRefGoogle Scholar
  58. 58.
    Yamaguchi H, Hendrickson WA. Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature 1996; 384: 484–489.PubMedCrossRefGoogle Scholar
  59. 59.
    Jelinek T, Dent P, Sturgill TW, Weber MJ. Ras-induced activation of Raf-1 is dependent on tyrosine phosphorylation. Mol Cell Biol 1996; 16: 1027–1034.PubMedGoogle Scholar
  60. 60.
    Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 1999; 96: 4240–4245.PubMedCrossRefGoogle Scholar
  61. 61.
    Toker A, Newton AC. Cellular signaling: pivoting around PDK-1. Cell 2000; 103: 185–188.PubMedCrossRefGoogle Scholar
  62. 62.
    Rhee SG, Bae YS. Regulation of phosphoinositide-specific phospholipase C isozymes. J Biol Chem 1997; 272: 15045–15048.PubMedCrossRefGoogle Scholar
  63. 63.
    Penta K, Carpenter G. Interaction of phospholipase C-gamma with activated growth factor receptor tyrosine kinases. Adv Exp Med Biol 1997; 400B: 971–981.Google Scholar
  64. 64.
    Wells A, Ware MF, Allen FD, Lauffenburger DA. Shaping up for shipping out: PLCgamma signaling of morphology changes in EGF-stimulated fibroblast migration. Cell Motil Cytoskeleton 1999; 44: 227–233.PubMedCrossRefGoogle Scholar
  65. 65.
    Valius M, Kazlauskas A. Phospholipase Cg and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor’s mitogenic signal. Cell 1993; 73: 321–324.PubMedCrossRefGoogle Scholar
  66. 66.
    Mohammadi M, Dionne CA, Li W, et al. Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 1992; 358: 681–684.PubMedCrossRefGoogle Scholar
  67. 67.
    Peters KG, Marie J, Wilson E, et al. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Cat+ flux but not mitogenesis. Nature 1992; 358: 678–681.PubMedCrossRefGoogle Scholar
  68. 68.
    Hall H, Williams EJ, Moore SE, Walsh FS, Prochiantz A, Doherty P. Inhibition of FGF-stimulated phosphatidylinositol hydrolysis and neurite outgrowth by a cell-membrane permeable phosphopeptide. Curr Biol 1996; 6: 580–587.PubMedCrossRefGoogle Scholar
  69. 69.
    Stephens RM, Loeb DM, Copeland TD, Pawson T, Greene LA, Kaplan DR. Trk receptors use redundant signal transduction pathways involving SHC and PLC-gamma 1 to mediate NGF responses. Neuron 1994; 12: 691–705.PubMedCrossRefGoogle Scholar
  70. 70.
    Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 1995; 80: 179–185.PubMedCrossRefGoogle Scholar
  71. 71.
    Freeman M. Cell determination strategies in the Drosophila eye. Development 1997; 124: 261–270.PubMedGoogle Scholar
  72. 72.
    Ceresa BP, Schmid SL. Regulation of signal transduction by endocytosis. Curr Opin Cell Biol 2000; 12: 204–210.PubMedCrossRefGoogle Scholar
  73. 73.
    Mineo C, James GL, Smart EJ, Anderson RG. Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J Biol Chem 1996; 271: 11930–11935.PubMedCrossRefGoogle Scholar
  74. 74.
    Sorkin A. Receptor-mediated endocytosis of growth factors. In: Heldin C-H, Purton M, eds. Signal Transduction Chapman * Hall, New York, 1996.Google Scholar
  75. 75.
    Nesterov A, Wiley HS, Gill GN. Ligand-induced endocytosis of epidermal growth factor receptors that are defective in binding adaptor proteins. Proc Nall Acad Sci USA 1995; 92: 8719–8723.CrossRefGoogle Scholar
  76. 76.
    Hicke L. Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2001; 2: 195–201.PubMedCrossRefGoogle Scholar
  77. 77.
    Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 1999; 286: 309–312.PubMedCrossRefGoogle Scholar
  78. 78.
    Levkowitz G, Waterman H, Ettenberg SA, et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 1999; 4: 1029–1040.PubMedCrossRefGoogle Scholar
  79. 79.
