Oncogenes and Tumor Angiogenesis

  • Janusz Rak
  • Robert S. Kerbel
Part of the Cancer Drug Discovery and Development book series (CDD&D)


A reductionist viewpoint, which assumes that all important properties of cancer are ultimately encoded in a cancer cell, has provided an important stimulus for studies on oncogenes (1). Although this approach proved to be very powerful in establishing the genetic causes of cancer, it was in itself insufficient to properly interpret the resulting complexity of the unfolding pathological process (2). Indeed, cancer as a disease involves a multitude of interactions between heterotypic cellular and matrix components, of which cancer cells are the central, but by no means the only relevant element (2). In this sense, the intimate interrelationship and interdependence between cancer cells and the adjacent host vasculature are indispensable aspects of tumor very growth and dissemination (3). Based on this premise, Folkman proposed that tumor vasculature can be an attractive and universal target for anticancer therapy (3). This chapter is intended as a discussion of the linkage between formation of the tumor vasculature (tumor angiogenesis) and the causal disease-triggering effects of cancer-associated genetic alternations, particularly expression of activated oncogenes. Here, it is argued that there are multiple ways by which oncogenes can impinge upon the course, the outcome, and the consequences of the tumor angiogenesis process. More importantly, oncogene-directed therapies (signal transduction inhibitors) can interfere with various aspects of tumor neovascularization and possibly synergize with other blood vessel-targeting and cancer cell-targeting agents.


Vascular Endothelial Growth Factor Tumor Angiogenesis Vascular Endothelial Growth Factor Expression Angiogenesis Inhibitor Vasculogenic Mimicry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop JM. Cancer: the rise of the genetic paradigm. Genes Dey 1995; 9: 1309–1315.CrossRefGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.PubMedCrossRefGoogle Scholar
  3. 3.
    Folkman J. What is the evidence that tumors are angiogenesis-dependent? J Natl Canc Inst 1990; 82: 4–6.CrossRefGoogle Scholar
  4. 4.
    Clark WH. Human cutaneous malignant melanoma as a model for cancer. Cancer Metastasis Rev 1991; 10: 83–88.PubMedCrossRefGoogle Scholar
  5. 5.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–767.PubMedCrossRefGoogle Scholar
  6. 6.
    Rak J, Yu JL, Klement G, Kerbel RS. Oncogenes and angiogenesis: signaling three-dimensional tumor growth in process citation]. J Investig Dermatol Symp Proc 2000; 5: 24–33.PubMedCrossRefGoogle Scholar
  7. 7.
    Jain RK. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev 1990; 9: 253–266.PubMedCrossRefGoogle Scholar
  8. 8.
    Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995; 1: 149–153.PubMedCrossRefGoogle Scholar
  9. 9.
    Tannock IF. The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br J Cancer 1968; 22: 258–273.PubMedCrossRefGoogle Scholar
  10. 10.
    Folkman J. Clinical applications of research on angiogenesis. N Engl J Med 1995; 333: 1757–1763.PubMedCrossRefGoogle Scholar
  11. 11.
    Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001; 20: 672–682.Google Scholar
  12. 12.
    Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001; 7: 186–191.PubMedCrossRefGoogle Scholar
  13. 13.
    Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001; 7: 192–198.PubMedCrossRefGoogle Scholar
  14. 14.
    Fidler IJ, Ellis LM. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 1994; 79: 185–188.PubMedCrossRefGoogle Scholar
  15. 15.
    Rak J, Filmus J, Kerbel RS. Reciprocal paracrine interactions between tumor cells and endothelial cells. The “angiogenesis progression” hypothesis. Eur J Cancer 1996; 32A: 2438–2450.CrossRefGoogle Scholar
  16. 16.
    St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, et al. Genes expressed in human tumor endothelium. Science 2000; 289: 1197–1202.CrossRefGoogle Scholar
  17. 17.
    Rak JW, Hegmann EJ, Lu C, Kerbel RS. Progressive loss of sensitivity to endothelium-derived growth inhibitors expressed by human melanoma cells during disease progression. J Cell Physiol 1994; 159: 245–255.PubMedCrossRefGoogle Scholar
  18. 18.
    Li L, Nicolson GL, Fidler IJ. Direct in vitro lysis of metastatic tumor cells by cytoline-activated murine vascular endothelial cells. Cancer Res 1991; 51: 245–254.PubMedGoogle Scholar
  19. 19.
    Nicosia RF, Tchao R, Leighton J. Angiogenesis-dependent tumor spread in reinforced fibrin clot culture. Cancer Res 1983; 43: 2159–2166.PubMedGoogle Scholar
  20. 20.
    Skobe M, Rockwell P, Goldstein N, Vosseler S, Fusenig NE. Halting angiogenesis suppresses carcinoma cell invasion. Nat Med 1997; 3: 1222–1227.PubMedCrossRefGoogle Scholar
  21. 21.
    Brooks PC, Stromblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA. Antiintegrin ab(33 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 1995; 96: 1815–1822.PubMedCrossRefGoogle Scholar
  22. 22.
    Hamada J, Cavanaugh PG, Mild K, Nicolson GL. A paracrine migration-stimulating factor for metastatic tumor cells secreted by mouse hepatic sinusoidal endothelial cells: identification as complement component C3b. Cancer Res 1993; 53: 4418–4423.PubMedGoogle Scholar
  23. 23.
    Rak J, St Croix B, Kerbel RS. Consequences of angiogenesis for tumor progression, metastasis and cancer therapy. Anti-Cancer Drugs 1995; 6: 3–18.PubMedCrossRefGoogle Scholar
  24. 24.
    Mangi MH, Newland AC. Angiogenesis and angiogenic mediators in haematological malignancies. Br J Haematol 2000; 111: 43–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E, Folkman J. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol 1997; 150: 815–820.PubMedGoogle Scholar
  26. 26.
    Boehm T, Folkman J, Browder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 1997; 390: 404–407.PubMedCrossRefGoogle Scholar
  27. 27.
    Kerbel RS, Viloria-Petit A, Klement G, Rak J. `Accidental’ anti-angiogenic drugs. Anti-oncogene directed signal transduction inhibitors and conventional chemotherapeutic agents as examples. Eur J Cancer 2000; 36: 1248–1257.Google Scholar
  28. 28.
    Kerbel RS. Tumor angiogenesis: past, present and the near future. Carcinogenesis 2000; 21: 505–515.PubMedCrossRefGoogle Scholar
  29. 29.
    McCarthy M. Targeted drugs take centre stage at US cancer meeting. Lancet 2001; 357: 1593.PubMedCrossRefGoogle Scholar
  30. 30.
    Risau W. Mechanisms of angiogenesis. Nature 1997; 386: 671–674.PubMedCrossRefGoogle Scholar
  31. 31.
    Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000; 6: 389–395.PubMedCrossRefGoogle Scholar
  32. 32.
    Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–257.PubMedCrossRefGoogle Scholar
  33. 33.
    Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000; 407: 242–248.PubMedCrossRefGoogle Scholar
  34. 34.
    Sundberg C, Nagy JA, Brown LF, Feng D, Eckelhoefer IA, Manseau EJ, et al. Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery. Am J Pathol 2001; 158: 1145–1160.PubMedCrossRefGoogle Scholar
  35. 35.
    Burri PH. Intussusceptive microvascular growth, a new mechanism of capillary network expansion. Angiogenesis, International Symposium, St. Gallen, March 1991; 13–15, 1991, Abstract:88.Google Scholar
  36. 36.
    Drake CJ, Little CD. VEGF and vascular fusion: implications for normal and pathological vessels. J Histochem Cytochem 1999; 47: 1351–1356.PubMedCrossRefGoogle Scholar
  37. 37.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964–967.PubMedCrossRefGoogle Scholar
  38. 38.
    Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000; 95: 952–958.PubMedGoogle Scholar
  39. 39.
    Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 1999; 155: 739–752.PubMedCrossRefGoogle Scholar
  40. 40.
    McDonald DM, Munn L, Jain RK. Vasculogenic mimicry: how convincing, how novel, and how significant? Am J Pathol 2000; 156: 383–388.PubMedCrossRefGoogle Scholar
  41. 41.
    Folkman J. Tumor angiogenesis. Adv Cancer Res 1985; 43: 175–203.PubMedCrossRefGoogle Scholar
  42. 42.
    Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284: 1994–1998.PubMedCrossRefGoogle Scholar
  43. 43.
    Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 1999; 103: 159–165.PubMedCrossRefGoogle Scholar
  44. 44.
    Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 2000; 60: 1388–1393.PubMedGoogle Scholar
  45. 45.
