Advertisement

The Molecular Basis of Chromosomal Instability in Human Cancer Cells

  • Daniel P. Cahill
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Aneuploidy, the presence of numerical aberrations in chromosome complement, is characteristic of the vast majority of epithelial solid tumors. This phenotype of human cancer has been well described throughout the long history of careful microscopic and karyotypic scrutiny of human tumors (1,2). More recently, this tradition has been complemented by molecular and cellular analyses of tumor cell aneuploidy. These analyses have shown that tumor cell aneuploidy is the result of a persistent chromosomal instability (CIN). In human cancer cells, CIN appears to be the manifestation of an intrinsic defect in the chromosome segregation machinery. As a result of this defect, CIN drives the continual generation of aneuploidy in human tumors. But what is the molecular genetic basis, if any, for the CIN phenotype? Recent work has demonstrated that some aneuploid cancers have alterations in mitotic checkpoint genes that affect their ability to direct the appropriate segregation of chromosomes in cell division. Future work is aimed at the identification of the genes involved in these processes that are altered in human cancers.

Keywords

Chromosomal Instability Metaphase Plate Mitotic Checkpoint Nijmegen Breakage Syndrome Checkpoint Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boveri T. Zur Frage der Enstehung Maligner Tumoren, Vol. I. Gustav Fischer Verlag, Jena, 1914.Google Scholar
  2. 2.
    Mitelman F, Johansson B, Mertens F. Catalog of Chromosome Aberrations in Cancer. 5th ed. 2 v. Wiley-Liss, New York, 1994, pp. xxix,4252.Google Scholar
  3. 3.
    Bomme L, Bardi G, Pandis N, Fenger C, Kronborg O, and Heim S. Clonal karyotypic abnormalities in colorectal adenomas: clues to the early genetic events in the adenoma-carcinoma sequences. Genes Chromosom Cancer 1994; 10: 190–196.PubMedCrossRefGoogle Scholar
  4. 4.
    Bomme L, Bardi G, Pandis N, Fenger C, Kronborg O, and Heim S. Cytogenetic analysis of colorectal adenomas: karyotypic comparisons of synchronous tumors. Cancer Genet Cytogenet 1998; 106: 66–71.PubMedCrossRefGoogle Scholar
  5. 5.
    Shih IM, Zhou W, Goodman SN, Lengauer C, Kinzler KW, and Vogelstein B. Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res 2001; 61: 818–822.PubMedGoogle Scholar
  6. 6.
    Duesberg P, Rausch C, Rasnick D, and Hehlmann R. Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proc Natl Acad Sci USA 1998; 95: 13692–13697.PubMedCrossRefGoogle Scholar
  7. 7.
    Duesberg P, Rasnick D, Li R, Winters L, Rausch C, and Hehlmann, R. How aneuploidy may cause cancer and genetic instability. Anticancer Res 1999; 19: 4887–4906.PubMedGoogle Scholar
  8. 8.
    Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396: 643–649.PubMedCrossRefGoogle Scholar
  9. 9.
    Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature 1997; 386: 623–627.PubMedCrossRefGoogle Scholar
  10. 10.
    Mayer VW, Aguilera A. High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutat Res 1990; 231: 177–186.PubMedCrossRefGoogle Scholar
  11. 11.
    Giaretti W. A model of DNA aneuploidization and evolution in colorectal cancer. Lab Invest 1994; 71: 904–910.PubMedGoogle Scholar
  12. 12.
    Bishop JM. Molecular themes in oncogenesis. Cell 1991; 64: 235–248.PubMedCrossRefGoogle Scholar
  13. 13.
    Cahill DP, Kinzler KW, Vogelstein B, and Lengauer C. Genetic instability and Darwinian selection in tumours. Trends Cell Biol 1999; 9: M57 - M60.PubMedCrossRefGoogle Scholar
  14. 14.
    Loeb LA, Springgate CF, Battula N. Errors in DNA replication as a basis of malignant changes. Cancer Res 1974; 34: 2311–2321.PubMedGoogle Scholar
  15. 15.
    Nowell PC. The clonal evolution of tumor cell populations. Science 1976; 194: 23–28.PubMedCrossRefGoogle Scholar
  16. 16.