    Thien BF, Langdon WY. Cbl-Many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol 2001; 2: 294–305.PubMedCrossRefGoogle Scholar
  80. 80.
    Levkowitz G, Waterman H, Zamir E, et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev 1998; 12: 3663–3674.PubMedCrossRefGoogle Scholar
  81. 81.
    Holmes WE, Sliwkowski MX, Akita RW, et al. Identification of heregulin, a specific activator of p185erbB2. Science 1992; 256: 1205–1210.PubMedCrossRefGoogle Scholar
  82. 82.
    Peles E, Bacus SS, Koski RA, et al. Isolation of the neu/HER-2 stimulatory ligand: a 44 kd glycoprotein that induces differentiation of mammary tumor cells. Cell 1992; 69: 205–216.PubMedCrossRefGoogle Scholar
  83. 83.
    Schulze A, Lehmann K, Jefferies HB, McMahon M, Downward J. Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dey 2001; 15: 981–994.CrossRefGoogle Scholar
  84. 84.
    Shibuya M. Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Struct Funct 2001; 26: 25–35.PubMedCrossRefGoogle Scholar
  85. 85.
    Guha A, Glowacka D, Carroll R, Dashner K, Black PM, Stiles CD. Expression of platelet derived growth factor and platelet derived growth factor receptor mRNA in a glioblastoma from a patient with Li-Fraumeni syndrome. J Neurol Neurosurg Psychiatry 1995; 58: 711–714.PubMedCrossRefGoogle Scholar
  86. 86.
    Wang J, Coltera MD, Gown AM. Cell proliferation in human soft tissue tumors correlates with platelet-derived growth factor B chain expression: an immunohistochemical and in situ hybridization study. Cancer Res 1994; 54: 560–564.PubMedGoogle Scholar
  87. 87.
    Simon MP, Pedeutour F, Sirvent N, et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet 1997; 15: 95–98.PubMedCrossRefGoogle Scholar
  88. 88.
    Siegfried JM, Weissfeld LA, Singh-Kaw P, Weyant RJ, Testa JR, Landreneau RJ. Association of immunoreactive hepatocyte growth factor with poor survival in resectable non-small cell lung cancer. Cancer Res 1997; 57: 433–439.PubMedGoogle Scholar
  89. 89.
    Derynck R, Goeddel DV, Ullrich A, et al. Synthesis of messenger RNAs for transforming growth factors alpha and beta and the epidermal-growth-factor-receptor by human tumors. Cancer Res 1987; 47: 707–712.PubMedGoogle Scholar
  90. 90.
    Rosenthal A, Lindquist PB, Bringman TS, Goeddel DV, Derynck R. Expression in rat fibroblasts of a human transforming growth factor-alpha cDNA results in transformation. Cell 1986; 46: 301–309.PubMedCrossRefGoogle Scholar
  91. 91.
    Dominey AM, Wang X-J, King LEJ, et al. Targeted overexpression of transforming growth factor a in the epiderms of transgenic mice elicits hyperplasia, hyperkeratosis, and spontaneous, squamous papillomas. Cell Growth Differ 1993; 4: 1071–1082.PubMedGoogle Scholar
  92. 92.
    Sandgren EP, Luetteke NC, Palmiter RD, Brinster RL, Lee DC. Overexpression of TGFa in trans-genic mice: induction of epithelial hyperplasia, pancreatic metaplasia and carcinoma of the breast. Cell 1990; 61: 1121–1135.PubMedCrossRefGoogle Scholar
  93. 93.
    Matsui M, Halter SA, Holt JT, Hogan BLM, Coffey RI. Development of mammary hyperplasia and neoplasia in MMTV-TGFa transgenic mice. Cell 1991; 61: 1147–1155.CrossRefGoogle Scholar
  94. 94.
    Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995; 19: 183–232.PubMedCrossRefGoogle Scholar
  95. 95.
    Scher HI, Sarkis A, Reuter V, et al. Changing pattern of expression of the epidermal growth factor receptor and transforming growth factor alpha in the progression of prostatic neoplasms. Clin Cancer Res 1995; 1: 545–550.PubMedGoogle Scholar
  96. 96.
