Advertisement

Primary and Secondary Events in Oncogene-Driven Tumor Development

Lessons from Transgenic Model Systems
  • Michaela Herzig
  • Gerhard Christofori
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Molecular analysis of multistage carcinogenesis in patients is mainly hampered by the inavailability of biopsies from early tumor stages. In contrast, mouse models of tumor development offer the means to reproducibly isolate different stages of tumor progression, which then are amenable to pathological, genetic, and biochemical analyses. Moreover, tumor cell lines derived from the different tumor stages are useful tools in experimentally addressing many cancer-related questions. Finally, genetic modulation of gene function by overexpression in transgenic mice (gain of function) or by genetic ablation in knock-out mice (loss of function) provide the opportunity to determine whether observed genetic changes are cause or consequence of tumor development. Hence, murine models of carcinogenesis have been instrumental in identifying cancer-related genes and in unraveling their causal role in carcinogenesis.

Keywords

Transgenic Mouse Human Papilloma Virus Basal Cell Carcinoma Adenomatous Polyposis Coli Acute Promyelocytic Leukemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kistner A, Gossen M, Zimmermann F, et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci USA 1996; 93: 10933–10938.PubMedCrossRefGoogle Scholar
  2. 2.
    Saez E, No D, West A, Evans RM. Inducible gene expression in mammalian cells and transgenic mice. Curr Opin Biotechnol 1997; 8: 608–616.PubMedCrossRefGoogle Scholar
  3. 3.
    Fedi P, Tronick SR, Aaronson SA. Growth factors. In: Holland JF, Bast RC, Morton DL, Frei E, Kufe DW, Weichselbaum RR, eds. Cancer Medicine. Williams and Wilkins, Baltimore, 1997, pp. 41–64.Google Scholar
  4. 4.
    Becker D, Meier CB, Herlyn M. Proliferation of human malignant melanomas is inhibited by anti-sense oligodeoxynucleotides targeted against basic fibroblast growth factor. EMBO J 1989; 8: 3685–3691.PubMedGoogle Scholar
  5. 5.
    Yarden Y, Ullrich A. Molecular analysis of signal transduction by growth factors. Biochemistry 1988; 27: 3113–3119.PubMedCrossRefGoogle Scholar
  6. 6.
    Alimandi M, Wang LM, Bottaro D, et al. Epidermal growth factor and betacellulin mediate signal transduction through co-expressed ErbB2 and ErbB3 receptors. EMBO J 1997; 16: 5608–5617.PubMedCrossRefGoogle Scholar
  7. 7.
    Vassar R, Fuchs E. Transgenic mice provide new insights into the role of TGF-alpha during epidermal development and differentiation. Genes Dey 1991; 5: 714–727.CrossRefGoogle Scholar
  8. 8.
    Otsuka T, Takayama H, Sharp R, et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res 1998; 58: 5157–5167.PubMedGoogle Scholar
  9. 9.
    Bailleul B, Surani MA, White S, et al. Skin hyperkeratosis and papilloma formation in transgenic mice expressing a ras oncogene from a suprabasal keratin promoter. Cell 1990; 62: 697–708.PubMedCrossRefGoogle Scholar
  10. 10.
    Leder A, Kuo A, Cardiff RD, Sinn E, Leder P. v-Ha-ras transgene abrogates the initiation step in mouse skin tumorigenesis: effects of phorbol esters and retinoic acid. Proc Natl Acad Sci USA 1990; 87: 9178–9182.PubMedCrossRefGoogle Scholar
  11. 11.
    Brown K, Strathdee D, Bryson S, Lambie W, Balmain A. The malignant capacity of skin tumours induced by expression of a mutant H-ras transgene depends on the cell type targeted. Curr Biol 1998; 8: 516–524.PubMedCrossRefGoogle Scholar
  12. 12.
    Sibilia M, Fleischmann A, Behrens A, et al. The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development. Cell 2000; 102: 211–220.PubMedCrossRefGoogle Scholar
  13. 13.
    Chin L, Pomerantz J, Polsky D, et al. Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dey 1997; 11: 2822–2834.CrossRefGoogle Scholar
  14. 14.
    Chin L, Tam A, Pomerantz J, et al. Essential role for oncogenic Ras in tumour maintenance. Nature 1999; 400: 468–472.PubMedCrossRefGoogle Scholar
  15. 15.
    Felsher DW, Bishop JM. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 1999; 4: 199–207.PubMedCrossRefGoogle Scholar
  16. 16.
    Pelengaris S, Littlewood T, Khan M, Elia G, Evan G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell 1999; 3: 565–577.PubMedCrossRefGoogle Scholar
  17. 17.
    Ewald D, Li M, Efrat S, et al. Time-sensitive reversal of hyperplasia in transgenic mice expressing SV40 T antigen. Science 1996; 273: 1384–1386.PubMedCrossRefGoogle Scholar
  18. 18.
    Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 1987; 49: 465–475.PubMedCrossRefGoogle Scholar
  19. 19.
    Kwan H, Pecenka V, Tsukamoto A, et al. Transgenes expressing the Wnt-1 and int-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice. Mol Cell Biol 1992; 12: 147–154.PubMedGoogle Scholar
  20. 20.
    Sandgren EP, Quaife CJ, Pinkert CA, Palmiter RD, Brinster RL. Oncogene-induced liver neoplasia in transgenic mice. Oncogene 1989; 4: 715–724.PubMedGoogle Scholar
  21. 21.
    Murakami H, Sanderson ND, Nagy P, Marino PA, Merlino G, Thorgeirsson SS. Transgenic mouse model for synergistic effects of nuclear oncogenes and growth factors in tumorigenesis: interaction of c-myc and transforming growth factor alpha in hepatic oncogenesis. Cancer Res 1993; 53: 1719–1723.PubMedGoogle Scholar
  22. 22.
    Adams JM, Cory S. Transgenic models of tumor development. Science 1991; 254: 1161–1167.PubMedCrossRefGoogle Scholar
  23. 23.
    Vassar R, Hutton ME, Fuchs E. Transgenic overexpression of transforming growth factor alpha bypasses the need for c-Ha-ras mutations in mouse skin tumorigenesis. Mol Cell Biol 1992; 12: 4643–4653.PubMedGoogle Scholar
  24. 24.
    Larue L, Dougherty N, Mintz B. Genetic predisposition of transgenic mouse melanocytes to melanoma results in malignant melanoma after exposure to a low ultraviolet B intensity nontumorigenic for normal melanocytes. Proc Natl Acad Sci USA 1992; 89: 9534–9538.PubMedCrossRefGoogle Scholar
  25. 25.
    Vooijs M, Berns A. Developmental defects and tumor predisposition in Rb mutant mice. Oncogene 1999; 18: 5293–5303.PubMedCrossRefGoogle Scholar
  26. 26.
    Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. Effects of an Rb mutation in the mouse. Nature 1992; 359: 295–300.PubMedCrossRefGoogle Scholar
  27. 27.
    Hu N, Gutsmann A, Herbert DC, Bradley A, Lee WH, Lee EY. Heterozygous Rb-1 delta 20/+mice are predisposed to tumors of the pituitary gland with a nearly complete penetrance. Oncogene 1994; 9: 1021–1027.PubMedGoogle Scholar
  28. 28.
    Williams BO, Remington L, Albert DM, Mukai S, Bronson RT, Jacks T. Cooperative tumorigenic effects of germline mutations in Rb and p53. Nat Genet 1994; 7: 480–484.PubMedCrossRefGoogle Scholar
  29. 29.
    Robanus-Maandag E, Dekker M, van der Valk M, et al. p107 is a suppressor of retinoblastoma development in pRb-deficient mice. Genes Dev 1998; 12: 1599–1609.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee MH, Williams BO, Mulligan G, et al. Targeted disruption of p107: functional overlap between p107 and Rb. Genes Dev 1996; 10: 1621–1632.PubMedCrossRefGoogle Scholar
  31. 31.
    al-Ubaidi MR, Font RL, Quiambao AB, et al. Bilateral retinal and brain tumors in transgenic mice expressing simian virus 40 large T antigen under control of the human interphotoreceptor retinoidbinding protein promoter. J Cell Biol 1992; 119: 1681–1687.PubMedCrossRefGoogle Scholar
  32. 32.