    Loeb LA. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 1991; 51: 3075–3079.PubMedGoogle Scholar
  17. 17.
    Kinzler KW, Vogelstein B. Lessons from hereditary colon cancer. Cell 1996; 87: 159–170.PubMedCrossRefGoogle Scholar
  18. 18.
    Kinzler KW, Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 1997; 386: 761–763.PubMedCrossRefGoogle Scholar
  19. 19.
    Haber D. Roads leading to breast cancer. N Engl J Med 2000; 343: 1566–1568.PubMedCrossRefGoogle Scholar
  20. 20.
    Ellis NA, German J. Molecular genetics of Bloom’s syndrome. Hum Mol Genet 1996; 5: 1457–1463.PubMedGoogle Scholar
  21. 21.
    Yu CE, Oshima Y, Fu H, Wijsman EM, Hisama F, Alisch R., et al. Positional cloning of the Werner’s syndrome gene. Science 1996; 272: 258–262.PubMedCrossRefGoogle Scholar
  22. 22.
    Rotman G, Shiloh Y. ATM: from gene to function. Hum Mol Genet 1998; 7: 1555–1563.PubMedCrossRefGoogle Scholar
  23. 23.
    Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates JR, et al. The hMrel l/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 1998; 93: 477–486.PubMedCrossRefGoogle Scholar
  24. 24.
    Varon R, Vissinga C, Platzer, M, Cerosaletti KM, Chrzanowska KH, Saar K, et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 1998; 93: 467–476.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu B, Nicolaides NC, Markowitz S, Willson JK, Parsons RE, Jen J, et al. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat Genet 1995; 9: 48–55.PubMedCrossRefGoogle Scholar
  26. 26.
    Shih C, Weinberg RA. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 1982; 29: 161–169.PubMedCrossRefGoogle Scholar
  27. 27.
    Schatz DG, Baltimore D. Stable expression of immunoglobulin gene V(D)J recombinase activity by gene transfer into 3T3 fibroblasts. Cell 1988; 53: 107–115.PubMedCrossRefGoogle Scholar
  28. 28.
    Schatz DG, Oettinger MA, Baltimore D. The V(D)J recombination activating gene, RAG-1. Cell 1989; 59: 1035–1048.PubMedCrossRefGoogle Scholar
  29. 29.
    Strand M, Prolla TA, Liskay RM, and Petes TD. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 1993; 365: 274–276.PubMedCrossRefGoogle Scholar
  30. 30.
    Leach FS, Nicolaides, NC, Papadopoulos N, Liu B, Jen J, and Parsons, R, et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 1993; 75: 1215–1225.PubMedCrossRefGoogle Scholar
  31. 31.
    Nicolaides NC, Papadopoulos N, Liu B, Wei YF, Carter KC, Ruben SM, et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 1994; 371: 75–80.PubMedCrossRefGoogle Scholar
  32. 32.
    Papadopoulos N, Nicolaides NC, Wei YF, Ruben SM, Carter KC, Rosen CA, et al. Mutation of a mutL homolog in hereditary colon cancer. Science 1994; 263: 1625–1629.PubMedCrossRefGoogle Scholar
  33. 33.
    Itzhaki JE, Gilbert CS, Porter AC. Construction by gene targeting in human cells of a “conditional” CDC2 mutant that rereplicates its DNA. Nat Genet 1997; 15: 258–265.PubMedCrossRefGoogle Scholar
  34. 34.
    Hoyt MA, Stearns T, Botstein D. Chromosome instability mutants of Saccharomyces cerevisiae that are defective in microtubule-mediated processes. Mol Cell Biol 1990; 10: 223–234.PubMedGoogle Scholar
  35. 35.
    Spencer F, Gerring SL, Connelly C, and Hieter P. Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae. Genetics 1990; 124: 237–249.Google Scholar
  36. 36.
    Adams RR, Carmena M, Earnshaw WC. Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol 2001; 11: 49–54.PubMedCrossRefGoogle Scholar
  37. 37.