    Friess H, Berberat P, Schilling M, Kunz J, Korc M, Buehler MW. Pancreatic cancer: the potential clinical relevance of alterations in growth factors and their receptors. J Mol Med 1996; 74: 35–42.PubMedCrossRefGoogle Scholar
  97. 97.
    Liu N, Furukawa T, Kobari M, Tsao MS. Comparative phenotypic studies of duct epithelial cell lines derived from normal human pancreas and pancreatic carcinoma. Am J Pathol 1998; 153: 263–269.PubMedCrossRefGoogle Scholar
  98. 98.
    Awwad R, Humphrey LE, Periyasamy B, et al. The EGF/TGFalpha response element within the TGFalpha promoter consists of a multi-complex regulatory element. Oncogene 1999; 18: 5923–5935.PubMedCrossRefGoogle Scholar
  99. 99.
    Sandgren EP, Luetteke NC, Qiu TH, Palmiter RD, Brinster RL, Lee DC. Transforming growth factor alpha dramatically enhances oncogene-induced carcinogenesis in transgenic mouse pancreas and liver. Mol Cell Biol 1993; 13: 320–330.PubMedGoogle Scholar
  100. 100.
    Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 1988; 54: 105–115.PubMedCrossRefGoogle Scholar
  101. 101.
    Russell WE, Kaufmann WK, Sitaric S, Luetteke NC, Lee DC. Liver regeneration and hepatocarcinogenesis in transforming growth factor-alpha-targeted mice. Mol Carcinog 1996; 15: 183–189.PubMedCrossRefGoogle Scholar
  102. 102.
    Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nat Med 1995; 1: 27–31.PubMedCrossRefGoogle Scholar
  103. 103.
    Wesseling P, van der Laak JA, Link M, Teepen HL, Ruiter DJ. Quantitative analysis of microvascular changes in diffuse astrocytic neoplasms with increasing grade of malignancy. Hum Pathol 1998; 29: 352–358.PubMedCrossRefGoogle Scholar
  104. 104.
    Hanahan D. Signaling vascular morphogenesis and maintenance. Science 1997; 277: 48–50.PubMedCrossRefGoogle Scholar
  105. 105.
    Takanami I, Tanaka F, Hashizume T, Kodaira S. Vascular endothelial growth factor and its receptor correlate with angiogenesis and survival in pulmonary adenocarcinoma. Anticancer Res 1997; 17: 2811–2814.PubMedGoogle Scholar
  106. 106.
    Scott PA, Smith K, Poulson R, De Benedetti A, Bicknell R, Harris AL. Differential expression of vascular endothelial growth factor mRNA vs protein isoform expression in human breast cancer and relationship to eIF-4E. Br. J. Cancer 1998; 77: 2120–2128.PubMedCrossRefGoogle Scholar
  107. 107.
    Jones N, Iljin K, Dumont DJ, Alitalo K. Tie receptors: new modulators of angiogenic and lymphogenic responses. Nat Rev Mol Cell Biol 2001; 2: 257–267.PubMedCrossRefGoogle Scholar
  108. 108.
    Vignaud JM, Marie B, Klein N, et al. The role of platelet-derived growth factor production by tumor-associated macrophages in tumor stroma formation in lung cancer. Cancer Res 1994; 54: 5455–5463.Google Scholar
  109. 109.
    Robbins JR, McGuire PG, Wehrle-Haller B, Rogers SL. Diminished matrix metalloproteinase 2 (MMP-2) in ectomesenchyme-derived tissues of the Patch mutant mouse: regulation of MMP-2 by PDGF and effects on mesenchymal cell migration. Dev Biol 1999; 212: 255–263.PubMedCrossRefGoogle Scholar
  110. 110.
    Pietras K, Ostman A, Sjoquist M, et al. Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport intumors. Cancer Res 2001; 61: 2929–2934.PubMedGoogle Scholar
  111. 111.