    Howes KA, Ransom N, Papermaster DS, Lasudry JG, Albert DM, Windle JJ. Apoptosis or retinoblastoma: alternative fates of photoreceptors expressing the HPV-16 E7 gene in the presence or absence of p53. Genes Dev 1994; 8: 1300–1310.PubMedCrossRefGoogle Scholar
  33. 33.
    Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA. Role of the INK4a locus in tumor suppression and cell mortality. Cell 1996; 85: 27–37.PubMedCrossRefGoogle Scholar
  34. 34.
    Kamijo T, Zindy F, Roussel MF, et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p 1 9ARF. Cell 1997; 91: 649–659.PubMedCrossRefGoogle Scholar
  35. 35.
    Nakayama K, Ishida N, Shirane M, et al. Mice lacking p27(Kipl) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 1996; 85: 707–720.PubMedCrossRefGoogle Scholar
  36. 36.
    Fero ML, Rivkin M, Tasch M, et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 1996; 85: 733–744.PubMedCrossRefGoogle Scholar
  37. 37.
    Park MS, Rosai J, Nguyen HT, Capodieci P, Cordon-Cardo C, Koff A. p27 and Rb are on overlapping pathways suppressing tumorigenesis in mice. Proc Natl Acad Sci USA 1999; 96: 6382–6387.PubMedCrossRefGoogle Scholar
  38. 38.
    Franklin DS, Godfrey VL, Lee H, et al. CDK inhibitors p18(INK4c) and p27(Kipl) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 1998; 12: 2899–2911.PubMedCrossRefGoogle Scholar
  39. 39.
    Deng C, Zhang P, Harper JW, Elledge SJ, Leder P. Mice lacking p2ICIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995; 82: 675–684.PubMedCrossRefGoogle Scholar
  40. 40.
    Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 1995; 377: 552–557.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV. Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 1994; 369: 669–671.PubMedCrossRefGoogle Scholar
  42. 42.
    Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson NJ. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 1996; 85: 537–548.PubMedCrossRefGoogle Scholar
  43. 43.
    Yamasaki L, Bronson R, Williams BO, Dyson NJ, Harlow E, Jacks T. Loss of E2F-1 reduces tumori-genesis and extends the lifespan of Rbl(+/-) mice. Nat Genet 1998; 18: 360–364.PubMedCrossRefGoogle Scholar
  44. 44.
    Pierce AM, Gimenez-Conti IB, Schneider-Broussard R, Martinez LA, Conti CJ, Johnson DG. Increased E2F1 activity induces skin tumors in mice heterozygous and nullizygous for p53. Proc Natl Acad Sci USA 1998; 95: 8858–8863.PubMedCrossRefGoogle Scholar
  45. 45.
    Pierce AM, Fisher SM, Conti CJ, Johnson DG. Deregulated expression of E2F1 induces hyperplasia and cooperates with ras in skin tumor development. Oncogene 1998; 16: 1267–1276.PubMedCrossRefGoogle Scholar
  46. 46.
    Pierce AM, Schneider-Broussard R, Gimenez-Conti IB, Russell JL, Conti CJ, Johnson DG. E2F1 has both oncogenic and tumor-suppressive properties in a transgenic model. Mol Cell Biol 1999; 19: 6408–6414.PubMedGoogle Scholar
  47. 47.
    Wang D, Russell JL, Johnson DG. E2F4 and E2F1 have similar proliferative properties but different apoptotic and oncogenic properties in vivo. Mol Cell Biol 2000; 20: 3417–3424.PubMedCrossRefGoogle Scholar
  48. 48.
    Ko U, Prives C. p53: puzzle and paradigm. Genes Dev 1996; 10: 1054–1072.PubMedCrossRefGoogle Scholar
  49. 49.
    Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356: 215–221.PubMedCrossRefGoogle Scholar
  50. 50.
    Jacks T, Remington L, Williams BO, et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol 1994; 4: 1–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Bueso-Ramos CE, Manshouri T, Haidar MA, Huh YO, Keating MJ, Albitar M. Multiple patterns of MDM-2 deregulation in human leukemias: implications in leukemogenesis and prognosis. Leuk Lymphoma 1995; 17: 13–18.PubMedCrossRefGoogle Scholar
  52. 52.
    Momand J, Jung D, Wilczynski S, Niland J. The MDM2 gene amplification database. Nucleic Acids Res 1998; 26: 3453–3459.PubMedCrossRefGoogle Scholar
  53. 53.
    Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995; 378: 206–208.PubMedCrossRefGoogle Scholar
  54. 54.
    Montes de Oca Luna R, Wanger DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995; 378: 203–206.CrossRefGoogle Scholar
  55. 55.
    Jones SN, Sands AT, Hancock AR, et al. The tumorigenic potential and cell growth characteristics of p53- deficient cells are equivalent in the presence or absence of Mdm2. Proc Natl Acad Sci USA 1996; 93: 14106–14111.PubMedCrossRefGoogle Scholar
  56. 56.
    Lundgren K, Montes de Oca Luna R, McNeill YB, et al. Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes Dev 1997; 11: 714–725.PubMedCrossRefGoogle Scholar
  57. 57.
    Reinke V, Bortner DM, Amelse LL, et al. Overproduction of MDM2 in vivo disrupt S phase independent of E2F1. Cell Growth Differ 1999; 10: 147–154.PubMedGoogle Scholar
  58. 58.
    Jones SN, Hancock AR, Vogel H, Donehower LA, Bradley A. Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc Natl Acad Sci USA 1998; 95: 15608–15612.PubMedCrossRefGoogle Scholar
  59. 59.
    Holt SE, Shay JW. Role of telomerase in cellular proliferation and cancer. J Cell Physiol 1999; 180: 10–18.PubMedCrossRefGoogle Scholar
  60. 60.
    Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279: 349–352.PubMedCrossRefGoogle Scholar
  61. 61.
    Greenberg RA, Chin L, Femino A, et al. Short dysfunctional telomeres impair tumorigenesis in the INK4a(delta2/3) cancer-prone mouse. Cell 1999; 97: 515–525.PubMedCrossRefGoogle Scholar
  62. 62.
    Rudolph KL, Chang S, Lee HW, et al. Longevity, stress response, and cancer in aging telomerasedeficient mice. Cell 1999; 96: 701–712.PubMedCrossRefGoogle Scholar
  63. 63.
    Chin L, Artandi SE, Shen Q, et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 1999; 97: 527–538.PubMedCrossRefGoogle Scholar
  64. 64.
    Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 1999; 283: 1321–1325.PubMedCrossRefGoogle Scholar
  65. 65.
    Artandi SE, Chang S, Lee SL, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 2000; 406: 641–645.PubMedCrossRefGoogle Scholar
  66. 66.
    Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 1999; 11: 255–260.PubMedCrossRefGoogle Scholar
  67. 67.
    Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med 2000; 6: 513–519.PubMedCrossRefGoogle Scholar
  68. 68.
    Pelengaris S, Rudolph B, Littlewood T. Action of Myc in vivo-proliferation and apoptosis. Curr Opin Genet Dev 2000; 10: 100–105.PubMedCrossRefGoogle Scholar
  69. 69.
    Christofori G, Naik P, Hanahan D. A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature 1994; 369: 414–418.PubMedCrossRefGoogle Scholar
  70. 70.
    Peltomaki P. DNA mismatch repair gene mutations in human cancer. Environ Health Perspect 1997; 105 (Suppl 4): 775–780.PubMedCrossRefGoogle Scholar
  71. 71.
    Kolodner R. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev 1996; 10: 1433–1442.PubMedCrossRefGoogle Scholar
  72. 72.