    Ohi R, Gould KL. Regulating the onset of mitosis. Curr Opin Cell Biol 1999; 11: 267–273.PubMedCrossRefGoogle Scholar
  38. 38.
    Nigg EA, Polo-like kinases: positive regulators of cell division from start to finish. Curr Opin Cell Biol 1998; 10: 776–783.PubMedCrossRefGoogle Scholar
  39. 39.
    Glover DM, Hagan IM, Tavares AA. Polo-like kinases: a team that plays throughout mitosis. Genes Dev 1998; 12: 3777–3787.PubMedCrossRefGoogle Scholar
  40. 40.
    Hunter AW, Wordeman L. How motor proteins influence microtubule polymerization dynamics. J Cell Sci 2000; 113: 4379–4389.PubMedGoogle Scholar
  41. 41.
    Endow SA. Microtubule motors in spindle and chromosome motility. Eur J Biochem 1999; 262: 12–18.PubMedCrossRefGoogle Scholar
  42. 42.
    Abrieu A, Kahana JA, Wood KW, and Cleveland DW. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 2000; 102: 817–826.PubMedCrossRefGoogle Scholar
  43. 43.
    Rudner AD, Murray AW. The spindle assembly checkpoint. Curr Opin Cell Biol 1996; 8: 773–780.PubMedCrossRefGoogle Scholar
  44. 44.
    Paulovich AG, Toczyski DP, Hartwell LH. When checkpoints fail. Cell 1997; 88: 315–321.PubMedCrossRefGoogle Scholar
  45. 45.
    Hoyt MA, Totis L, Roberts BT. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 1991; 66: 507–517.PubMedCrossRefGoogle Scholar
  46. 46.
    Li R, Murray AW. Feedback control of mitosis in budding yeast. Cell 1991; 66: 519–531.PubMedCrossRefGoogle Scholar
  47. 47.
    Roberts BT, Fan KA, Hoyt MA. The Saccharomyces cerevisiae checkpoint gene BUB 1 encodes a novel protein kinase. Mol Cell Biol 1994; 14: 8282–8291.PubMedGoogle Scholar
  48. 48.
    Hardwick KG, Murray AW. Madlp, a phosphoprotein component of the spindle assembly checkpoint in budding yeast. J Cell Biol 1995; 131: 709–720.PubMedCrossRefGoogle Scholar
  49. 49.
    Weiss E, Winey M. The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol 1996; 132: 111–123.PubMedCrossRefGoogle Scholar
  50. 50.
    Hardwick KG, Johnston RC, Smith DL, and Murray AW. MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p, Cdc20p, and Mad2p. J Cell Biol 2000; 148: 871–882.PubMedCrossRefGoogle Scholar
  51. 51.
    Nicklas RB. How cells get the right chromosomes. Science 1997; 275: 632–637.PubMedCrossRefGoogle Scholar
  52. 52.
    Spencer F, Hieter P. Centromere DNA mutations induce a mitotic delay in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1992; 89: 8908–8912.CrossRefGoogle Scholar
  53. 53.
    Pangilinan F, Spencer F. Abnormal kinetochore structure activates the spindle assembly checkpoint in budding yeast. Mol Biol Cell 1996; 7: 1195–1208.PubMedGoogle Scholar
  54. 54.
    Wells WA, Murray AW. Aberrantly segregating centromeres activate the spindle assembly checkpoint in budding yeast. J Cell Biol 1996; 133: 75–84.PubMedCrossRefGoogle Scholar
  55. 55.
    Li X, Nicklas RB. Mitotic forces control a cell-cycle checkpoint. Nature 1995; 373: 630–632.PubMedCrossRefGoogle Scholar
  56. 56.
    Li Y, Benezra R. Identification of a human mitotic checkpoint gene: hsMAD2. Science 1996; 274: 246–248.PubMedCrossRefGoogle Scholar
  57. 57.
    He X, Patterson TE, Sazer S. The Schizosaccharomyces pombe spindle checkpoint protein mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc Natl Acad Sci USA 1997; 94: 7965–7970.PubMedCrossRefGoogle Scholar
  58. 58.