    Baserga R, Resnicoff M, Dews M. The IGF-I receptor and cancer. Endocrine 1997; 7: 99–102.PubMedCrossRefGoogle Scholar
  112. 112.
    Sell C, Rubini M, Rubin R, Liu JP, Efstratiadis A, Baserga R. Simian virus 40 large tumor antigen is unable to transform mouse embryonic fibroblasts lacking type 1 insulin-like growth factor receptor. Proc Natl Acad Sci USA 1993; 90: 11217–11221.PubMedCrossRefGoogle Scholar
  113. 113.
    Kalebic T, Tsokos M, Heiman LJ. In vivo treatment with antibody against IGF-1 receptor suppresses growth of human rhabdomyosarcoma and down-regulates p34cdc2. Cancer Res 1994; 54: 5531–5534.PubMedGoogle Scholar
  114. 114.
    Ullrich A, Coussens L, Hayflick JS, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 1984; 309: 418–425.PubMedCrossRefGoogle Scholar
  115. 115.
    Gorgoulis V, Aninos D, Mikou P, et al. Expression of EGF, TGF-alpha and EGFR in squamous cell lung carcinomas. Anticancer Res 1992; 12: 1183–1187.PubMedGoogle Scholar
  116. 116.
    Irish JC, Bernstein A. Oncogenes in head and neck cancer. Laryngoscope 1993; 103: 42–52.PubMedCrossRefGoogle Scholar
  117. 117.
    Archer SG, Eliopoulos A, Spandidos D, et al. Expression of ras p21, p53 and c-erbB-2 in advanced breast cancer and response to first line hormonal therapy. Br J Cancer 1995; 72: 1259–1266.PubMedCrossRefGoogle Scholar
  118. 118.
    Wikstrand CJ, Reist CJ, Archer GE, Zalutsky MR, Bigner DD. The class III variant of the epidermal growth factor receptor (EGFRvIII): characterization and utilization as an immunotherapeutic target. J Neurovirol 1998; 4: 148–158.PubMedCrossRefGoogle Scholar
  119. 119.
    Wong AJ, Ruppert JM, Bigner SH, et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci USA 1992; 89: 2965–2969.PubMedCrossRefGoogle Scholar
  120. 120.
    King CR, Kraus MH, Aaronson SA. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 1985; 229: 974–976.PubMedCrossRefGoogle Scholar
  121. 121.
    Yamamoto T, Ikawa S, Akiyama T, et al. Similarity of protein encoded by the human c-erbB-2 gene to epidermal growth factor receptor. Nature 1986; 319: 230–234.PubMedCrossRefGoogle Scholar
  122. 122.
    Klapper LN, Kirschbaum MH, Sela M, Yarden Y. Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors. Adv Cancer Res 2000; 77: 25–79.PubMedCrossRefGoogle Scholar
  123. 123.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.PubMedCrossRefGoogle Scholar
  124. 124.
    Allred DC, Clark GM, Molina R, et al. Overexpression of HER-2/Neu and its relationship with other prognostic factors change during the progression of in situ to invasive breast cancer. Hum Pathol 1992; 23: 974–979.PubMedCrossRefGoogle Scholar
  125. 125.
    Lodato RF, Maguire HC Jr, Greene MI, Weiner DB, LiVolsi VA. Immunohistochemical evaluation of c-erbB-2 oncogene expression in ductal carcinoma in situ and atypical ductal hyperplasia of the breast. Mod Pathol 1990; 3: 449–454.PubMedGoogle Scholar
  126. 126.
    Barnes DM, Bartkova J, Camplejohn RS, Gullick WJ, Smith PJ, Millis RR. Overexpression of the cerbB-2 oncoprotein: why does this occur more frequently in ductal carcinoma in situ than in invasive mammary carcinoma and is this of prognostic significance? Eur J Cancer 1992; 28: 644–648.PubMedCrossRefGoogle Scholar
  127. 127.
    van de Vijver M, Peterse JL, Mooi WJ, et al. Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl JMed 1988; 319: 1239–1245.CrossRefGoogle Scholar
  128. 128.