    Duval A, Iacopetta B, Ranzani GN, Lothe RA, Thomas G, Hamelin R. Variable mutation frequencies in coding repeats of TCF-4 and other target genes in colon, gastric and endometrial carcinoma showing microsatellite instability. Oncogene 1999; 18: 6806–6809.PubMedCrossRefGoogle Scholar
  73. 73.
    Schwartz S Jr, Yamamoto H, Navarro M, Maestro M, Reventos J, Perucho M. Frameshift mutations at mononucleotide repeats in caspase-5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res 1999; 59: 2995–3002.PubMedGoogle Scholar
  74. 74.
    Reitmair AH, Redston M, Cai JC, et al. Spontaneous intestinal carcinomas and skin neoplasms in Msh2-deficient mice. Cancer Res 1996; 56: 3842–3849.PubMedGoogle Scholar
  75. 75.
    Edelmann W, Yang K, Umar A, et al. Mutation in the mismatch repair gene Msh6 causes cancer susceptibility. Cell 1997; 91: 467–477.PubMedCrossRefGoogle Scholar
  76. 76.
    de Wind N, Dekker M, Claij N, et al. HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nat Genet 1999; 23: 359–362.PubMedCrossRefGoogle Scholar
  77. 77.
    Edelmann W, Yang K, Kuraguchi M, et al. Tumorigenesis in Mlhl and Mlhl/Apc1638N mutant mice. Cancer Res 1999; 59: 1301–1307.PubMedGoogle Scholar
  78. 78.
    Ricciardone MD, Ozcelik T, Cevher B, et al. Human MLH1 deficiency predisposes to hematological malignancy and neurofibromatosis type 1. Cancer Res 1999; 59: 290–293.PubMedGoogle Scholar
  79. 79.
    Wang Q, Lasset C, Desseigne F, et al. Neurofibromatosis and early onset of cancers in hMLH1-deficient children. Cancer Res 1999; 59: 294–297.PubMedGoogle Scholar
  80. 80.
    Reitmair AH, Cai JC, Bjerknes M, et al. MSH2 dificiency contributes to accelerated APC-mediated intestinal tumorigenesis. Cancer Res 1996; 56: 2922–2926.PubMedGoogle Scholar
  81. 81.
    Prolla TA, Baker SM, Harris AC, et al. Tumour susceptibility and spontaneous mutation in mice deficient in Mlhl, Pmsl and Pms2 DNA mismatch repair. Nat Genet 1998; 18: 276–279.PubMedCrossRefGoogle Scholar
  82. 82.
    Baker SM, Harris AC, Tsao JL, et al. Enhanced intestinal adenomatous polyp formation in Pms2-/-;Min mice. Cancer Res 1998; 58: 1087–1089.PubMedGoogle Scholar
  83. 83.
    Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396: 643–649.PubMedCrossRefGoogle Scholar
  84. 84.
    Cahill DP, Lengauer C, Yu J, et al. Mutations of mitotic checkpoint genes in human cancers. Nature 1998; 392: 300–330.PubMedCrossRefGoogle Scholar
  85. 85.
    Lavin MF, Shiloh Y. The genetic defect in ataxia-telangiectasia. Annu Rev Immunol 1997; 15: 177–202.PubMedCrossRefGoogle Scholar
  86. 86.
    Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 2001; 27: 247–254.PubMedCrossRefGoogle Scholar
  87. 87.
    Featherstone C, Jackson SP. DNA repair: the Nijmegen breakage syndrome protein. Curt - Biol 1998; 8: R622 - R625.CrossRefGoogle Scholar
  88. 88.
    Dasika GK, Lin SC, Zhao S, Sung P, Tomkinson A, Lee EY. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 1999; 18: 7883–7899.PubMedCrossRefGoogle Scholar
  89. 89.
    Gu Y, Seidl KJ, Rathbun GA, et al. Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 1997; 7: 653–656.PubMedCrossRefGoogle Scholar
  90. 90.
    Li GC, Ouyang H, Li X, et al. Ku70: a candidate tumor suppresor gene for murine T cell lymphoma. Mol Cell 1998; 2: 1–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Morrison C, Smith GC, Stingl L, Jackson SP, Wagner EF, Wang ZQ. Genetic interaction between PARP and DNA-PK in V(D)J recombination and tumorigenesis. Nat Genet 1997; 17: 479–482.PubMedCrossRefGoogle Scholar
  92. 92.
    Canman CE, Lim DS. The role of ATM in DNA damage responses and cancer. Oncogene 1998; 17: 3301–3308.PubMedCrossRefGoogle Scholar
  93. 93.
    Brown EJ, Baltimore D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 2000; 14: 397–402.PubMedGoogle Scholar
  94. 94.
    Zhu J, Petersen S, Tessarollo L, Nussenzweig A. Targeted disruption of the Nijmegen breakage syndrome gene NBS 1 leads to early embryonic lethality in mice. Curr Biol 2001; 11: 105–109.PubMedCrossRefGoogle Scholar
  95. 95.
    Scully R, Puget N, Vlasakova K. DNA polymerase stalling, sister chromatid recombination and the BRCA genes. Oncogene 2000; 19: 6176–6183.PubMedCrossRefGoogle Scholar
  96. 96.
    Lee H, Trainer AH, Friedman LS, et al. Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol Cell 1999; 4: 1–10.PubMedCrossRefGoogle Scholar
  97. 97.
    Wassmann K, Benezra R. Mitotic checkpoints: from yeast to cancer. Curr Opin Genet Dev 2001; 11: 83–90.PubMedCrossRefGoogle Scholar
  98. 98.
    Li Y, Benezra R. Identification of a human mitotic checkpoint gene: hsMAD2. Science 1996; 274: 246–248.PubMedCrossRefGoogle Scholar
  99. 99.
    Cahill DP, da Costa LT, Carson-Walter EB, Kinzler KW, Vogelstein B, Lengauer C. Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics 1999; 58: 181–187.PubMedCrossRefGoogle Scholar
  100. 100.
    Basu J, Bousbaa H, Logarinho E, et al. Mutations in the essential spindle checkpoint gene bubl cause chromosome missegregation and fail to block apoptosis in Drosophila. J Cell Biol 1999; 146: 13–28.Google Scholar
  101. 101.
    Kitagawa R, Rose AM. Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans. Nat Cell Biol 1999; 1: 514–521.CrossRefGoogle Scholar
  102. 102.
    Dobles M, Liberal V, Scott ML, Benezra R, Sorger PK. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 2000; 101: 635–645.PubMedCrossRefGoogle Scholar
  103. 103.
    Michel LS, Liberal V, Chatterjee A, et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 2001; 409: 355–359.PubMedCrossRefGoogle Scholar
  104. 104.
    Toyota M, Issa JP. CpG island methylator phenotypes in aging and cancer. Semin Cancer Biol 1999; 9: 349–357.PubMedCrossRefGoogle Scholar
  105. 105.
    Herman JG. p 16(INK4): involvement early and often in gastrointestinal malignancies. Gastroenterology 1999; 116:483–485.PubMedCrossRefGoogle Scholar
  106. 106.
    Laird PW, Jackson-Grusby L, Fazeli A, et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 1995; 81: 197–205.PubMedCrossRefGoogle Scholar
  107. 107.
    Feinberg AP. DNA methylation, genomic imprinting and cancer. Curr Top Microbiol Immunol 2000; 249: 87–99.PubMedCrossRefGoogle Scholar
  108. 108.
    Sternlicht MD, Lochter A, Sympson CJ, et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 1999; 98: 137–146.PubMedCrossRefGoogle Scholar
  109. 109.
    Rudolph-Owen LA, Chan R, Muller WJ, Matrisian LM. The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis. Cancer Res 1998; 58: 5500–5506.PubMedGoogle Scholar
  110. 110.
    Wilson CL, Heppner KJ, Labosky PA, Hogan BL, Matrisian LM. Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci USA 1997; 94: 1402–1407.PubMedCrossRefGoogle Scholar
  111. 111.