    Li Y, Gorbea C, Mahaffey D, Rechsteiner M, and Benezra R. MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc Natl Acad Sci USA 1997; 94: 12431–12436.Google Scholar
  59. 59.
    Hwang LH, Lau LF, Smith DL, Mistrot CA, Hardwick KG, Hwang ES, et al. Budding yeast Cdc20: a target of the spindle checkpoint. Science 1998; 279: 1041–1044.PubMedCrossRefGoogle Scholar
  60. 60.
    Kim SH, Lin DP, Matsumoto S, Kitazono A, and Matsumoto T. Fission yeast Slpl: an effector of the Mad2-dependent spindle checkpoint. Science 1998; 279: 1045–1047.PubMedCrossRefGoogle Scholar
  61. 61.
    Fang G, Yu H, Kirschner MW. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev 1998; 12: 1871–1883.PubMedCrossRefGoogle Scholar
  62. 62.
    Kallio M, Weinstein J, Daum JR, Burke DJ, and Gorbsky, GJ. Mammalian p55CDC mediates association of the spindle checkpoint protein mad2 with the Cyclosome/Anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J Cell Biol 1998; 141: 1393–1406.PubMedCrossRefGoogle Scholar
  63. 63.
    Dobles M, Liberal V, Scott ML, Benezra R, and Sorger, PK. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 2000; 101: 635–645.PubMedCrossRefGoogle Scholar
  64. 64.
    Michel LS, Liberal V, Chatterjee A. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 2001; 409: 355–359.PubMedCrossRefGoogle Scholar
  65. 65.
    Wang X, Jin DY, Wong YC, Cheung AL, Chun AC, Lo AK, et al. Correlation of defective mitotic checkpoint with aberrantly reduced expression of MAD2 protein in nasopharyngeal carcinoma cells. Carcinogenesis 2000; 21: 2293–2297.PubMedCrossRefGoogle Scholar
  66. 66.
    Percy MJ, Myrie KA, Neeley CK, Azim JN, Ethier SP, and Petty EM. Expression and mutational analyses of the human MAD2L1 gene in breast cancer cells. Genes Chromosom Cancer 2000; 29: 356–362.PubMedCrossRefGoogle Scholar
  67. 67.
    Hardwick KG, Weiss E, Luca FC, Winey M, and Murray AW. Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 1996; 273: 953–956.PubMedCrossRefGoogle Scholar
  68. 68.
    Taylor SS, McKeon F. Kinetochore localization of murine Bubl is required for normal mitotic timing and checkpoint response to spindle damage. Cell 1997; 89: 727–735.PubMedCrossRefGoogle Scholar
  69. 69.
    Murray AW, Marks D. Can sequencing shed light on cell cycling? Nature 2001; 409: 844–846.PubMedCrossRefGoogle Scholar
  70. 70.
    Cahill DP, Lengauer C, Yu, J, Riggins GJ, Willson JK, Markowitz SD, et al. Mutations of mitotic checkpoint genes in human cancers. Nature 1998; 392: 300–303.PubMedCrossRefGoogle Scholar
  71. 71.
    Mimori K, Inoue H, Alder H, Ueo H, Tanaka Y, and Mori M. Mutation analysis of hBUB1, human mitotic checkpoint gene in multiple carcinomas. Oncol Rep 2001; 8: 39–42.PubMedGoogle Scholar
  72. 72.
    Gemma A, Seike M, Seike Y, Uematsu K, Hibino S, Kurimoto F, et al. Somatic mutation of the hBUB1 mitotic checkpoint gene in primary lung cancer. Genes Chromosom Cancer 2000; 29: 213–218.PubMedCrossRefGoogle Scholar
  73. 73.
    Jaffrey RG, Pritchard, SC, Clark C, Murray GI, Cassidy J, Kerr KM, et al. Genomic instability at the BUB1 locus in colorectal cancer, but not in non-small cell lung cancer. Cancer Res 2000; 60: 4349–4352.PubMedGoogle Scholar
  74. 74.
    Ohshima K, Haraoka S, Yoshioka S, Hamasaki M, Fujiki T, Suzumiya J, et al. Mutation analysis of mitotic checkpoint genes (hBUB1 and hBUBR1) and microsatellite instability in adult T-cell leukemia/lymphoma. Cancer Lett 2000; 158: 141–150.PubMedCrossRefGoogle Scholar
  75. 75.