    Ho GH, Calvano JE, Bisogna M, et al. In microdissected ductal carcinoma in situ, HER-2/neu amplification, but not p53 mutation, is associated with high nuclear grade and comedo histology. Cancer 2000; 89: 2153–2160.PubMedCrossRefGoogle Scholar
  129. 129.
    Shpitz B, Bomstein Y, Zehavi T, et al. Topoisomerase Ilalpha expression in ductal carcinoma in situ of the breast: a preliminary study. Hum Pathol 2000; 31: 1249–1254.PubMedCrossRefGoogle Scholar
  130. 130.
    Quinn CM, Ostrowski JL, Harkins L, Rice AJ, Loney DP. Loss of bc1–2 expression in ductal carcinoma in situ of the breast relates to poor histological differentiation and to expression of p53 and cerbB-2 proteins. Histopathology 1998; 33: 531–536.Google Scholar
  131. 131.
    Fiche M, Avet-Loiseau H, Maugard CM, et al. Gene amplifications detected by fluorescence in situ hybridization in pure intraductal breast carcinomas: relation to morphology, cell proliferation and expression of breast cancer-related genes. Ina J Cancer 2000; 89: 403–410.CrossRefGoogle Scholar
  132. 132.
    Zafrani B, Leroyer A, Fourquet A, et al. Mammographically-detected ductal in situ carcinoma of the breast analyzed with a new classification. A study of 127 cases: correlation with estrogen and progesterone receptors, p53 and c-erbB-2 proteins, and proliferative activity. Semin Diagn Pathol 1994; 11: 208–214.PubMedGoogle Scholar
  133. 133.
    Moreno A, Lloveras B, Figueras A, et al. Ductal carcinoma in situ of the breast: correlation between histologic classifications and biologic markers. Mod Pathol 1997; 10: 1088–1092.PubMedGoogle Scholar
  134. 134.
    Mack L, Kerkvliet N, Doig G, O’Malley FP. Relationship of a new histological categorization of ductal carcinoma in situ of the breast with size and the immunohistochemical expression of p53, c-erb B2, bcl-2, and ki-67. Hum Pathol 1997; 28: 974–979.PubMedCrossRefGoogle Scholar
  135. 135.
    Kanthan R, Xiang J, Magliocco AM. p53, ErbB2, and TAG-72 expression in the spectrum of ductal carcinoma in situ of the breast classified by the Van Nuys system. Arch Pathol Lab Med 2000; 124: 234–239.PubMedGoogle Scholar
  136. 136.
    Iwase H, Ando Y, Ichihara S, et al. Immunohistochemical analysis on biological markers in ductal carcinoma in situ of the breast. Breast Cancer 2001; 8: 98–104.PubMedCrossRefGoogle Scholar
  137. 137.
    Lipponen HJ, Aaltomaa S, Syrjanen S, Syrjanen K. c-erbB-2 oncogene related to p53 expression, cell proliferation and prognosis in breast cancer. Anticancer Res 1993; 13: 1147–1152.PubMedGoogle Scholar
  138. 138.
    Schimmelpenning H, Eriksson ET, Falkmer UG, Azavedo E, Svane G, Auer GU. Expression of the cerbB-2 proto-oncogene product and nuclear DNA content in benign and malignant human breast parenchyma. Virchows Arch A Pathol Anat Histopathol 1992; 420: 433–440.PubMedCrossRefGoogle Scholar
  139. 139.
    Gusterson BA, Gelber RD, Goldhirsch A, et al. Prognostic importance of c-erbB-2 expression in breast cancer. International (Ludwig) Breast Cancer Study Group. J Clin Oncol 1992; 10: 1049–1056.PubMedGoogle Scholar
  140. 140.
    Tandon AK, Clark GM, Chamness GC, Ullrich A, McGuire WL. HER-2/neu oncogene protein and prognosis in breast cancer. J Clin Oncol 1989; 7: 1120–1128.PubMedGoogle Scholar
  141. 141.
    Quenel N, Wafflart J, Bonichon F, et al. The prognostic value of c-erbB2 in primary breast carcinomas: a study on 942 cases. Breast Cancer Res Treat 1995; 35: 283–291.PubMedCrossRefGoogle Scholar
  142. 142.