    Coussens LM, Hanahan D, Arbeit JM. Genetic predisposition and parameters of malignant progression in K14- HPV16 transgenic mice. Am J Pathol 1996; 149: 1899–1917.PubMedGoogle Scholar
  112. 112.
    Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 2000; 103: 481–490.PubMedCrossRefGoogle Scholar
  113. 113.
    Hanahan D. Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 1985; 315: 115–122.PubMedCrossRefGoogle Scholar
  114. 114.
    Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000; 2: 737–744.PubMedCrossRefGoogle Scholar
  115. 115.
    Ferrara N, Alitalo K. Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 1999; 5: 1359–1364.PubMedCrossRefGoogle Scholar
  116. 116.
    Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–257.PubMedCrossRefGoogle Scholar
  117. 117.
    Folkman J, Watson K, Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989; 339: 58–61.PubMedCrossRefGoogle Scholar
  118. 118.
    Compagni A, Wilgenbus P, Impagnatiello MA, Cotten M, Christofori G. Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res 2000; 60: 7163–7169.PubMedGoogle Scholar
  119. 119.
    Bergers G, Hanahan D, Coussens LM. Angiogenesis and apoptosis are cellular parameters of neo-plastic progression in transgenic mouse models of tumorigenesis. Int J Dey Biol 1998; 42: 995–1002.Google Scholar
  120. 120.
    Parangi S, O’Reilly M, Christofori G, et al. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci USA 1996; 93: 2002–2007.PubMedCrossRefGoogle Scholar
  121. 121.
    Matsuura N, Puzon-McLaughlin W, Irie A, Morikawa Y, Kakudo K, Takada Y. Induction of experimental bone metastasis in mice by transfection of integrin alpha 4 beta 1 into tumor cells. Am J Pathol 1996; 148: 55–61.PubMedGoogle Scholar
  122. 122.
    Qian F, Hanahan D, Weissman IL. L-selectin can facilitate metastasis to lymph nodes in a transgenic mouse model of carcinogenesis. Proc Natl Acad Sci USA 2001; 98: 3976–3981.PubMedCrossRefGoogle Scholar
  123. 123.
    Aberle H, Schwartz H, Kemler R. Cadherin-catenin complex: protein interactions and their implications for cadherin function. J Cell Biochem 1996; 61: 514–523.PubMedCrossRefGoogle Scholar
  124. 124.
    Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 1998; 392: 190–193.PubMedCrossRefGoogle Scholar
  125. 125.
    Perl AK, Dahl U, Wilgenbus P, Cremer H, Semb H, Christofori G. Reduced expression of neural cell adhesion molecule induces metastic dissemination of pancreatic beta tumor cells. Nat Med 1999; 5: 286–291.PubMedCrossRefGoogle Scholar
  126. 126.
    Pepper MS. Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 2001; 7: 462–468.PubMedGoogle Scholar
  127. 127.
    Plate K. From angiogenesis to lymphangiogenesis. Nat Med 2001; 7: 151–152.PubMedCrossRefGoogle Scholar
  128. 128.
    Simpson L, Parsons R. Pten: life as a tumor suppressor. Exp Cell Res 2001; 264: 29–41.PubMedCrossRefGoogle Scholar
  129. 129.
    Vazquez F, Sellers WR. The PTEN tumor suppressor protein: an antagonist of phosphoinositide 3-kinase signaling. Biochim Biophys Acta 2000; 1470: M21 - M35.PubMedGoogle Scholar
  130. 130.
    Podsypanina K, Ellenson LH, Nemes A, et al. Mutation of Pten/Mmac 1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA 1999; 96: 1563–1568.PubMedCrossRefGoogle Scholar
  131. 131.
    Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP. Pten is essential for embryonic development and tumour suppression. Nat Genet 1998; 19: 348–355.PubMedCrossRefGoogle Scholar
  132. 132.
    Suzuki A, de la Pompa JL, Stambolic V, et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol 1998; 8: 1169–1178.PubMedCrossRefGoogle Scholar
  133. 133.
    Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet 2001; 27: 222–224.PubMedCrossRefGoogle Scholar
  134. 134.
    Li Y, Podsypanina K, Liu X, et al. Deficiency of Pten accelerates mammary oncogenesis in MMTVWnt-1 transgenic mice. BMC Mol Biol 2001; 2: 2.PubMedCrossRefGoogle Scholar
  135. 135.
    Attisano L, Wrana JL. Smads as transcriptional co-modulators. Curr Opin Cell Biol 2000; 12: 235–243.PubMedCrossRefGoogle Scholar
  136. 136.
    Cui W, Fowlis DJ, Bryson S, et al. TG Fbetal inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 1996; 86: 531–542.PubMedCrossRefGoogle Scholar
  137. 137.
    Hata A, Shi Y, Massague J. TGF-beta signaling and cancer: structural and functional consequences of mutations in Smads. Mol Med Today 1998; 4: 257–262.PubMedCrossRefGoogle Scholar
  138. 138.
    Datto M, Wang XF. The Smads: transcriptional regulation and mouse models. Cytokine Growth Factor Rev 2000; 11: 37–48.PubMedCrossRefGoogle Scholar
  139. 139.
    Tang B, Bottinger EP, Jakowlew SB, et al. Transforming growth factor-betal is a new form of tumor suppressor with true haploid insufficiency. Nat Med 1998; 4: 802–807.PubMedCrossRefGoogle Scholar
  140. 140.
    Zhu Y, Richardson JA, Parada LF, Graff JM. Smad3 mutant mice develop metastatic colorectal cancer. Cell 1998; 94: 703–714.PubMedCrossRefGoogle Scholar
  141. 141.
    Barker N, Clevers H. Catenins, Wnt signaling and cancer. Bioessays 2000; 22: 961–965.PubMedCrossRefGoogle Scholar
  142. 142.
    Polakis P. Wnt signaling and cancer. Genes Dey 2000; 14: 1837–1851.Google Scholar
  143. 143.
    van Es JH, Giles RH, Clevers HC. The many faces of the tumor suppressor gene APC. Exp Cell Res 2001; 264: 126–134.PubMedCrossRefGoogle Scholar
  144. 144.
    Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell 2000; 103: 311–320.PubMedCrossRefGoogle Scholar
  145. 145.
    Su LK, Kinzler KW, Vogelstein B, et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 1992; 256: 668–670.PubMedCrossRefGoogle Scholar
  146. 146.
    Clarke AR, Cummings MC, Harrison DJ. Interaction between murine germline mutations in p53 and APC predisposes to pancreatic neoplasia but not to increased intestinal malignancy. Oncogene 1995; 11: 1913–1920.PubMedGoogle Scholar
  147. 147.
    Oshima M, Oshima H, Kobayashi M, Tsutsumi M, Taketo MM. Evidence against dominant negative mechanisms of intestinal polyp formation by Apc gene mutations. Cancer Res 1995; 55: 2719–2722.PubMedGoogle Scholar
  148. 148.
    Shibata H, Toyama K, Shioya H, et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 1997; 278: 120–123.PubMedCrossRefGoogle Scholar
  149. 149.
    Luongo C, Moser AR, Gledhill S, Dove WF. Loss of Apc+ in intestinal adenomas from Min mice. Cancer Res 1994; 54: 5947–5952.PubMedGoogle Scholar
  150. 150.
    Smits R, Kartheuser A, Jagmohan-Changur S, et al. Loss of Apc and the entire chromosome 18 but absence of mutations at the Ras and Tp53 genes in intestinal tumors from Apc1638N, a mouse model for Apc-driven carcinogenesis. Carcinogenesis 1997; 18: 321–327.PubMedCrossRefGoogle Scholar
  151. 151.
    Smits R, Kielman MF, Breukel C, et al. Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev 1999; 13: 1309–1321.PubMedCrossRefGoogle Scholar
  152. 152.
    Gat U, DasGupta R, Degenstein L, Fuchs E. De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell 1998; 95: 605–614.PubMedCrossRefGoogle Scholar
  153. 153.