    Denekamp J. Endothelial cell proliferation as a novel approach to targeting tumor therapy. Br J Cancer 1982; 45: 136–139.PubMedCrossRefGoogle Scholar
  46. 46.
    Plate KH, Breier G, Millauer B, Ullrich A, Risau W. Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res 1993; 53: 5822–5827.PubMedGoogle Scholar
  47. 47.
    Kaipainen A, Vlaykova T, Hatva E, Bohling T, Jekunen A, Pyrhonen S, et al. Enhanced expression of the tie receptor tyrosine kinase mesenger RNA in the vascular endothelium of metastatic melanomas. Cancer Res 1994; 54: 6571–6577.PubMedGoogle Scholar
  48. 48.
    Peters KG, Coogan A, Berry D, Marks J, Iglehart JD, Kontos CD. Expression of Tie2/Tek in breast tumor vasculature provides a new marker for evaluation of tumour angiogenesis. Br J Cancer 1998; 77: 51–56.PubMedCrossRefGoogle Scholar
  49. 49.
    Mustonen T, Alitalo K. Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol 1995; 129: 895–898.PubMedCrossRefGoogle Scholar
  50. 50.
    Rak JW, Hegmann EJ, Kerbel RS. The role of angiogenesis in tumor progression and metastasis. In: Heppner GH, ed. Advances in Molecular and Cell Biology. JAI Press, Greenwich, CT, 1993, pp. 205–251.Google Scholar
  51. 51.
    Contrino J, Hair G, Kreutzer DL, Rickles FR. In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease [see comments]. Nat Med 1996; 2: 209–215.PubMedCrossRefGoogle Scholar
  52. 52.
    Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 2000; 60: 203–212.PubMedGoogle Scholar
  53. 53.
    Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997; 18: 4–25.PubMedCrossRefGoogle Scholar
  54. 54.
    Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380: 439–442.PubMedCrossRefGoogle Scholar
  55. 55.
    Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380: 435–439.PubMedCrossRefGoogle Scholar
  56. 56.
    Carmeliet P, Cotten D. Transgenic mouse models in angiogenesis and cardiovascular disease. J Pathol 2000; 190: 387–405.PubMedCrossRefGoogle Scholar
  57. 57.
    Carmeliet P, Ng YS, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 1999; 5: 495–502.PubMedCrossRefGoogle Scholar
  58. 58.
    Dvorak HF, Brown LF, Detmar M, Dvorak AM. Review: vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995; 146: 1029–1039.PubMedGoogle Scholar
  59. 59.
    Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 1998; 95: 9349–9354.PubMedCrossRefGoogle Scholar
  60. 60.
    Lannutti BJ, Gately ST, Quevedo ME, Soff GA, Paller AS. Human angiostatin inhibits murine hemangioendothelioma tumor growth in vivo. Cancer Res 1997; 57: 5277–5280.PubMedGoogle Scholar
  61. 61.
    Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001; 7: 575–583.PubMedCrossRefGoogle Scholar
  62. 62.
    Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA. Definition of two angiogenic pathways by distinct a„ integrins. Science 1995; 270: 1500.PubMedCrossRefGoogle Scholar
  63. 63.
    Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 1999; 98: 147–157.PubMedCrossRefGoogle Scholar
  64. 64.
    Dumont DJ, Yamaguchi TP, Conlon RA, Rossant J, Breitman ML. tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 1992; 7: 1471–1480.PubMedGoogle Scholar
  65. 65.
    Jones N, Iljin K, Dumont DJ, Alitalo K. Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol 2001; 2: 257–267.PubMedCrossRefGoogle Scholar
  66. 66.
    Hanahan D. Signaling vascular morphogenesis and maintenance. Science 1997; 277: 48–50.PubMedCrossRefGoogle Scholar
  67. 67.
    Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4 [see comments]. Cell 1998; 93: 741–753.PubMedCrossRefGoogle Scholar
  68. 68.
    Folkman J. Tumor angiogenesis. In: Holland JF, Bast RC, Morton DL, Frei E, Kufe DW, Weichsel-baum RR, eds. Cancer Medicine, 4th ed. Williams & Wilkins, Baltimore, 1997, pp. 181–204.Google Scholar
  69. 69.
    Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumori-genesis. Cell 1996; 86: 353–364.PubMedCrossRefGoogle Scholar
  70. 70.
    Bouck N, Stellmach V, Hsu SC. How tumors become angiogenic. Adv Cancer Res 1996; 69: 135–174.PubMedCrossRefGoogle Scholar
  71. 71.
    Filleur S, Volpert OV, Degeorges A, Voland C, Reiher F, Clezardin P, et al. In vivo mechanisms by which tumors producing thrombospondin 1 bypass its inhibitory effects. Genes Dev 2001; 15: 1373–1382.PubMedCrossRefGoogle Scholar
  72. 72.
    Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z, et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 1999; 13: 1382–1397.PubMedCrossRefGoogle Scholar
  73. 73.
    Hlatky L, Tsionou C, Hahnfeld P, Coleman CN. Mammary fibroblasts may influence breast tumor angiogenesis via hypoxia-induced vascular endothelial growth factor up-regulation and protein expression. Cancer Res. 1994; 54: 6083–6086.PubMedGoogle Scholar
  74. 74.
    Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O’Reilly R, et al. Idl and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 1999; 401: 670–677.PubMedCrossRefGoogle Scholar
  75. 75.
    Rohan RM, Fernandez A, Udagawa T, Yuan J, D’Amato RJ. Genetic heterogeneity of angiogenesis in mice. FASEB J 2000; 14: 871–876.Google Scholar
  76. 76.
    Kyriakides TR, Leach KJ, Hoffman AS, Ratner BD, Bornstein P. Mice that lack the angiogenesis inhibitor, thrombospondin 2, mount an altered foreign body reaction characterized by increased vascularity. Proc Nall Acad Sci USA 1999; 96: 4449–4454.CrossRefGoogle Scholar
  77. 77.
    Khosravi-Far R, Campbell S, Rossman KL, Der CJ. Increasing complexity of Ras signal transduction: involvement of Rho family proteins. Adv Cancer Res 1998; 172: 57–107.Google Scholar
  78. 78.
    Minamoto, T, Sawaguchi K, Mai M, Yamashita N, Sugimura T, Esumi H. Infrequent K-ras activation in superficial-type (flat) colorectal adenomas and adenocarcinomas. Cancer Res 1994; 54: 2841–2844.PubMedGoogle Scholar
  79. 79.
    Hasegawa H, Ueda M, Watanabe M, Teramoto T, Mukai M, Kitajima M. K-ras gene mutations in early colorectal cancerchr(133) flat elevated vs polyp-forming cancerchr(133) Oncogene 1995; 10: 1413–1416.Google Scholar
  80. 80.
    Shirasawa S, Furuse M, Yokoyama N, Sasazuki T. Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science 1993; 260: 85–88.PubMedCrossRefGoogle Scholar
  81. 81.
    Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, et al. Essential role for oncogenic Ras in tumour maintenance. Nature 1999; 400: 468–472.PubMedCrossRefGoogle Scholar
  82. 82.
    Kohl NE, Omer CA, Conner MW, Anthony NJ, Davide JP, deSolms SJ, et al. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat Med 1995; 1: 792–797.PubMedCrossRefGoogle Scholar
  83. 83.
    Guha A, Feldkamp MM, Lau N, Boss G, Pawson A. Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene 1997; 15: 2755–2765.PubMedCrossRefGoogle Scholar
  84. 84.
    Hunter T. Oncoprotein networks. Cell 1997; 88: 333–346.PubMedCrossRefGoogle Scholar
  85. 85.
    Chambers AF, Tuck AB. Ras-responsive genes and tumor metastasis. Crit Rev Oncog 1993; 4: 95–114.PubMedGoogle Scholar
  86. 86.
    Bortner DM, Langer SJ, Ostrowski MC. Non-nuclear oncogenes and the regulation of gene expression in transformed cells. Crit Rev Oncogen 1993; 4: 137–160.Google Scholar
  87. 87.
    Zuber J, Tchernitsa OI, Hinzmann B, Schmitz AC, Grips M, Hellriegel M, et al. A genome-wide survey of RAS transformation targets. Nat Genet 2000; 24: 144–152.PubMedCrossRefGoogle Scholar
  88. 88.
    Buick RN, Filmus J, and Quaroni A. Activated H-ras transforms rat intestinal epithelial cells with expression of a-TGF. Exp Cell Res 1987; 170: 300–309.PubMedCrossRefGoogle Scholar
  89. 89.
    Rak J, Mitsuhashi Y, Bayko L, Filmus J, Sasazuki T, and Kerbel RS. Mutant ras oncogenes upregulate VEGFNPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 1995; 55: 4575–4580.PubMedGoogle Scholar
  90. 90.