    Lee AH, Bobrow LG. Relationship of histologic grade, c-erbB-2 expression, and inflammatory infiltrate to prognosis in carcinoma of the breast. J Clin Oncol 1996; 14: 2406–2407.PubMedGoogle Scholar
  143. 143.
    Soomro S, Shousha S, Taylor P, Shepard HM, Feldmann M. c-erbB-2 expression in different histological types of invasive breast carcinoma. J Clin Pathol 1991; 44: 211–214.PubMedCrossRefGoogle Scholar
  144. 144.
    Somerville JE, Clarke LA, Biggart JD. c-erbB-2 overexpression and histological type of in situ and invasive breast carcinoma. J Clin Pathol 1992; 45: 16–20.PubMedCrossRefGoogle Scholar
  145. 145.
    Diab SG, Clark GM, Osborne CK, Libby A, Allred DC, Elledge RM. Tumor characteristics and clinical outcome of tubular and mucinous breast carcinomas. J Clin Oncol 1999; 17: 1442–1448.PubMedGoogle Scholar
  146. 146.
    Albanell J, Bellmunt J, Molina R, et al. Node-negative breast cancers with p53(-)/HER2-neu(-) status may identify women with very good prognosis. Anticancer Res 1996; 16: 1027–1032.PubMedGoogle Scholar
  147. 147.
    O’Malley FP, Saad Z, Kerkvliet N, et al. The predictive power of semiquantitative immunohistochemical assessment of p53 and c-erb B-2 in lymph node-negative breast cancer. Hum Pathol 1996; 27: 955–963.PubMedCrossRefGoogle Scholar
  148. 148.
    Paterson MC, Dietrich KD, Danyluk J, et al. Correlation between c-erbB-2 amplification and risk of recurrent disease in node-negative breast cancer. Cancer Res 1991; 51: 556–567.PubMedGoogle Scholar
  149. 149.
    Sauer R, Schauer A, Rauschecker HF, et al. Therapy of small breast cancer: a prospective study on 1036 patients with special emphasis on prognostic factors. Int J Radiat Oncol Biol Phys 1992; 23: 907–914.PubMedCrossRefGoogle Scholar
  150. 150.
    An HX, Niederacher D, Beckmann MW, et al. ERBB2 gene amplification detected by fluorescent differential polymerase chain reaction in paraffin-embedded breast carcinoma tissues. Int J Cancer 1995; 64: 291–297.PubMedCrossRefGoogle Scholar
  151. 151.
    Gaci Z, Bouin-Pineau MH, Gaci M, Daban A, Ingrand P, Metaye T. Prognostic impact of cathepsin D and c-erbB-2 oncoprotein in a subgroup of node-negative breast cancer patients with low histological grade tumors. Int J Oncol 2001; 18: 793–800.PubMedGoogle Scholar
  152. 152.
    Allred DC, Clark GM, Tandon AK, et al. HER-2/neu in node-negative breast cancer: prognostic significance of overexpression influenced by the presence of in situ carcinoma. J Clin Oncol 1992; 10: 599–605.PubMedGoogle Scholar
  153. 153.
    Baselga J, Seidman AD, Rosen PP, Norton L. HER2 overexpression and paclitaxel sensitivity in breast cancer: therapeutic implications. Oncology (Huntingt) 1997; 11: 43–48.Google Scholar
  154. 154.
    Yu D, Hung MC. Role of erbB2 in breast cancer chemosensitivity. Bioessays 2000; 22: 673–680.PubMedCrossRefGoogle Scholar
  155. 155.
    Tsai CM, Chang KT, Perng RP, et al. Correlation of intrinsic chemoresistance of non-small-cell lung cancer cell lines with HER-2/neu gene expression but not with ras gene mutations. J Natl Cancer Inst 1993; 85: 897–901.PubMedCrossRefGoogle Scholar
  156. 156.
    O’Rourke DM, Kao GD, Singh N, et al. Conversion of a radioresistant phenotype to a more sensitive one by disabling erbB receptor signaling in human cancer cells. Proc Natl Acad Sci USA 1998; 95: 10842–10847.PubMedCrossRefGoogle Scholar
  157. 157.