    Zhou P, Byrne C, Jacobs J, Fuchs E. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dey 1995; 9: 700–713.CrossRefGoogle Scholar
  154. 154.
    Roose J, Huls G, van Beest M, et al. Synergy between tumor suppressor APC and the beta-cateninTef4 target Tcfl. Science 1999; 285: 1923–1926.PubMedCrossRefGoogle Scholar
  155. 155.
    Ruiz I, Altaba A. Gli proteins and Hedgehog signaling: development and cancer. Trends Genet 1999; 15: 418–425.CrossRefGoogle Scholar
  156. 156.
    Oro AE, Higgins KM, flu Z, Bonifas JM, Epstein EH, Scott MP. Basal cell carcinomas in mice over-expressing sonic hedgehog. Science 1997; 276: 817–821.PubMedCrossRefGoogle Scholar
  157. 157.
    Xie J, Murone M, Luoh SM, et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 1998; 391: 90–92.PubMedCrossRefGoogle Scholar
  158. 158.
    Grachtchouk M, Mo R, Yu S, et al. Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat Genet 2000; 24: 216–217.PubMedCrossRefGoogle Scholar
  159. 159.
    Nilsson M, Unden AB, Krause D, et al. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc Natl Acad Sci USA 2000; 97: 3438–3443.PubMedGoogle Scholar
  160. 160.
    Kinzler KW, Ruppert JM, Bigner SH, Vogelstein B. The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature 1988; 332: 371–374.PubMedCrossRefGoogle Scholar
  161. 161.
    Aszterbaum M, Epstein J, Oro A, et al. Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nat Med 1999; 5: 1285–1291.PubMedCrossRefGoogle Scholar
  162. 162.
    Wetmore C, Eberhart DE, Curran T. The normal patched allele is expressed in medulloblastomas from mice with heterozygous germ-line mutation of patched. Cancer Res 2000; 60: 2239–2246.PubMedGoogle Scholar
  163. 163.
    Wetmore C, Eberhart DE, Curran T. Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res 2001; 61: 513–516.PubMedGoogle Scholar
  164. 164.
    Hahn H, Wojnowski L, Zimmer AM, Hall J, Miller G, Zimmer A. Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 1998; 4: 619–622.PubMedCrossRefGoogle Scholar
  165. 165.
    Mintz B, Klein-Szanto AJ. Malignancy of eye melanomas orginating in the retinal pigment epithelium of transgenic mice after genetic ablation of choroidal melanocytes. Proc Natl Acad Sci USA 1992; 89: 11421–11425.PubMedCrossRefGoogle Scholar
  166. 166.
    Mintz B, Silvers WK. Transgenic mouse model of malignant skin melanoma. Proc Natl Acad Sci USA 1993; 90: 8817–8821.PubMedCrossRefGoogle Scholar
  167. 167.
    Mintz B, Silvers WK, Klein-Szanto AJ. Histopathogenesis of malignant skin melanoma induced in genetically susceptible transgenic mice. Proc Natl Acad Sci USA 1993; 90: 8822–8826.PubMedCrossRefGoogle Scholar
  168. 168.
    Penna D, Schmidt A, Beermann F. Tumors of the retinal pigment epithelium metastasize to inguinal lymph nodes and spleen in tyrosinase-related protein 1/SV40 T antigen transgenic mice. Oncogene 1998; 17: 2601–2607.PubMedCrossRefGoogle Scholar
  169. 169.
    Powell MB, Hyman P, Bell OD, et al. Hyperpigmentation and melanocytic hyperplasia in transgenic mice expressing the human T24 Ha-ras gene regulated by a mouse tyrosinase promoter. Mol Carcinog 1995; 12: 82–90.PubMedCrossRefGoogle Scholar
  170. 170.
    Iwamoto T, Takahashi M, Ito M, et al. Aberrant melanogenesis and melanocytic tumour development in transgenic mice that carry a metallothionein/ret fusion gene. EMBO J 1991; 10: 3167–3175.PubMedGoogle Scholar
  171. 171.
    Greenhalgh DA, Rothnagel JA, Quintanilla MI, et al. Induction of epidermal hyperplasia, hyperkeratosis, and papillomas in transgenic mice by a targeted v-Ha-ras oncogene. Mol Carcinog 1993; 7: 99–110.PubMedCrossRefGoogle Scholar
  172. 172.
    Larcher F, Murillas R, Bolontrade M, Conti CJ, Jorcano JL. VEGFNPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development. Oncogene 1998; 17: 303–311.PubMedCrossRefGoogle Scholar
  173. 173.
    Saez E, Rutberg SE, Mueller E, et al. c-fos is required for malignant progression of skin tumors. Cell 1995; 82: 721–732.PubMedCrossRefGoogle Scholar
  174. 174.
    Ganguli G, Abecassis J, Wasylyk B. MDM2 induces hyperplasia and premalignant lesions when expressed in the basal layer of the epidermis. EMBO J 2000; 19: 5135–5147.PubMedCrossRefGoogle Scholar
  175. 175.
    Arbeit JM, Munger K, Howley PM, Hanahan D. Progressive squamous epithelial neoplasia in K14-human papillomavirus type 16 transgenic mice. J Virol 1994; 68: 4358–4368.PubMedGoogle Scholar
  176. 176.
    Arbeit JM, Howley PM, Hanahan D. Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. Proc Natl Acad Sci USA 1996; 93: 2930–2935.PubMedCrossRefGoogle Scholar
  177. 177.
    Callahan R. MMTV-induced mutations in mouse mammary tumors: their potential relevance to human breast cancer. Breast Cancer Res Treat 1996; 39: 33–44.PubMedCrossRefGoogle Scholar
  178. 178.
    Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 1988; 54: 105–115.PubMedCrossRefGoogle Scholar
  179. 179.
    Bouchard L, Lamarre L, Tremblay PJ, Jolicoeur P. Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 1989; 57: 931–936.PubMedCrossRefGoogle Scholar
  180. 180.
    Weinstein EJ, Kitsberg DI, Leder P. A mouse model for breast cancer induced by amplification and overexpression of the neu promoter and transgene. Mol Med 2000; 6: 4–16.PubMedGoogle Scholar
  181. 181.
    Andrechek ER, Hardy WR, Siegel PM, Rudnicki MA, Cardiff RD, Muller WJ. Amplification of the neu/erbB-2 oncogene in a mouse model of mammary tumorigenesis. Proc Natl Acad Sci USA 2000; 97: 3444–3449.PubMedGoogle Scholar
  182. 182.
    Li B, Murphy KL, Laucirica R, Kittrell F, Medina D, Rosen JM. A transgenic mouse model for mammary carcinogenesis. Oncogene 1998; 16: 997–1007.PubMedCrossRefGoogle Scholar
  183. 183.
    Gallahan D, Jhappan C, Robinson G, et al. Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res 1996; 56: 1775–1785.PubMedGoogle Scholar
  184. 184.
    Shackleford GM, MacArthur CA, Kwan HC, Varmus HE. Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt-1 transgenic mice by insertional activation of int-2/Fgf3 and hst/Fgf-4. Proc Natl Acad Sci USA 1993; 90: 740–744.PubMedCrossRefGoogle Scholar
  185. 185.
    Li Y, Hively WP, Varmus HE. Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene 2000; 19: 1002–1009.PubMedCrossRefGoogle Scholar
  186. 186.
    Green JE, Shibata MA, Yoshidome K, et al. The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene 2000; 19: 1020–1027.PubMedCrossRefGoogle Scholar
  187. 187.
    Radany EH, Hong K, Kesharvarzi S, Lander ES, Bishop JM. Mouse mammary tumor virus/v-Ha-ras transgene-induced mammary tumors exhibit strain-specific allelic loss on mouse chromosome 4. Proc Natl Acad Sci USA 1997; 94: 8664–8669.PubMedCrossRefGoogle Scholar
  188. 188.