    Rak J, Mitsuhashi Y, Sheehan C, Tamir A, Viloria-Petit A, Filmus J, et al. Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts. Cancer Res 2000; 60: 490–498.PubMedGoogle Scholar
  91. 91.
    Rak J, Kerbel RS. Ras regulation of VEGF and angiogenesis. Methods Enzymol, 333: 267–283.Google Scholar
  92. 92.
    Grugel S, Finkenzeller G, Weindel K, Barleon B, and Marme D. Both v-Ha-ras and v-raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. J Biol Chem 1995; 270: 25915–25919.PubMedCrossRefGoogle Scholar
  93. 93.
    Kerbel R, Viloria-Petit A, Okada F, Rak J. Establishing a link between oncogenes and tumor angiogenesis. Mol Med 1998; 4: 286–295.PubMedGoogle Scholar
  94. 94.
    Bos JL. The ras gene family and human carcinogenesis. Mutat Res 1988; 195: 255–271.PubMedCrossRefGoogle Scholar
  95. 95.
    Brown LF, Detmar M, Claffey KP, Nagy JA, Feng D, Dvorak AM, et al. Vascular permeability factor/vascular endothelial growth factor: A multifunctional angiogenic cytokine. In; Goldberg ID, Goldberg REM, ed. Regulation of Angiogenesis Birkhauser Verlag, Basel/Switzerland, 1997; pp. 233–269.Google Scholar
  96. 96.
    Saleh M, Stacker SA, Wilks AF. Inhibition of growith of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res 1996; 56: 393–401.PubMedGoogle Scholar
  97. 97.
    Ellis LM, Liu W, Wilson M. Down-regulation of vascular endothelial growth factor in human colon carcinoma cell lines by antisense transfection decreases endothelial cell proliferation. Surgery 1996; 120: 871–878.PubMedCrossRefGoogle Scholar
  98. 98.
    Masood R, Cai J, Zheng T, Smith DL, Naidu Y, Gill PS. Vascular endothelial growth factor/vascular permeability factor is an autocrine growth factor for AIDS-Kaposi sarcoma. Proc Nall Acad Sci USA 1997; 94: 979–984.CrossRefGoogle Scholar
  99. 99.
    Claffey KP, Brown LF, del Aguila LF, Tognazzi K, Yeo K-T, Manseau EJ, et al. Expression of vascular permeability factor/vascular endothelial growth factor melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res 1996; 56: 172–181.PubMedGoogle Scholar
  100. 100.
    Oku T, Tjuvajev JG, Miyagawa T, Sasajima T, Joshi A, Joshi R, et al. Tumor growth modulation by sense and antisense vascular endothelial growth factor gene expression: effects on angiogenesis, vascular permeability, blood volume, blood flow, fluorodeoxyglucose uptake, and proliferation of human melanoma intracerebral xenografts. Cancer Res 1998; 58: 4185–4192.PubMedGoogle Scholar
  101. 101.
    Nguyen JT, Wu P, Clouse ME, Hlatky L, Terwilliger EF. Adeno-associated virus-mediated delivery of antiangiogenic factors as an antitumor strategy. Cancer Res 1998; 58: 5673–5677.PubMedGoogle Scholar
  102. 102.
    Im SA, Gomez-Manzano C, Fueyo J, Liu TJ, Ke LD, Kim JS, et al. Antiangiogenesis treatment for gliomas: transfer of antisense-vascular endothelial growth factor inhibits tumor growth in vivo. Cancer Res 1999; 59: 895–900.PubMedGoogle Scholar
  103. 103.
    Grunstein J, Masbad JJ, Hickey R, Giordano F, Johnson RS. Isoforms of vascular endothelial growth factor act in a coordinate fashion to recruit and expand tumor vasculature. Mol Cell Biol 2000; 20: 7282–7291.PubMedCrossRefGoogle Scholar
  104. 104.
    Viloria-Petit AM, Rak J, Hung M-C, Rockwell P, Goldstein N, Kerbel RS. Neutralizing antibodies against EGF and ErbB-2/neu receptor tyrosine kinases down-regulate VEGF production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am JPathol 1997; 151: 1523–1530.Google Scholar
  105. 105.
    Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993; 362: 841–844.PubMedCrossRefGoogle Scholar
  106. 106.
    Warren RS, Yuan H, Mati MR, Gillett NA, Ferrara N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest 1995; 95: 1789–1797.PubMedCrossRefGoogle Scholar
  107. 107.
    Goldman CK, Kendall RL, Cabrera G, Soroceanu L, Heike Y, Gillespie GY, et al. Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate. Proc Natl Acad Sci USA 1998; 95: 8795–8800.PubMedCrossRefGoogle Scholar
  108. 108.
    Lin P, Sankar S, Shan S, Dewhirst MW, Polverini PJ, Quinn TQ, et al. Inhibition of tumor growth by targeting tumor endothelium using a soluble vascular endothelial growth factor receptor. Cell Growth Differ 1998; 9: 49–58.PubMedGoogle Scholar
  109. 109.
    Siemeister G, Schirner M, Weindel K, Reusch P, Menrad A, Marme D, et al. Two independent mechanisms essential for tumor angiogenesis: inhibition of human melanoma xenograft growth by interfering with either the vascular endothelial growth factor receptor pathway or the Tie-2 pathway. Cancer Res 1999; 59: 3185–3191.PubMedGoogle Scholar
  110. 110.
    Millauer B, Longhi MP, Plate KH, Shawver LK, Risau W, Ullrich A, et al. Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res 1996; 56: 1615–1620.PubMedGoogle Scholar
  111. 111.
    Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994; 367: 576–579.PubMedCrossRefGoogle Scholar
  112. 112.
    Witte L, Hicklin DJ, Zhu Z, Pytowski B, Kotanides H, Rockwell P, et al. Monoclonal antibodies targeting the VEGF receptor-2 (Flkl/KDR) as an anti-angiogenic therapeutic strategy. Cancer Metastasis Rev 1998; 17: 155–161.PubMedCrossRefGoogle Scholar
  113. 113.
    Shaheen RM, Davis DW, Liu W, Zebrowski BK, Wilson MR, Bucana CD, et al. Antiangiogenic therapy targeting the tyrosine kinase receptor for vascular endothelial growth factor receptor inhibits the growth of colon cancer liver metastasis and induces tumor and endothelial cell apoptosis. Cancer Res 1999; 59: 5412–5416.PubMedGoogle Scholar
  114. 114.
    Fong TA, Shawver LK, Sun L, Tang C, App H, Powell TJ, et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 1999; 59: 99–106.PubMedGoogle Scholar
  115. 115.
    Okada F, Rak J, St Croix B, Lieubeau B, Kaya M, Roncari L, et al. Impact of oncogenes on tumor angiogenesis: mutant K-ras upregulation of VEGF/VPF is necessary but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc Natl Acad Sci USA 1998; 95: 3609–3614.PubMedCrossRefGoogle Scholar
  116. 116.
    Shi YP, Ferrara N. Oncogenic ras fails to restore an in vivo tumorigenic phenotype in embryonic stem cells lacking vascular endothelial growth factor (VEGF). Biochem Biophys Res Commun 1999; 254:4801183.Google Scholar
  117. 117.
    Grunstein J, Roberts WG, Mathieu-Costello O, Hanahan D, Johnson RS. Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Res 1999; 59: 1592–1598.PubMedGoogle Scholar
  118. 118.
    Rosen K, Rak J, Leung T, Dean NM, Kerbel RS, Filmus J. Activated Ras prevents downregulation of Bc1-X(L) triggered by detachment from the extracellular matrix. A mechanism of Ras-induced resistance to anoikis in intestinal epithelial cells. J Cell Biol 2000; 149: 447–456.PubMedCrossRefGoogle Scholar
  119. 119.
    Robles AI, Rodriguez-Puebla ML, Glick AB, Trempus C, Hansen L, Sicinski P, et al. Reduced skin tumor development in cyclin D1-deficient mice highlights the oncogenic ras pathway in vivo. Genes Dev 1998; 12: 2469–2474.PubMedCrossRefGoogle Scholar
  120. 120.
    Kohl NE, Mosser SD, deSolms SJ, Giuliani EA, Pompliano DL, Graham SL, et al. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science 1993; 260: 1934–1942.PubMedCrossRefGoogle Scholar
  121. 121.
    Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC. The human gene for vascular endothelial growth factor. J Biol Chem 1991; 266: 11947–11954.PubMedGoogle Scholar
  122. 122.