    Yu D, Jing T, Liu B, et al. Overexpression of ErbB2 blocks Taxol-induced apoptosis by upregulation of p21Cip1, which inhibits p34Cdc2 kinase. Mol Cell 1998; 2: 581–591.PubMedCrossRefGoogle Scholar
  158. 158.
    Kumar R, Mandal M, Lipton A, Harvey H, Thompson CB. Overexpression of HER2 modulates bcl-2, bcl-XL, and tamoxifen-induced apoptosis in human MCF-7 breast cancer cells. Clin Cancer Res 1996; 2: 1215–1219.PubMedGoogle Scholar
  159. 159.
    Zhang L, Hung MC. Sensitization of HER-2/neu-overexpressing non-small cell lung cancer cells to chemotherapeutic drugs by tyrosine kinase inhibitor emodin. Oncogene 1996; 12: 571–576.PubMedGoogle Scholar
  160. 160.
    Sleijfer S, Asschert JG, Timmer Bosscha H, Mulder NH. Enhanced sensitivity to tumor necrosis factor-alpha in doxorubicin-resistant tumor cell lines due to down-regulated c-erbB2. Int J Cancer 1998; 77: 101–106.PubMedCrossRefGoogle Scholar
  161. Vargas-Roig LM, Gago FE, Tello O, Martin de Civetta MT, Ciocca DR. c-erbB-2 (HER-2/neu) protein and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer 1999; 84:129–134.Google Scholar
  162. 162.
    Bacus SS, Yarden Y, Oren M, et al. Neu differentiation factor (Heregulin) activates a p53-dependent pathway in cancer cells. Oncogene 1996; 12: 2535–2547.PubMedGoogle Scholar
  163. 163.
    Giani C, Casalini P, Pupa SM, et al. Increased expression of c-erbB-2 in hormone-dependent breast cancer cells inhibits cell growth and induces differentiation. Oncogene 1998; 17: 425–432.PubMedCrossRefGoogle Scholar
  164. 164.
    Pietras RJ, Poen JC, Gallardo D, Wongvipat PN, Lee HJ, Slamon DJ. Monoclonal antibody to HER2/neureceptor modulates repair of radiation-induced DNA damage and enhances radiosensitivity of human breast cancer cells overxpressing this oncogene. Cancer Res 1999; 59: 1347–1355.PubMedGoogle Scholar
  165. 165.
    Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC. Cytoplasmic localization of p21 Cip 1 /WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 2001; 3: 245–252.PubMedCrossRefGoogle Scholar
  166. 166.
    Di Fiore PP, Pierce JH, Kraus MH, Segatto O, King CR, Aaronson SA. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science 1987; 237: 178–182.PubMedCrossRefGoogle Scholar
  167. 167.
    Hudziak RM, Schlessinger J, Ullrich A. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc Natl Acad Sci USA 1987; 84: 7159–7163.PubMedCrossRefGoogle Scholar
  168. 168.
    Klapper LN, Glathe S, Vaisman N, et al. The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. Proc Natl Acad Sci USA 1999; 96: 4995–5000.PubMedCrossRefGoogle Scholar
  169. 169.
    Graus Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 1997; 16: 1647–1655.CrossRefGoogle Scholar
  170. 170.
    Tzahar E, Waterman H, Chen X, et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 1996; 16: 5276–5287.PubMedGoogle Scholar
  171. 171.
    Guy PM, Platko JV, Cantley LC, Cerione RA, Carraway KL. Insect cell-expressed p180ErbB3 possesses an impaired tyrosine kinase activity. Proc Natl Acad Sci USA 1994; 91: 8132–8136.PubMedCrossRefGoogle Scholar
  172. 172.
    Burden S, Yarden Y. Neuregulins and their receptors: a versatile signaling module in organogenesis and oncogenesis. Neuron 1997; 18: 847–855.PubMedCrossRefGoogle Scholar
  173. 173.
    Pinkas-Kramarski R, Soussan L, Waterman H, et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J 1996; 15: 2452–2467.PubMedGoogle Scholar
  174. 174.