    Murphy KL, Rosen JM. Mutant p53 and genomic instability in a transgenic mouse model of breast cancer. Oncogene 2000; 19: 1045–1051.PubMedCrossRefGoogle Scholar
  189. 189.
    Deng CX, Scott F. Role of the tumor suppressor gene Brcal in genetic stability and mammary gland tumor formation. Oncogene 2000; 19: 1059–1064.PubMedCrossRefGoogle Scholar
  190. 190.
    Greenberg NM, DeMayo FJ, Sheppard PC, et al. The rat probasin gene promoter directs hormonally and developmentally regulated expression of a heterologous gene specifically to the prostate in trans-genic mice. Mol Endocrinol 1994; 8: 230–239.PubMedCrossRefGoogle Scholar
  191. 191.
    Greenberg NM, DeMayo F, Finegold MJ, et al. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 1995; 92: 3439–3443.PubMedCrossRefGoogle Scholar
  192. 192.
    Gingrich JR, Barrios RJ, Morton RA, et al. Metastatic prostate cancer in a transgenic mouse. Cancer Res 1996; 56: 4096–4102.PubMedGoogle Scholar
  193. 193.
    Kaplan PJ, Mohan S, Cohen P, Foster BA, Greenberg NM. The insulin-like growth factor axis and prostate cancer: lessons from the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Cancer Res 1999; 59: 2203–2209.PubMedGoogle Scholar
  194. 194.
    Gingrich JR, Barrios RJ, Kattan MW, Nahm HS, Finegold MJ, Greenberg NM. Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res 1997; 57: 4687–4691.PubMedGoogle Scholar
  195. 195.
    Foster BA, Gingrich JR, Kwon ED, Madias C, Greenberg NM. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res 1997; 57: 3325–3330.PubMedGoogle Scholar
  196. 196.
    Kwon ED, Hurwitz AA, Foster BA, et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci USA 1997; 94: 8099–8103.PubMedCrossRefGoogle Scholar
  197. 197.
    Maroulakou IG, Anver M, Garrett L, Green JE. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc Natl Acad Sci USA 1994; 91: 11236–11240.PubMedCrossRefGoogle Scholar
  198. 198.
    Shibata MA, Ward JM, Devor DE, Liu ML, Green JE. Progression of prostatic intraepithelial neoplasia to invasive carcinoma in C3(1)/SV40 large T antigen transgenic mice: histopathological and molecular biological alterations. Cancer Res 1996; 56: 4894–4903.PubMedGoogle Scholar
  199. 199.
    Zhang X, Chen MW, Ng A, et al. Abnormal prostate development in C3(1)-bcl-2 transgenic mice. Prostate 1997; 32: 16–26.PubMedCrossRefGoogle Scholar
  200. 200.
    Garabedian EM, Humphrey PA, Gordon JI. A transgenic mouse model of metastatic prostate cancer originating from neuroendocrine cells. Proc Natl Acad Sci USA 1998; 95: 15382–15387.PubMedCrossRefGoogle Scholar
  201. 201.
    Perez-Stable C, Altman NH, Brown J, Harbison M, Cray C, Roos BA. Prostate, adrenocortical, and brown adipose tumors in fetal globin/T antigen transgenic mice. Lab Invest 1996; 74: 363–373.PubMedGoogle Scholar
  202. 202.
    Quaife CJ, Pinkert CA, Ornitz DM, Palmiter RD, Brinster RL. Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice. Cell 1987; 48: 1023–1034.PubMedCrossRefGoogle Scholar
  203. 203.
    Wagner M, Greten FR, Weber CK, et al. A murine tumor progression model for pancreatic cancer recapitulating the genetic alterations of the human disease. Genes Dev 2001; 15: 286–293.PubMedCrossRefGoogle Scholar
  204. 204.
    Bennoun M, Rissel M, Engelhardt N, Guillouzo A, Briand P, Weber-Benarous A. Oval cell proliferation in early stages of hepatocarcinogenesis in simian virus 40 large T transgenic mice. Am J Pathol 1993; 143: 1326–1336.PubMedGoogle Scholar
  205. 205.
    Kitagawa T, Hino O, Lee GH, et al. Multistep hepatocarcinogenesis in transgenic mice harboring SV40 T-antigen gene. Princess Takamatsu Symp 1991; 22: 349–360.PubMedGoogle Scholar
  206. 206.
    Sepulveda AR, Finegold MJ, Smith B, et al. Development of a transgenic mouse system for the analysis of stages in liver carcinogenesis using tissue-specific expression of SV40 large T-antigen controlled by regulatory elements of the human alpha-l-antitrypsin gene. Cancer Res 1989; 49: 6108–6117.PubMedGoogle Scholar
  207. 207.
    Gilbert E, Morel A, Tulliez M, et al. In vivo effects of activated H-ras oncogene expressed in the liver and in urogenital tissues. Int J Cancer 1997; 73: 749–756.PubMedCrossRefGoogle Scholar
  208. 208.
    Orian JM, Tamakoshi K, Mackay IR, Brandon MR. New murine model for hepatocellular carcinoma: transgenic mice expressing metallothionein-ovine growth hormone fusion gene. J Natl Cancer Inst 1990; 82: 393–398.PubMedCrossRefGoogle Scholar
  209. 209.
    Martin DC, Sanchez-Sweatman OH, Ho AT, Inderdeo DS, Tsao MS, Khokha R. Transgenic TIMP-1 inhibits simian virus 40 T antigen-induced hepatocarcinogenesis by impairment of hepatocellular proliferation and tumor angiogenesis. Lab Invest 1999; 79: 225–234.PubMedGoogle Scholar
  210. 210.
    Santoni-Rugiu E, Jensen MR, Factor VM, Thorgeirsson SS. Acceleration of c-myc-induced hepatocarcinogenesis by co-expression of transforming growth factor (TGF)-alpha in transgenic mice is associated with TGF-beta I signaling disruption. Am J Pathol 1999; 154: 1693–1700.PubMedCrossRefGoogle Scholar
  211. 211.
    Santoni-Rugiu E, Nagy P, Jensen MR, Factor VM, Thorgeirsson SS. Evolution of neoplastic development in the liver of transgenic mice co-expressing c-myc and transforming growth factor-alpha. Am J Pathol 1996; 149: 407–428.PubMedGoogle Scholar
  212. 212.
    Santoni-Rugiu E, Jensen MR, Thorgeirsson SS. Disruption of the pRb/E2F pathway and inhibition of apoptosis are major oncogenic events in liver constitutively expressing c-myc and transforming growth factor alpha. Cancer Res 1998; 58: 123–134.PubMedGoogle Scholar
  213. 213.
    de La Coste A, Romagnolo B, Billuart P, et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA 1998; 95: 8847–8851.CrossRefGoogle Scholar
  214. 214.
    Umeda T, Yamamoto T, Kajino K, Hino O. beta-catenin mutations are absent in hepatocellular carcinomas of SV40 T-antigen transgenic mice. Int J Oncol 2000; 16: 1133–1136.PubMedGoogle Scholar
  215. 215.
    Chisari FV, Klopchin K, Moriyama T, et al. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell 1989; 59: 1145–1156.PubMedCrossRefGoogle Scholar
  216. 216.
    Jakubczak JL, Chisari FV, Merlino G. Synergy between transforming growth factor alpha and hepatitis B virus surface antigen in hepatocellular proliferation and carcinogenesis. Cancer Res 1997; 57: 3606–3611.PubMedGoogle Scholar
  217. 217.
    Kim CM, Koike K, Saito I, Miyamura T, Jay G. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 1991; 351: 317–320.PubMedCrossRefGoogle Scholar
  218. 218.
    Wikenheiser KA, Clark JC, Linnoila RI, Stahlman MT, Whitsett JA. Simian virus 40 large T antigen directed by transcriptional elements of the human surfactant protein C gene produces pulmonary adenocarcinomas in transgenic mice. Cancer Res 1992; 52: 5342–5352.PubMedGoogle Scholar
  219. 219.