    Shima DT, Kuroki M, Deutsch U, Ng YS, Adamis AP, D’Amore PA. The mouse gene for vascular endothelial growth factor. Genomic structure, definition of the transcriptional unit, and characterization of transcriptional and post-transcriptional regulatory sequences. J Biol Chem 1996; 271: 3877–3883.PubMedCrossRefGoogle Scholar
  123. 123.
    Levy AP, Levy NS, Goldberg MA. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 1996; 271: 2746–2753.PubMedCrossRefGoogle Scholar
  124. 124.
    Stein I, Neeman M, Shweiki D, Itin A, Keshet E. Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol Cell Biol 1995; 15: 5363–5368.PubMedGoogle Scholar
  125. 125.
    Dibbens JA, Miller DL, Damert A, Risau W, Vadas MA, Goodall GJ. Hypoxic regulation of vascular endothelial growth factor mRNA stability requires the cooperation of multiple RNA elements. Mol Biol Cell 1999; 10: 907–919.PubMedGoogle Scholar
  126. 126.
    Tober KL, Cannon RE, Spalding JW, Oberyszyn TM, Parrett ML, Rackoff AI, et al. Comparative expression of novel vascular endothelial growth factor/vascular permeability factor transcripts in skin, papillomas, and carcinomas of v-Ha-ras Tg.AC transgenic mice and FVB/N mice. Biochem Biophys Res Commun 1998; 247: 644–653.PubMedCrossRefGoogle Scholar
  127. 127.
    Kevil CG, De Benedetti A, Payne DK, Coe LL, Laroux FS, Alexander JS. Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int J Cancer 1996; 65: 785–790.PubMedCrossRefGoogle Scholar
  128. 128.
    Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 1998; 18: 3112–3119.PubMedGoogle Scholar
  129. 129.
    DiSalvo J, Bayne ML, Conn G, Kwok PW, Trivedi PG, Soderman DD, et al. Purification and characterization of a naturally occurring vascular endothelial growth factor.placenta growth factor heterodimer. J Biol Chem 1995; 270: 7717–7723.CrossRefGoogle Scholar
  130. 130.
    Gangarosa LM, Sizemore N, Graves-Deal R, Oldham SM, Der CJ, Coffey RJ. A raf-independent epidermal growth factor receptor autocrine loop is necessary for Ras transformation of rat intestinal epithelial cells. J Biol Chem 1997; 272: 18926–18931.PubMedCrossRefGoogle Scholar
  131. 131.
    Hamilton M, Wolfman A. Oncogenic Ha-Ras-dependent mitogen-activated protein kinase activity requires signaling through the epidermal growth factor receptor. J Biol Chem 1998; 273: 28155–28162.PubMedCrossRefGoogle Scholar
  132. 132.
    Milanini J, Vinals F, Pouyssegur J, Pages G. p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts. J Biol Chem 1998; 273: 18165–18172.PubMedCrossRefGoogle Scholar
  133. 133.
    Rak J, Filmus J, Finkenzeller G, Grugel S, Marme D, Kerbel RS. Oncogenes as inducers of tumor angiogenesis. Cancer Metastasis Rev 1995; 14: 263–277.PubMedCrossRefGoogle Scholar
  134. 134.
    Berra E, Pages G, Pouyssegur J. MAP kinases and hypoxia in the control of VEGF expression. Cancer Metastasis Rev 2000; 19: 139–145.PubMedCrossRefGoogle Scholar
  135. 135.
    Okajima E, Thorgeirsson UP. Different regulation of vascular endothelial growth factor expression by the ERK and p38 kinase pathways in v-ras, v-raf, and v-myc transformed cells. Biochem Biophys Res Commun 2000; 270: 108–111.PubMedCrossRefGoogle Scholar
  136. 136.
    Brondello JM, Brunet A, Pouyssegur J, McKenzie FR. The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44MAPK cascade. J Biol Chem 1997; 272: 1368–1376.PubMedCrossRefGoogle Scholar
  137. 137.
    Pal S, Datta K, Khosravi-Far R, Mukhopadhyay D. Role of protein kinase czeta in ras-mediated transcriptional activation of vascular permeability factor/vascular endothelial growth factor expression. J Biol Chem 2001; 276: 2395–2403.PubMedCrossRefGoogle Scholar
  138. 138.
    Gille J, Swerlick RA, Caughman SW. Transforming growth factor-alpha-induced transcriptional activation of the vascular permeability factor (VPF/VEGF) gene requires AP-2-dependent DNA binding and transactivation. EMBO J 1997; 16: 750–759.Google Scholar
  139. 139.
    Shields MJ, Der CJ. Mechanisms of Raf–independent Ras transformation Keystone Symposia X2, April 9–14, 1999 Abstract #3067,203.9–4–1999.Google Scholar
  140. 140.
    van Golen KL, Wu ZF, Qiao XT, Bao L, Merajver SD. RhoC GTPase overexpression modulates induction of angiogenic factors in breast cells. Neoplasia 2000; 2: 418–425.PubMedCrossRefGoogle Scholar
  141. 141.
    Lebowitz PF, Davide JP, Prendergast GC. Evidence that farnesyltransferase inhibitors suppress ras transformation by interfering with rho activity. Mol Cell Biol 1995; 15: 6613–6622.PubMedGoogle Scholar
  142. 142.
    Lebowitz PF, Prendergast GC. Non-Ras targets of farnesyltransferase inhibitors: focus on Rho. Oncogene 1998; 17: 1439–1445.PubMedCrossRefGoogle Scholar
  143. 143.
    Feldkamp MM, Lau N, Guha A. Growth inhibition of astrocytoma cells by farnesyl transferase inhibitors is mediated by a combination of anti-proliferative, pro-apoptotic and anti-angiogenic effects. Oncogene 1999; 18: 7514–7526.PubMedCrossRefGoogle Scholar
  144. 144.
    Charvat S, Duchesne M, Parvaz P, Chignol MC, Schmitt D, Serres M. The up-regulation of vascular endothelial growth factor in mutated Ha-ras HaCaT cell lines is reduced by a farnesyl transferase inhibitor. Anticancer Res 1999; 19: 557–561.PubMedGoogle Scholar
  145. 145.
    Gu WZ, Tahir SK, Wang YC, Zhang HC, Cherian SP, O’Connor S, et al. Effect of novel Caax peptidomimetic farnesyltransferase inhibitor on angiogenesis in vitro and in vivo. Eur J Cancer 1999; 35: 1394–1401.PubMedCrossRefGoogle Scholar
  146. 146.
    Bar-Sagi D, Hall A. Ras and Rho GTPases: a family reunion. Cell 2000; 103: 227–238.PubMedCrossRefGoogle Scholar
  147. 147.
    Garcia-Cardena G, Anderson KR, Mauri L, Gimbrone MA, Jr. Distinct mechanical stimuli differentially regulate the PI3K/Akt survival pathway in endothelial cells. Ann NY Acad Sci 2000; 902: 294–297.PubMedCrossRefGoogle Scholar
  148. 148.
    Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDial-dependent and ROCK-independent mechanism. J Cell Biol 2001; 153: 1175–1186.PubMedCrossRefGoogle Scholar
  149. 149.
    Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 1995; 270: 27489–27494.PubMedCrossRefGoogle Scholar
  150. 150.
    Price LS, Collard JG. Regulation of the cytoskeleton by Rho-family GTPases: implications for tumour cell invasion. Semin Cancer Biol 2001; 11: 167–173.PubMedCrossRefGoogle Scholar
  151. 151.
    Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 1997; 275: 1649–1652.PubMedCrossRefGoogle Scholar
  152. 152.
    Kuroki M, Voest EE, Amano S, Beerepoot LV, Takashima S, Tolentino M, et al. Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J Clin Invest 1996; 98: 1667–1675.PubMedCrossRefGoogle Scholar
  153. 153.
    White FC, Benehacene A, Scheele JS, Kamps M. VEGF mRNA is stabilized by ras and tyrosine kinase oncogenes, as well as by UV radiation-evidence for divergent stabilization pathways. Growth Factors 1997; 14: 199–212.PubMedCrossRefGoogle Scholar
  154. 154.
    Arbiser JL, Moses MA, Fernandez CA, Ghiso N, Cao Y, Klauber N, et al. Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci USA 1997; 94: 861–866.PubMedCrossRefGoogle Scholar
  155. 155.
    Shweiki D, Itin A, Soifer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initated angiogenesis. Nature 1992; 359: 843–845.PubMedCrossRefGoogle Scholar
  156. 156.
    Semenza GL. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol 2000; 35: 71–103.PubMedCrossRefGoogle Scholar
  157. 157.
    Mazure NM, Chen EY, Yeh P, Laderoute KR, Giaccia AJ. Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res 1996; 56: 3436–3440.PubMedGoogle Scholar
  158. 158.