    Sato M, Sekido Y, Horio Y, Takahashi M, Saito H, Minna JD, et al. Infrequent mutation of the hBUB I and hBUBR I genes in human lung cancer. Jpn J Cancer Res 2000; 91: 504–509.PubMedCrossRefGoogle Scholar
  76. 76.
    Myrie KA, Percy MJ, Azim JN, Neeley CK, and Petty EM. Mutation and expression analysis of human BUB1 and BUB1B in aneuploid breast cancer cell lines. Cancer Lett 2000; 152: 193–199.PubMedCrossRefGoogle Scholar
  77. 77.
    Imai Y, Shiratori Y, Kato N, Inoue T, and Ornata M. Mutational inactivation of mitotic checkpoint genes, hsMAD2 and hBUB1, is rare in sporadic digestive tract cancers. Jpn J Cancer Res 1999; 90: 837–840.PubMedCrossRefGoogle Scholar
  78. 78.
    Yamaguchi K, Okami K, Hibi K, Wehage SL, Jen J, and Sidransky D. Mutation analysis of hBUB 1 in aneuploid HNSCC and lung cancer cell lines. Cancer Lett 1999; 139: 183–187.PubMedCrossRefGoogle Scholar
  79. 79.
    Jin DY, Spencer F, Jeang KT. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 1998; 93: 81–91.PubMedCrossRefGoogle Scholar
  80. 80.
    Breivik J, Gaudernack G. Genomic instability, DNA methylation, and natural selection in colorectal carcinogenesis. Semin Cancer Biol 1999; 9: 245–254.PubMedCrossRefGoogle Scholar
  81. 81.
    Matsuura S, Ito E, Tauchi H, Komatsu K, Ikeuchi T, and Kajii T. Chromosomal instability syndrome of total premature chromatid separation with mosaic variegated aneuploidy is defective in mitotic-spindle checkpoint. Am J Hum Genet 2000; 67: 483–486.PubMedCrossRefGoogle Scholar
  82. 82.
    Williams BC, Karr TL, Montgomery JM, and Goldberg ML. The Drosophila I(1)zw10 gene product, required for accurate mitotic chromosome segregation, is redistributed at anaphase onset. J Cell Biol 1992; 118: 759–773.PubMedCrossRefGoogle Scholar
  83. 83.
    Scaerou F, Aguilera I, Saunders, R, Kane N, Blottiere L, and Karess, R. The rough deal protein is a new kinetochore component required for accurate chromosome segregation in Drosophila. J Cell Sci 1999; 112: 3757–3768.PubMedGoogle Scholar
  84. 84.
    Williams BC, Gatti M, Goldberg ML. Bipolar spindle attachments affect redistributions of ZW 10, a Drosophila centromere/kinetochore component required for accurate chromosome segregation. J Cell Biol 1996; 134: 1127–1140.PubMedCrossRefGoogle Scholar
  85. 85.
    Basto R, Gomes R, Karess RE. Rough deal and Zw10 are required for the metaphase checkpoint in Drosophila. Nat Cell Biol 2000; 2: 939–943.Google Scholar
  86. 86.
    Chan GK, Jablonski SA, Starr DA, Goldberg ML, and Yen TJ. Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores. Nat Cell Biol 2000; 2: 944–947.PubMedCrossRefGoogle Scholar
  87. 87.
    Basu J, Logarinho, E, Herrmann S, Bousbaa H, Li Z, Chan GK. Localization of the Drosophila checkpoint control protein Bub3 to the kinetochore requires Bub 1 but not Zw 10 or Rod. Chromosoma 1998; 107: 376–385.PubMedCrossRefGoogle Scholar
  88. 88.
    Starr DA, Williams BC, Li Z, Etemad-Moghadam B, Dawe RK, and Goldberg L. Conservation of the centromere/kinetochore protein ZW 10. J Cell Biol 1997; 138: 1289–1301.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Daniel P. Cahill

There are no affiliations available

Personalised recommendations