    Riese DJ, II van Raaij TM, Plowman GD, Andrews GC, Stern DF. The cellular response to neuregulins is governed by complex interactions of the erbB receptor family. Mol Cell Biol 1995; 15: 5770–5776.PubMedGoogle Scholar
  175. 175.
    Karunagaran D, Tzahar E, Beerli RR, et al. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J 1996; 15: 254–264.PubMedGoogle Scholar
  176. 176.
    Alimandi M, Wang LM, Bottaro D, et al. Epidermal growth factor and betacellulin mediate signal transduction through co-expressed ErbB2 and ErbB3 receptors. EMBO J 1997; 16: 5608–5617.CrossRefGoogle Scholar
  177. 177.
    Pinkas-Kramarski R, Lenferink AE, Bacus SS, et al. The oncogenic ErbB-2/ErbB-3 heterodimer is a surrogate receptor of the epidermal growth factor and betacellulin. Oncogene 1998; 16: 1249–1258.PubMedCrossRefGoogle Scholar
  178. 178.
    Baulida J, Kraus MH, Alimandi M, Di Fiore PP, Carpenter G. All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J Biol Chem 1996; 271: 5251–5257.PubMedCrossRefGoogle Scholar
  179. 179.
    Worthylake R, Opresko LK, Wiley HS. ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J Biol Chem 1999; 274: 8865–8874.PubMedCrossRefGoogle Scholar
  180. 180.
    Lev S, Blechman JM, Givol D, Yarden Y. Steel factor and c-kit protooncogene: genetic lessons in signal transduction. Crit Rev Oncog 1994; 5: 141–168.PubMedCrossRefGoogle Scholar
  181. 181.
    Longley BJ, Reguera MJ, Ma Y. Classes of c-KIT activating mutations: proposed mechanisms of action and implications for disease classification and therapy. Leuk Res 2001; 25: 571–576.PubMedCrossRefGoogle Scholar
  182. 182.
    Taniguchi M, Nishida T, Hirota S, et al. Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors. Cancer Res 1999; 59: 4297–4300.PubMedGoogle Scholar
  183. 183.
    Hongyo T, Li T, Syaifudin M, et al. Specific c-kit mutations in sinonasal natural killer/T-cell lymphoma in China and Japan. Cancer Res 2000; 60: 2345–2347.PubMedGoogle Scholar
  184. 184.
    Jhiang SM. The Ret proto-oncogene in human cancer. Oncogene 2000; 19: 5590–5597.PubMedCrossRefGoogle Scholar
  185. 185.
    Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 1994; 367: 380–383.PubMedCrossRefGoogle Scholar
  186. 186.
    Klugbauer S, Rabes HM. The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene 1999; 18: 4388–4393.PubMedCrossRefGoogle Scholar
  187. 187.
    Durick K, Gill GN, Taylor SS. Shc and Enigma are both required for mitogenic signaling by Ret/ptc2. Mol Cell Biol 1998; 18: 2298–2308.PubMedGoogle Scholar
  188. 188.
    Borrego S, Eng C, Sanchez B, Saez ME, Navarro E, Antinolo G. Molecular analysis of the ret and GDNF genes in a family with multiple endocrine neoplasia type 2A and Hirschsprung disease. J Clin Endocrinol Metab 1998; 83: 3361–3364.PubMedCrossRefGoogle Scholar
  189. 189.
    Murakami H, Iwashita T, Asai N, et al. Enhanced phosphatidylinositol 3-kinase activity and high phosphorylation state of its downstream signalling molecules mediated by ret with the MEN 2B mutation. Biochem Biophys Res Commun 1999; 262: 68–75.PubMedCrossRefGoogle Scholar
  190. 190.
    Joensuu H, Roberts PJ, Sarlomo-Rikala M, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stroma] tumor. N Engl J Med 2001; 344: 1052–1056.PubMedCrossRefGoogle Scholar
  191. 191.
    Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783–792.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Mark H. Kirschbaum
  • Mina D. Marmor
  • Yosef Yarden

There are no affiliations available

Personalised recommendations