    Mazure NM, Chen EY, Laderoute KR, Giaccia AJ. Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 1997; 90: 3322–3331.PubMedGoogle Scholar
  159. 159.
    Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 2000; 14: 391–396.PubMedGoogle Scholar
  160. 160.
    Wen S, Stolarov J, Myers MP, Su JD, Wigler MH, Tonks NK, et al. PTEN controls tumor-induced angiogenesis. Proc Natl Acad Sci USA 2001; 98: 4622–4627.PubMedCrossRefGoogle Scholar
  161. 161.
    Zabrenetzky V, Harris CC, Steeg PS, Roberts DD. Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. Int J Cancer 1994; 59: 191–195.PubMedCrossRefGoogle Scholar
  162. 162.
    Laderoute KR, Alarcon RM, Brody MD, Calaoagan JM, Chen EY, Knapp AM, et al. Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin 1 and the angiogenic inducer vascular endothelial growth factor [in process citation]. Clin Cancer Res 2000; 6: 2941–2950.PubMedGoogle Scholar
  163. 163.
    Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275: 1943–1947.PubMedCrossRefGoogle Scholar
  164. 164.
    Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998; 95: 29–39.PubMedCrossRefGoogle Scholar
  165. 165.
    Jiang BH, Zheng JZ, Aoki M, Vogt PK. Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci USA 2000; 97: 1749–1753.PubMedCrossRefGoogle Scholar
  166. 166.
    Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL. Her2 (neu) signaling increases the rate of hypoxia-inducible factor lalpha (hif-lalpha) synthesis: novel mechanism for hif-l-mediated vascular endothelial growth factor expression. Mol Cell Biol 2001; 21: 3995–4004.PubMedCrossRefGoogle Scholar
  167. 167.
    Feldkamp MM, Lau N, Rak J, Kerbel RS, Guha A. Normoxic and hypoxic regulation of vascular endothelial growth factor (VEGF) by astrocytoma cells is mediated by Ras. Int J Cancer 1999; 81: 118–124.PubMedCrossRefGoogle Scholar
  168. 168.
    Richard DE, Berra E, Gothie E, Roux D, Pouyssegur J. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor lalpha (HIF-lalpha) and enhance the transcriptional activity of HIF-1. J Biol Chem 1999; 274: 32631–32637.PubMedCrossRefGoogle Scholar
  169. 169.
    Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A. Regulation of glut1 mRNA by hypoxiainducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem 2001; 276: 9519–9525.PubMedCrossRefGoogle Scholar
  170. 170.
    Jiang BH, Agani F, Passaniti A, Semenza GL. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res 1997; 57: 5328–5335.PubMedGoogle Scholar
  171. 171.
    Koong AC, Chen EY, Mivechi F, Denko NC, Stambrook P, Giaccia AJ. Hypoxic activation of nuclear factor-KB is mediated by a ras and raf signaling. Cancer Res 1994; 54: 5273–5279.PubMedGoogle Scholar
  172. 172.
    Mukhopadhyay D, Tsiokas L, Zhou X-M, Foster D, Brugge JS, Sukhatme VP. Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature 1995; 375: 577–581.PubMedCrossRefGoogle Scholar
  173. 173.
    Shima DT, Deutsch U, D’Amore PA. Hypoxic induction of vascular endothelial growth factor (VEGF) in human epithelial cells is mediated by increases in mRNA stability. FEBS Lett 1995; 370: 203–208.PubMedCrossRefGoogle Scholar
  174. 174.
    Kerbel R, Viloria-Petit A, Okada F, Rak J. The link between oncogenes, signal transduction therapy, and tumor angiogenesis. In: Voest EE, D’Amore P, eds. Tumor Angiogenesis and Microcirculation. Marcel Dekker, New York, 2001; pp. 285–307.Google Scholar
  175. 175.
    Graeber TG, Osmanian C, jacks T, Housman DE, Koch CJ, Lowe SW, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996; 379: 88–91.PubMedCrossRefGoogle Scholar
  176. 176.
    Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci 1999; 24: 68–72.PubMedCrossRefGoogle Scholar
  177. 177.
    Los M, Voes EE. Genetic control of angiogenesis by tumor suppressor genes. In: Voes EE, D’Amore P, eds. Tumor Angiogenesis and Microcirculation. Marcel Dekker, New York, 2001; pp. 307–320.Google Scholar
  178. 178.
    Koura AN, Liu W, Kitadai Y, Singh RK, Radinsky R, Ellis LM. Regulation of vascular endothelial growth factor expression in human colon carcinoma cells by cell density. Cancer Res 1996; 56: 3891–3894.PubMedGoogle Scholar
  179. 179.
    Mukhopadhyay D, Tsiokas L, Sukhatme VP. High cell density induces vascular endothelial growth factor expression via protein tyrosine phosphorylation. Gene Expr 1998; 7: 53–60.PubMedGoogle Scholar
  180. 180.
    Sheta EA, Harding MA, Conaway MR, Theodorescu D. Focal adhesion kinase, Rap 1, and transcriptional induction of vascular endothelial growth factor. J Natl Cancer Inst 2000; 92: 1065–1073.PubMedCrossRefGoogle Scholar
  181. 181.
    Barker N, Morin PJ, Clevers H. The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res 2000; 77: 1–24.PubMedCrossRefGoogle Scholar
  182. 182.
    Kolligs FT, Hu G, Dang CV, Fearon ER. Neoplastic transformation of RK3E by mutant beta-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol Cell Biol 1999; 19: 5696–5706.PubMedGoogle Scholar
  183. 183.
    Novak A, Hsu SC, Leung-Hagesteijn C, Radeva G, Papkoff J, Montesano R, et al. Cell adhesion and the integrin-linked kinase regulate the LEF-1 and beta-catenin signaling pathways. Proc Natl Acad Sci USA 1998; 95: 4374–4379.PubMedCrossRefGoogle Scholar
  184. 184.
    Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA. Creation of human tumour cells with defined genetic elements [see comments]. Nature 1999; 400: 464–468.PubMedCrossRefGoogle Scholar
  185. 185.
    Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and pl6INK4a. Cell 1997; 88: 593–602.PubMedCrossRefGoogle Scholar
  186. 186.
    Holland EC, Hively WP, DePincho RA, Varmus HE. A constitutively active epidermal growth factor receptor cooperates with disruption of Gl cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 1998; 12: 3675–3685.PubMedCrossRefGoogle Scholar
  187. 187.
    Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 2000; 14: 2015–2027.PubMedGoogle Scholar
  188. 188.
    Harada H, Nakagawa K, Iwata S, Saito M, Kumon Y, Sakaki S, et al. Restoration of wild-type p 16 down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human gliomas. Cancer Res 1999; 59: 3783–3789.PubMedGoogle Scholar
  189. 189.
    Claudio PP, Stiegler P, Howard CM, Bellan C, Minimo C, Tosi GM, et al. RB2/p 130 gene-enhanced expression down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in vivo. Cancer Res 2001; 61: 462–468.PubMedGoogle Scholar
  190. 190.
    Schwarte-Waldhoff I, Volpert OV, Bouck NP, Sipos B, Hahn SA, Klein-Scory, S, et al. Smad4/DPC4mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci USA 2000; 97: 9624–9629.PubMedCrossRefGoogle Scholar
  191. 191.
    Mukhopadhyay D, Tsiokas L, Sukhatme VP. Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res 1995; 55: 6161–6165.PubMedGoogle Scholar
  192. 192.
    Kieser A, Weich HA, Brandner G, Marme D, Kolch W. Mutant p53 potentiates protein kinase C induction of vascular endothelial growth factor expression. Oncogene 1994; 9: 963–969.PubMedGoogle Scholar
  193. 193.
    Volpert OV, Dameron KM, Bouck N. Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene 1997; 14: 1495–1502.PubMedCrossRefGoogle Scholar
  194. 194.
    Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999; 284: 808–812.PubMedCrossRefGoogle Scholar
  195. 195.
    Ferrara N. The role of vascular endothelial growth factor in pathological angiogenesis. Breast Cancer Res Treat 1995; 36: 127–137.PubMedCrossRefGoogle Scholar
  196. 196.
    Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 1998; 94: 715–725.PubMedCrossRefGoogle Scholar
  197. 197.
    Yoshiji H, Harris SR, Thorgeirsson UP. Vascular endothelial growth factor is essential for initial but not continued in vivo growth of human breast carcinoma cells. Cancer Res 1997; 57: 3924–3928.PubMedGoogle Scholar
  198. 198.