    Kerkhoff E, Fedorov LM, Siefken R, Walter AO, Papadopoulos T, Rapp UR. Lung-targeted expression of the c-Raf-1 kinase in transgenic mice exposes a novel oncogenic character of the wild-type protein. Cell Growth Differ 2000; 11: 185–190.PubMedGoogle Scholar
  220. 220.
    Lebel M, Webster M, Muller WJ, Royal A, Gauthier J, Mes-Masson AM. Transgenic mice bearing the polyomavirus large T antigen directed by 2.1 kb of the keratin 19 promoter develop bronchiolar papillary tumors with progression to lung adenocarcinomas. Cell Growth Differ 1995; 6: 1591–1600.PubMedGoogle Scholar
  221. 221.
    Ehrhardt A, Bartels T, Geick A, Klocke R, Paul D, Halter R. Development of pulmonary bronchiolo-alveolar adenocarcinomas in transgenic mice overexpressing murine c-myc and epidermal growth factor in alveolar type II pneumocytes. Br J Cancer 2001; 84: 813–818.PubMedCrossRefGoogle Scholar
  222. 222.
    Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA. Tumour predisposition in mice heterozygous for a targeted mutation in Nfl. Nat Genet 1994; 7: 353–361.PubMedCrossRefGoogle Scholar
  223. 223.
    Cichowski K, Shih TS, Schmitt E, et al. Mouse models of tumor development in neurofibromatosis type 1. Science 1999; 286: 2172–2176.PubMedCrossRefGoogle Scholar
  224. 224.
    Vogel KS, Klesse LJ, Velasco-Miguel S, Meyers K, Rushing EJ, Parada LF. Mouse tumor model for neurofibromatosis type 1. Science 1999; 286: 2176–2179.PubMedCrossRefGoogle Scholar
  225. 225.
    Reilly KM, Loisel DA, Bronson RT, McLaughlin ME, Jacks T. Nfl;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat Genet 2000; 26: 109–113.PubMedCrossRefGoogle Scholar
  226. 226.
    McClatchey AI, Saotome I, Mercer K, et al. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev 1998; 12: 1121–1133.PubMedCrossRefGoogle Scholar
  227. 227.
    Giovannini M, Robanus-Maandag E, Niwa-Kawakita M, et al. Schwann cell hyperplasia and tumors in transgenic mice expressing a naturally occurring mutant NF2 protein. Genes Dev 1999; 13: 978–986.PubMedCrossRefGoogle Scholar
  228. 228.
    He LZ, Merghoub T, Pandolfi PP. In vivo analysis of the molecular pathogenesis of acute promyelocytic leukemia in the mouse and its therapeutic implications. Oncogene 1999; 18: 5278–5292.PubMedCrossRefGoogle Scholar
  229. 229.
    Kogan SC, Bishop JM. Acute promyelocytic leukemia: from treatment to genetics and back. Oncogene 1999; 18: 5261–5267.PubMedCrossRefGoogle Scholar
  230. 230.
    Huang ME, Ye YC, Chen SR, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988; 72: 567–572.PubMedGoogle Scholar
  231. 231.
    Wang ZG, Ruggero D, Ronchetti S, et al. PML is essential for multiple apoptotic pathways. Nat Genet 1998; 20: 266–272.PubMedCrossRefGoogle Scholar
  232. 232.
    He LZ, Guidez F, Tribioli C, et al. Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet 1998; 18: 126–135.PubMedCrossRefGoogle Scholar
  233. 233.
    Strasser A, Harris AW, Bath ML, Cory S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bc1–2. Nature 1990; 348: 331–333.PubMedCrossRefGoogle Scholar
  234. 234.
    Adams JM, Harris AW, Strasser A, Ogilvy S, Cory S. Transgenic models of lymphoid neoplasia and development of a pan-hematopoietic vector. Oncogene 1999; 18: 5268–5277.PubMedCrossRefGoogle Scholar
  235. 235.
    Berns A. Tumorigenesis in transgenic mice: identification and characterization of synergizing oncogenes. J Cell Biochem 1991; 47: 130–135.PubMedCrossRefGoogle Scholar
  236. 236.
    Haupt Y, Bath ML, Harris AW, Adams JM. bmi-1 transgene induces lymphomas and collaborates with myc in tumorigenesis.Oncogene 1993; 8: 3161–3164.Google Scholar
  237. 237.
    Haupt Y, Harris AW, Adams JM. Retroviral infection accelerates T lymphomagenesis in E mu-N-ras transgenic mice by activating c-myc or N-myc. Oncogene 1992; 7: 981–986.Google Scholar
  238. 238.
    Haupt Y, Harris AW, Adams JM. Moloney virus induction of T-cell lymphomas in a plasmacytomagenic strain of E mu-v-abl transgenic mice. Int J Cancer 1993; 55: 623–629.Google Scholar
  239. 239.
    You M, Wang Y, Lineen AM, Gunning WT, Stoner GD, Anderson MW. Mutagenesis of the K-ras protooncogene in mouse lung tumors induced by N-ethyl-N-nitrosourea or N-nitrosodiethylamine. Carcinogenesis 1992; 13: 1583–1586.PubMedCrossRefGoogle Scholar
  240. 240.
    Cormier RT, Hong KH, Halberg RB, et al. Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nat Genet 1997; 17: 88–91.PubMedCrossRefGoogle Scholar
  241. 241.
    Pataer A, Nishimura M, Kamoto T, Ichioka K, Sato M, Hiai H. Genetic resistance to urethan-induced pulmonary adenomas in SMXA recombinant inbred mouse strains. Cancer Res 1997; 57: 2904–2908.PubMedGoogle Scholar
  242. 242.
    Lee GH, Drinkwater NR. The Hcr (hepatocarcinogen resistance) loci of DBA/2J mice partially suppress phenotypic expression of the Hcs (hepatocarcinogen sensitivity) loci of C3H/HeJ mice. Carcinogenesis 1995; 16: 1993–1996.PubMedCrossRefGoogle Scholar
  243. 243.
    Nagase H, Mao JH, de Koning JP, Minami T, Balmain A. Epistatic interactions between skin tumor modifier loci in interspecific (spretus/musculus) backcross mice. Cancer Res 2001; 61: 1305–1308.PubMedGoogle Scholar
  244. 244.
    Fisher GH, Orsulic S, Holland E, et al. Development of a flexible and specific gene delivery system for production of murine tumor models. Oncogene 1999; 18: 5253–5260.Google Scholar
  245. 245.
    Lee EY, Chang CY, Hu N, et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 1992; 359: 288–294.PubMedCrossRefGoogle Scholar
  246. 246.
    Clarke AR, Maandag ER, van Roon M, et al. Requirement for a functional Rb-1 gene in murine development. Nature 1992; 359: 328–330.PubMedCrossRefGoogle Scholar
  247. 247.
    Harvey M, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A, Donehower LA. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nat Genet 1993; 5: 225–229.PubMedCrossRefGoogle Scholar
  248. 248.
    Purdie CA, Harrison DJ, Peter A, et al. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 1994; 9: 603–609.PubMedGoogle Scholar
  249. 249.
    Giovannini M, Robanus-Maandag E, van der Valk M, et al. Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev 2000; 14: 1617–1630.PubMedGoogle Scholar
  250. 250.
    Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 1990; 247: 322–324.PubMedCrossRefGoogle Scholar
  251. 251.
    Fodde R, Edelmann W, Yang K, et al. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc Natl Acad Sci USA 1994; 91: 8969–8973.PubMedCrossRefGoogle Scholar
  252. 252.
    Oshima H, Oshima M, Kobayashi M, Tsutsumi M, Taketo MM. Morphological and molecular processes of polyp formation in Apc(delta716) knockout mice. Cancer Res 1997; 57: 1644–1649.PubMedGoogle Scholar
  253. 253.
    Takaku K, Miyoshi H, Matsunaga A, Oshima M, Sasaki N, Taketo MM. Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res 1999; 59: 6113–6117.PubMedGoogle Scholar
  254. 254.