    Rak J, Miguerol L, Lobe C, Nagy A, Gertsenstein M, Sheehan C, et al. Dependence of tumor angiogenesis on endogenous VEGF production as a function of tumor type. Keystone Symposia April 2429, 2001, Angiogenesis and Chronic Diseases, Abstract #310,61.27–4–2001.Google Scholar
  199. 199.
    Relf M, LeJeune S, Scott PA, Fox S, Smith K, Leek R, et al. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 1997; 57: 963–969.PubMedGoogle Scholar
  200. 200.
    Dvorak HF, Dvorak AM, Manseau EJ, Wiberg L, Churchill WH. Fibrin gel investment associated with line 1 and line 10 solid tumor growth, angiogenesis, and fibroplasia in guinea pigs. Role of cellular immunity, myofibroblasts, microvascular damage, and infarction in line 1 tumor regression. J Natl Cancer Inst 1979; 62: 1459–1472.PubMedGoogle Scholar
  201. 201.
    Dvorak FH. Abnormalities of hemostasis in malignant disease. In: Coleman RB, Hirsh J, Marder VJ, Salzman JB, eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice, 3rd ed. Lippincott, Philadelphia, 1994, pp. 1238–1254.Google Scholar
  202. 202.
    Rak J, Klement G. Impact of oncogenes and tumor suppressor genes on deregulation of hemostasis and angiogenesis in cancer. Cancer Metastasis Rev 2000; 19: 93–96.PubMedCrossRefGoogle Scholar
  203. 203.
    Mechtcheriakova D, Wlachos A, Holzmuller H, Binder BR, Hofer E. Vascular endothelial cell growth factor-induced tissue factor expression in endothelial cells is mediated by EGR-1. Blood 1999; 93: 3811–3823.PubMedGoogle Scholar
  204. 204.
    Shoji M, Hancock WW, Abe K, Micko C, Casper KA, Baine RM, et al. Activation of coagulation and angiogenesis in cancer: immunohistochemical localization in situ of clotting proteins and vascular endothelial growth factor in human cancer. Am J Pathol 1998; 152: 399–411.PubMedGoogle Scholar
  205. 205.
    Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van VI, et al. Role of tissue factor in embryonic blood vessel development. Nature 1996; 383: 73–75.PubMedCrossRefGoogle Scholar
  206. 206.
    Zhang Y, Deng Y, Luther T, Muller M, Ziegler R, Waldherr R, et al. Tissue factor controls the balance of angiogenic and antiangiogenic properties of tumor cells in mice. J Clin Invest 1994; 94: 1320–1327.PubMedCrossRefGoogle Scholar
  207. 207.
    Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 2000; 407: 258–264.PubMedCrossRefGoogle Scholar
  208. 208.
    Tallman MS. The thrombophilic state in acute promyelocytic leukemia. Semin Thromb Hemost 1999; 25: 209–215.PubMedCrossRefGoogle Scholar
  209. 209.
    Kini AR, Peterson LC, Tallman MS, Lingen MW. Angiogenesis in acute promyelocytic leukemia: induction by vascular endothelial growth factor and inhibition by all-trans retinoic acid. Blood 2001; 97: 3919–3924.PubMedCrossRefGoogle Scholar
  210. 210.
    Browder T, Folkman J, Pirie-Shephered S. The hemostatic system as a regulator of angiogenesis. J Biol Chem 2000; 275: 1521–1524.PubMedCrossRefGoogle Scholar
  211. 211.
    Dawson DW, Bouck NP. Thrombospondin as an inhibitor of angiogenesis. In: Teicher BA, ed. Antiangiogenic Agents in Cancer Therapy. Humana Press, Totowa, 1999, pp. 185–203.Google Scholar
  212. 212.
    Iruela-Arispe ML, Vazquez F, Ortega MA. Antiangiogenic domains shared by thrombospondins and metallospondins, a new family of angiogenic inhibitors. Ann NYAcad Sci 1999; 886: 58–66.Google Scholar
  213. 213.
    Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 1999; 285: 245–248.PubMedCrossRefGoogle Scholar
  214. 214.
    Van Meir EG, Polverini Pi, Chazin VR, Su Huang HJ, de Tribolet N, Cavenee WK. Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nat Genet 1994; 8: 171–176.PubMedCrossRefGoogle Scholar
  215. 215.
    Zhai Y, Ni J, Jiang GW, Lu J, Xing L, Lincoln C, et al. VEGI, a novel cytokine of the tumor necrosis factor family, is an angiogenesis inhibitor that suppresses the growth of colon carcinomas in vivo. FASEB J 1999; 13: 181–189.Google Scholar
  216. 216.
    Nelson J, Allen WE, Scott WN, Bailie JR, Walker B, McFerran NV, et al. Murine epidermal growth factor (EGF) fragment (33–42) inhibits both EGF-and laminin-dependent endothelial cell motility and angiogenesis. Cancer Res 1995; 55: 3772–3776.PubMedGoogle Scholar
  217. 217.
    Nishimori H, Shiratsuchi T, Urano T, Kimura Y, Kiyono K, Tatsumi K, et al. A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 1997; 15: 2145–2150.PubMedCrossRefGoogle Scholar
  218. 218.
    Zhang M, Volpert 0, Shi YH, Bouck N. Maspin is an angiogenesis inhibitor. Nat Med 2000; 6: 196–199.Google Scholar
  219. 219.
    O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–285.PubMedCrossRefGoogle Scholar
  220. 220.
    Brooks PC, Silletti S, von Schalscha TL, Friedlander M, Cheresh DA. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 1998; 92: 391–400.PubMedCrossRefGoogle Scholar
  221. 221.
    Colman RW, Jameson BA, Lin Y, Johnson D, Mousa SA. Domain 5 of high molecular weight kininogen (kininostatin) down-regulates endothelial cell proliferation and migration and inhibits angiogenesis. Blood 2000; 95: 543–550.PubMedGoogle Scholar
  222. 222.
    Clapp C, Martial JA, Guzman RC, Rentier-Delrue F, Weiner RI. The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 1993; 133: 1292–1299.PubMedCrossRefGoogle Scholar
  223. 223.
    Homandberg GA, Williams JE, Grant D, Schumacher B, Eisenstein R. Heparin-binding fragments of fibronectin are potent inhibitors of endothelial cell growth. Am J Pathol 1985; 120: 327–332.PubMedGoogle Scholar
  224. 224.
    Ramchandran R, Dhanabal M, Volk R, Waterman MJ, Segal M, Lu H, et al. Antiangiogenic activity of restin, NC10 domain of human collagen XV: comparison to endostatin. Biochem Biophys Res Cornmun 1999; 255: 735–739.CrossRefGoogle Scholar
  225. 225.
    Colorado PC, Torre A, Kamphaus G, Maeshima Y, Hopfer H, Takahashi K, et al. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 2000; 60: 2520–2526.PubMedGoogle Scholar
  226. 226.
    Kamphaus GD, Colorado PC, Panka DJ, Hopfer H, Ramchandran R, Torre A, et al. Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 2000; 275: 1209–1215.PubMedCrossRefGoogle Scholar
  227. 227.
    Maeshima Y, Manfredi M, Reimer C, Holthaus KA, Hopfer H, Chandamuri B. et al. Identification of the anti-angiogenic site within vascular basement membrane-derived tumstatin. J Biol Chem 2001; 276: 15240–15248.PubMedCrossRefGoogle Scholar
  228. 228.
    Pike SE, Yao L, Jones KD, Cherney B, Appella E, Sakaguchi K, et al. Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 1998; 188: 2349–2356.PubMedCrossRefGoogle Scholar
  229. 229.
    O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315–328.PubMedCrossRefGoogle Scholar
  230. 230.
    O’Reilly MS, Pirie-Shepherd S, Lane WS, Folkman J. Antiangiogenic activity of the cleaved conformation of the serpin antithrombin [see comments]. Science 1999; 285: 1926–1928.PubMedCrossRefGoogle Scholar
  231. 231.
    Rak J. Possible role of tumour stem–end cell interaction in metastasis. Med Hypoth 1989; 29: 17–19.CrossRefGoogle Scholar
  232. 232.
    Nowell PC. The clonal evolution of tumor cell populations. Science 1976; 194: 23–28.PubMedCrossRefGoogle Scholar
  233. 233.
    Kerbel, RS. Growth dominance of the metastatic cancer cell: cellular and molecular aspects. Adv Cancer Res 1990; 55: 87–132.PubMedCrossRefGoogle Scholar
  234. 234.
    Jouanneau J, Moens G, Bourgeois Y, Poupon MF, Thiery JP. A minority of carcinoma cells producing acidic fibroblast growth factor induces a community effect for tumor progression. Proc Nall Acad Sci USA 1994; 91: 286–290.CrossRefGoogle Scholar
  235. 235.
    Miller FR, Heppner GH. Cellular interactions in metastasis. Cancer Metastasis Rev 1990; 9: 21–34.PubMedCrossRefGoogle Scholar
  236. 236.
    Rak J, Mitsuhashi Y, Erdos V, Huang S.-N., Filmus J, Kerbel RS. Massive programmed cell death in intestinal epithelial cells induced by three-dimensional growth conditions: suppression by expression of a mutant c-H-ras oncogene. J Cell Biol 1995; 131: 1587–1598.PubMedCrossRefGoogle Scholar
  237. 237.
    Rak J, Mitsuhashi Y, Sheehan C, Krestow JK, Florenes VA, Filmus J, et al. Collateral expression of proangiogenic and tumorigenic properties in intestinal epithelial cell variants selected for resistance to anoikis. Neoplasia1999; 1: 23–30.PubMedCrossRefGoogle Scholar
  238. 238.
    Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 1995; 80: 179–185.PubMedCrossRefGoogle Scholar
  239. 239.
    Charoenrat P, Rhys-Evans P, Modjtahedi H, Eccles SA. Vascular endothelial growth factor family members are differentially regulated by c-erbB signaling in head and neck squamous carcinoma cells. Clin Exp Metastasis 2000; 18: 155–161.CrossRefGoogle Scholar
  240. 240.
    Rak J, Kerbel RS. Treating cancer by inhibiting angiogenesis: new hopes and potential pitfalls. Cancer Metastasis Rev 1996; 15: 231–236.PubMedCrossRefGoogle Scholar
  241. 241.
    Bedi A, Pasricha PJ, Akhtar AJ, Barber JP, Bedi GC, Giardiello FM, et al. Inhibition of apoptosis during development of colorectal cancer. Cancer Res 1995; 55: 1811–1816.PubMedGoogle Scholar
  242. 242.
    Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 2001; 411: 342–348.PubMedCrossRefGoogle Scholar
  243. 243.
    Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, et al. Role of HIF1 alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis [published erratum appears in Nature 1998 Oct 1;395(6701):525]. Nature 1998; 394: 485–490.PubMedCrossRefGoogle Scholar
  244. 244.
    Yu JL, Rak JW, Carmeliet P, Nagy A, Kerbel RS, Coomber BL. Heterogeneous vascular dependence of tumor cell populations. Am JPathol 2001; 158: 1325–1334.CrossRefGoogle Scholar
  245. 245.
    Olive PL, Chaplin DJ, Durand RE. Pharmacokinetics, binding and distribution of Hoechst 33342 in spheroids and murine tumours. Br J Cancer 1985; 52: 739–746.PubMedCrossRefGoogle Scholar
  246. 246.
    Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 1992; 84: 1875–1887.PubMedCrossRefGoogle Scholar
  247. 247.
    Abdalla SA, Behzad F, Bsharah S, Kumar S, Amini SK, O’Dwyer ST, et al. Prognostic relevance of microvessel density in colorectal tumours. Oncol Rep 1999; 6: 839–842.PubMedGoogle Scholar
  248. 248.
    Teicher BA. Angiogenesis and cancer metastases: therapeutic approaches. Crit Rev Onco Hematol 1995; 20: 9–39.CrossRefGoogle Scholar
  249. 249.
    Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O’Reilly MS, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 2000; 60: 1878–1886.PubMedGoogle Scholar
  250. 250.
    Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity [in process citation]. J Clin Invest 2000; 105: R15 - R24.PubMedCrossRefGoogle Scholar
  251. 251.
    Padro T, Ruiz S, Bieker R, Burger H, Steins M, Kienast J, et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 2000; 95: 2637–2644.PubMedGoogle Scholar
  252. 252.
    Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000; 95: 309–313.PubMedGoogle Scholar
  253. 253.
    Katoh O, Tauchi H, Kawaishi K, Kimura A, Satow Y. Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res 1995; 55: 5687–5692.PubMedGoogle Scholar
  254. 254.
    Luo JC, Yamaguchi S, Shinkai A, Shitara K, Shibuya M. Significant expression of vascular endothelial growth factor/vascular permeability factor in mouse ascites tumors. Cancer Res 1998; 58: 2652–2660.PubMedGoogle Scholar
  255. 255.
    Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D, et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 2000; 96: 2240–2245.PubMedGoogle Scholar
  256. 256.
    Scappaticci FA, Smith R, Pathak A, Schloss D, Lum B, Cao Y, et al. Combination angiostatin and endostatin gene transfer induces synergistic antiangiogenic activity in vitro and antitumor efficacy in leukemia and solid tumors in mice. Mol Ther 2001; 3: 186–196.PubMedCrossRefGoogle Scholar
  257. 257.
    Ben-David Y. Bernstein A. Friend virus-induced erythroleukemia and the multistage nature of cancer. Cell 1991; 66: 831–834.PubMedCrossRefGoogle Scholar
  258. 258.
    Murray MJ, Cunningham JM, Parada LF, Dautry F, Lebowitz P, Weinberg, RA. The HL-60 transforming sequence: a ras oncogene coexisting with altered myc genes in hematopoietic tumors. Cell 1983; 33: 749–757.PubMedCrossRefGoogle Scholar
  259. 259.
    Adams J.M, Cory S. Oncogene co-operation in leukaemogenesis. Cancer Sury 1992; 15: 119–141.Google Scholar
  260. 260.
    Reuter CW, Morgan MA, Bergmann L. Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood 2000; 96: 1655–1669.PubMedGoogle Scholar
  261. 261.
    Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344: 1038–1042.PubMedCrossRefGoogle Scholar
  262. 262.
    Kakizuka A, Miller WH Jr., Umesono K, Warrell RP Jr., Frankel SR, Murty VV, et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 1991; 66: 663–674.PubMedCrossRefGoogle Scholar
  263. 263.
    Pandolfi PP. Oncogenes and tumor suppressors in the molecular pathogenesis of acute promyelocytic leukemia. Hum Mol Genet 2001; 10: 769–775.PubMedCrossRefGoogle Scholar
  264. 264.
    Druker BJ, Talpaz M, Resta DJ, Peng, B, Buchdunger E, Ford, JM, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.PubMedCrossRefGoogle Scholar
  265. 265.
    Gunsilius E, Duba HC, Petzer AL, Kahler CM, Grunwald K, Stockhammer G, et al. Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 2000; 355: 1688–1691.PubMedCrossRefGoogle Scholar
  266. 266.
    Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001; 411: 355–365.PubMedCrossRefGoogle Scholar
  267. 267.
    McCormick F. Signalling networks that cause cancer. Trends Cell Biol 1999; 9: M53 - M56.PubMedCrossRefGoogle Scholar
  268. 268.
    Sebti SM, Hamilton AD. Farnesyltransferase and geranylgeranyltransferase I inhibitors and cancer therapy: lessons from mechanism and bench-to-bedside translational studies. Oncogene 2000; 19: 6584–6593.PubMedCrossRefGoogle Scholar
  269. 269.
    Fletcher L. Approval heralds new generation of kinase inhibitors? Nat Biotechnol 2001; 19: 599–600.PubMedCrossRefGoogle Scholar
  270. 270.
    Gibbs JB, Oliff A, Kohl NE. Farnesyltransferase inhibitors: ras research yields a potential cancer therapeutic. Cell 1994; 77: 175–178.PubMedCrossRefGoogle Scholar
  271. 271.
    Lebowitz PF, Sakamuro D, Prendergast GC. Farnesyl transferase inhibitors induce apoptosis of Ras-transformed cells denied substratum attachment. Cancer Res 1997; 57: 708–713.PubMedGoogle Scholar
  272. 272.
    Viloria-Petit A, Crombet T, Jothy S, Hicklin D, Bohlen P, Schlaeppi JM, et al. Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res 2001; 61: 5090–5101.PubMedGoogle Scholar
  273. 273.
    Ciardiello F, Bianco R, Damiano V, Fontanini G, Caputo R, Pomatico G, et al. Antiangiogenic and antitumor activity of anti-epidermal growth factor receptor C225 monoclonal antibody in combination with vascular endothelial growth factor antisense oligonucleotide in human GEO colon cancer cells. Clin Cancer Res 2000; 6: 3739–3747.PubMedGoogle Scholar
  274. 274.
    Ciardiello F, Damiano V, Bianco R, Bianco C, Fontanini G, De Laurentiis M, et al. Antitumor activity of combined blockade of epidermal growth factor receptor and protein kinase A. J Natl Cancer Inst 1996; 88: 1770–1776.PubMedCrossRefGoogle Scholar
  275. 275.