    Reitmair AH, Schmits R, Ewel A, et al. MSH2 deficient mice are viable and susceptible to lymphoid tumours. Nat Genet 1995; 11: 64–70.PubMedCrossRefGoogle Scholar
  255. 255.
    de Wind N, Dekker M, Berns A, Radman M, to Riele H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 1995; 82: 321–330.PubMedCrossRefGoogle Scholar
  256. 256.
    Baker SM, Plug AW, Prolla TA, et al. Involvement of mouse Mlhl in DNA mismatch repair and meiotic crossing over. Nat Genet 1996; 13: 336–342.PubMedCrossRefGoogle Scholar
  257. 257.
    Kiyokawa H, Kineman RD, Manova-Todorova KO, et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27 (Kipl). Cell 1996; 85: 721–732.PubMedCrossRefGoogle Scholar
  258. 258.
    Kreidberg JA, Sariola H, Loring JM, et al. WT-1 is required for early kidney development. Cell 1993; 74: 679–691.PubMedCrossRefGoogle Scholar
  259. 259.
    Duan DR, Pause A, Burgess WH, et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 1995; 269: 1402–1406.PubMedCrossRefGoogle Scholar
  260. 260.
    Kibel A, Iliopoulos O, DeCaprio JA, Kaelin WG Jr. Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science 1995; 269: 1444–1446.PubMedCrossRefGoogle Scholar
  261. 261.
    Gowen LC, Johnson BL, Latour AM, Sulik KK, Koller BH. Brcal deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nat Genet 1996; 12: 191–194.PubMedCrossRefGoogle Scholar
  262. 262.
    Hakem R, de la Pompa JL, Sirard C, et al. The tumor suppressor gene Brcal is required for embryonic cellular proliferation in the mouse. Cell 1996; 85: 1009–1023.PubMedCrossRefGoogle Scholar
  263. 263.
    Liu CY, Flesken-Nikitin A, Li S, Zeng Y, Lee WH. Inactivation of the mouse Brcal gene leads to failure in the morphogenesis of the egg cylinder in early postimplantation development. Genes Dev 1996; 10: 1835–1843.PubMedCrossRefGoogle Scholar
  264. 264.
    Suzuki A, de la Pompa JL, Hakem R, et al. Brca2 is required for embryonic cellular proliferation in the mouse. Genes Dev 1997; 11: 1242–1252.PubMedCrossRefGoogle Scholar
  265. 265.
    Connor F, Bertwistle D, Mee PJ, et al. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat Genet 1997; 17: 423–430.PubMedCrossRefGoogle Scholar
  266. 266.
    Sharan SK, Morimatsu M, Albrecht U, et al. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 1997; 386: 804–810.PubMedCrossRefGoogle Scholar
  267. 267.
    Sirard C, de la Pompa JL, Elia A, et al. The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev 1998; 12: 107–119.PubMedCrossRefGoogle Scholar
  268. 268.
    Fazeli A, Dickinson SL, Hermiston ML, et al. Phenotype of mice lacking functional deleted in colorectal cancer (Dcc) gene. Nature 1997; 386: 796–804.PubMedCrossRefGoogle Scholar
  269. 269.
    Bradl M, Klein-Szanto A, Porter S, Mintz B. Malignant melanoma in transgenic mice. Proc Natl Acad Sci USA 1991; 88: 164–168.PubMedCrossRefGoogle Scholar
  270. 270.
    Fan H, Oro AE, Scott MP, Khavari PA. Induction of basal cell carcinoma features in transgenic human skin expressing Sonic Hedgehog. Nat Med 1997; 3: 788–792.PubMedCrossRefGoogle Scholar
  271. 271.
    Lifsted T, Le Voyer T, Williams M, et al. Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 1998; 77: 640–644.PubMedCrossRefGoogle Scholar
  272. 272.
    Halter SA, Dempsey P, Matsui Y, et al. Distinctive patterns of hyperplasia in transgenic mice with mouse mammary tumor virus transforming growth factor-alpha. Characterization of mammary gland and skin proliferations. Am J Pathol 1992; 140: 1131–1146.PubMedGoogle Scholar
  273. 273.
    Li M, Lewis B, Capuco AV, Laucirica R, Furth PA. WAP-TAg transgenic mice and the study of dysregulated cell survival, proliferation, and mutation during breast carcinogenesis. Oncogene 2000; 19: 1010–1019.PubMedCrossRefGoogle Scholar
  274. 274.
    Brown D, Kogan S, Lagasse E, et al. A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997; 94: 2551–2556.PubMedCrossRefGoogle Scholar
  275. 275.
    He LZ, Tribioli C, Rivi R, et al. Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc Natl Acad Sci USA 1997; 94: 5302–5307.PubMedCrossRefGoogle Scholar
  276. 276.
    Kogan SC, Hong SH, Shultz DB, Privalsky ML, Bishop JM. Leukemia initiated by PMLRARalpha: the PML domain plays a critical role while retinoic acid-mediated transactivation is dispensable. Blood 2000; 95: 1541–1550.PubMedGoogle Scholar
  277. 277.
    Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ. Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood 1997; 89: 376–387.PubMedGoogle Scholar
  278. 278.
    Westervelt P, Ley TJ. Seed versus soil: the importance of the target cell for transgenic models of human leukemias. Blood 1999; 93: 2143–2148.PubMedGoogle Scholar
  279. 279.
    Adams JM, Harris AW, Pinkert CA, et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 1985; 318: 533–538.PubMedCrossRefGoogle Scholar
  280. 280.
    Dildrop R, Ma A, Zimmerman K, et al. IgH enhancer-mediated deregulation of N-myc gene expression in transgenic mice: generation of lymphoid neoplasias that lack c-myc expression. EMBO J 1989; 8: 1121–1128.PubMedGoogle Scholar
  281. 281.
    Rosenbaum H, Webb E, Adams JM, Cory S, Harris AW. N-myc transgene promotes B lymphoid proliferation, elicits lymphomas and reveals cross-regulation with c-myc. EMBO J 1989; 8: 749–755.PubMedGoogle Scholar
  282. 282.
    Rosenbaum H, Harris AW, Bath ML, et al. An E mu-v-abl transgene elicits plasmacytomas in concert with an activated myc gene. EMBO J 1990; 9: 897–905.Google Scholar
  283. 283.
    Hariharan IK, Harris AW, Crawford M, et al. A bcr-v-abl oncogene induces lymphomas in transgenic mice. Mol Cell Biol 1989; 9: 2798–2805.PubMedGoogle Scholar
  284. 284.
    Howes KA, Lasudry JG, Albert DM, Windle JJ. Photoreceptor cell tumors in transgenic mice. Invest Opthalmol Vis Sci 1994; 35: 342–351.Google Scholar
  285. 285.
    Windle JJ, Albert DM, O’Brien JM, et al. Retinoblastoma in transgenic mice. Nature 1990; 343: 665–669.PubMedCrossRefGoogle Scholar
  286. 286.
    Rowley JD, Golomb HM, Dougherty C. 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukemia. Lancet 1977; 1: 549–550.PubMedCrossRefGoogle Scholar
  287. 287.
    Teitz T, Chang JC, Kitamura M, Yen TS, Kan YW. Rhabdomyosarcoma arising in transgenic mice harboring the beta-globin locus control region fused with simian virus 40 large T antigen gene. Proc Natl Acad Sci USA 1993; 90: 2910–2914.PubMedCrossRefGoogle Scholar
  288. 288.
    Takayama H, LaRochelle WJ, Sharp R, et al. Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc Natl Acad Sci USA 1997; 94: 701–706.PubMedCrossRefGoogle Scholar
  289. 289.
    Strasser A, Harris AW, Cory S. E mu-bcl-2 transgene facilitates spontaneous transformation of early pre-B and immunoglobulin-secreting cells but not T cells. Oncogene 1993; 8: 1–9.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Michaela Herzig
  • Gerhard Christofori

There are no affiliations available

Personalised recommendations