    Perrotte P, Matsumoto T, Inoue K, Kuniyasu H, Eve BY, Hicklin DJ, et al. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 1999; 5: 257–265.PubMedGoogle Scholar
  276. 276.
    Mishima K, Johns TG, Luwor RB, Scott AM, Stocken E, Jungbluth AA, et al. Growth suppression of intracranial xenografted glioblastomas overexpressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody (mAb) 806, a novel monoclonal antibody directed to the receptor. Cancer Res 2001; 61: 5349–5354.PubMedGoogle Scholar
  277. 277.
    Ciardiello F, Caputo R, Bianco R, Damiano V, Fontanini G, Cuccato S, et al. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 2001; 7: 1459–1465.PubMedGoogle Scholar
  278. 278.
    Bruns CJ, Solorzano CC, Harbison MT, Ozawa S, Tsan R, Fan D, et al. Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res 2000; 60: 2926–2935.PubMedGoogle Scholar
  279. 279.
    Cai T, Fassina G, Morini M, Aluigi MG, Masiello L, Fontanini G, et al. N-acetylcysteine inhibits endothelial cell invasion and angiogenesis. Lab Invest 1999; 79: 1151–1159.PubMedGoogle Scholar
  280. 280.
    Gately S. The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Rev 2000; 19: 19–27.PubMedCrossRefGoogle Scholar
  281. 281.
    Lefer AM, Scalia R, Lefer DJ. Vascular effects of HMG CoA-reductase inhibitors (statins) unrelated to cholesterol lowering: new concepts for cardiovascular disease. Cardiovasc Res 2001; 49: 281–287.PubMedCrossRefGoogle Scholar
  282. 282.
    Feleszko W, Balkowiec EZ, Sieberth E, Marczak M, Dabrowska A, Giermasz A, et al. Lovastatin and tumor necrosis factor-alpha exhibit potentiated antitumor effects against Ha-ras-transformed murine tumor via inhibition of tumor-induced angiogenesis. Int J Cancer 1999; 81: 560–567.PubMedCrossRefGoogle Scholar
  283. 283.
    Isner JM. Recruitment of endothelial cell precursors in angiogenesis. Keystone Symposia Abstract Book Keystone Symposium X1, 4/24–29/2001(Angiogeesis and Chronic Disease), 31. 2001.Google Scholar
  284. 284.
    Slack JL, Bornstein P. Transformation by v-src causes transient induction followed by repression of mouse thrombospondin-1. Cell Growth Differ 1994; 5: 1373–1380.PubMedGoogle Scholar
  285. 285.
    Bein K, Ware JA, Simons M. Myb-dependent regulation of thrombospondin 2 expression. Role of mRNA stability. J Biol Chem 1998; 273: 21423–21429.PubMedCrossRefGoogle Scholar
  286. 286.
    Meitar D, Crawford SE, Rademaker AW, Cohn SL. Tumor angiogenesis correlates with metastatic disease, N-myc amplification, and poor outcome in human neuroblastoma. J Clin Oncol 1996; 14: 405–414.PubMedGoogle Scholar
  287. 287.
    Fotsis T, Breit S, Lutz W, Rossler J, Hatzi E, Schwab M, et al. Down-regulation of endothelial cell growth inhibitors by enhanced MYCN oncogene expression in human neuroblastoma cells. Eur J Biochem 1999; 263: 757–764.PubMedCrossRefGoogle Scholar
  288. 288.
    Hatzi E, Breit S, Zoephel A, Ashman K, Tontsch U, Ahorn H, et al. MYCN oncogene and angiogenesis: down-regulation of endothelial growth inhibitors in human neuroblastoma cells. Purification, structural, and functional characterization. Adv Exp Med Biol 2000; 476: 239–248.PubMedCrossRefGoogle Scholar
  289. 289.
    Breit S, Ashman K, Wilting J, Rossler J, Hatzi E, Fotsis T, et al. The N-myc oncogene in human neuroblastoma cells: down-regulation of an angiogenesis inhibitor identified as activin A. Cancer Res 2000; 60: 4596–4601.PubMedGoogle Scholar
  290. 290.
    Schweigerer L., Schwab M, Fotsis T. Endothelial cell growth factors in human neuroblastoma cells transfected with the human MYCN oncogene. International Symposium on Angiogenesis. 1991.Google Scholar
  291. 291.
    Pelengaris S, Littlewood T, Khan M, Elia G, Evan G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell 1999; 3: 565–577.PubMedCrossRefGoogle Scholar
  292. 292.
    Yen L, You XL, Al Moustafa AE, Batist G, Hynes NE, Mader S, et al. Heregulin selectively upregulates vascular endothelial growth factor secretion in cancer cells and stimulates angiogenesis. Oncogene 2000; 19: 3460–3469.PubMedCrossRefGoogle Scholar
  293. 293.
    Fernandez A, Udagawa T, Schwesinger C, Beecken W, Achilles-Gerte E, McDonnell T, et al. Angiogenic potential of prostate carcinoma cells overexpressing bc1–2. J Natl Cancer Inst 2001; 93: 208–213.PubMedCrossRefGoogle Scholar
  294. 294.
    Sheibani N, Sorenson CM, Cornelius LA, Frazier WA. Thrombospondin-1, a natural inhibitor of angiogenesis, is present in vitreous and aqueous humor and is modulated by hyperglycemia. Biochem Biophys Res Commun 2000; 267: 257–261.PubMedCrossRefGoogle Scholar
  295. 295.
    Saez E, Rutberg SE, Mueller E, Oppenheim H, Smoluk J, Yuspa SH, et al. c-fos is required for malignant progression for skin tumors. Cell 1995; 82: 721–732.PubMedCrossRefGoogle Scholar
  296. 296.
    McGregor LM, McCune BK, Graff JR, McDowell PR, Romans KE, Yancopoulos GD, et al. Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc Natl Acad Sci USA 1999; 96: 4540–4545.PubMedCrossRefGoogle Scholar
  297. 297.
    Eggert A, Grotzer MA, Ikegaki N, Liu XG, Evans AE, Brodeur GM. Expression of neurotrophin receptor TrkA inhibits angiogenesis in neuroblastoma. Med Pediatr Oncol 2000; 35: 569–572.PubMedCrossRefGoogle Scholar
  298. 298.
    Le Buanec H, D’Anna R, Lachgar A, Zagury JF, Bernard J, Ittele D, et al. HPV-16 E7 but not E6 oncogenic protein triggers both cellular immunosuppression and angiogenic processes. Biomed Pharmacother 1999; 53: 424–431.PubMedCrossRefGoogle Scholar
  299. 299.
    Lopez-Ocejo O, Viloria-Petit A, Bequet-Romero M, Mukhopadhyay D, Rak J, Kerbel RS. Oncogenes and tumor angiogenesis: the HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner [in process citation]. Oncogene 2000; 19: 4611–4620.PubMedCrossRefGoogle Scholar
  300. 300.
    Zietz C, Rossle M, Haas C, Sendelhofert A, Hirschmann A, Sturzl M, et al. U. MDM-2 oncoprotein overexpression, p53 gene mutation, and VEGF up-regulation in angiosarcomas. Am J Pathol 1998; 153: 1425–1433.PubMedCrossRefGoogle Scholar
  301. 301.
    Auvinen M, Laine A, Paasinen-Sohns A, Kangas A, Kangas L, Saksela O, et al. Human ornithine decarboxylase-overproducing NIH3T3 cells induce rapidly growing, highly vascularized tumors in nude mice. Cancer Res 1997; 57: 3016–3025.PubMedGoogle Scholar
  302. 302.
    Heaney AP, Horwitz GA, Wang Z, Singson R, Melmed S. Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nat Med 1999; 5: 1317–1321.PubMedCrossRefGoogle Scholar
  303. 303.
    Fu X, Roberts WG, Nobile V, Shapiro R, Kamps MP. mAngiogenin-3, a target gene of oncoprotein E2a-Pbxl, encodes a new angiogenic member of the angiogenin family. Growth Factors 1999; 17: 125–137.PubMedCrossRefGoogle Scholar
  304. 304.
    Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG, Gutkind JS, et al. G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator [see comments] [published erratum appears in Nature 1998 Mar 12;392(6672):210]. Nature 1998; 391: 86–89.PubMedCrossRefGoogle Scholar
  305. 305.
    Sodhi A, Montaner S, Patel V, Zohar M, Bais C, Mesri EA, et al. The Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxiainducible factor lalpha. Cancer Res 2000; 60: 4873–4880.PubMedGoogle Scholar
  306. 306.
    Iberg N, Rogelj S, Fanning P, Klagsbrun M. Purification of 18-and 22-kDa forms of basic fibroblast growth factor from rat cells transformed by the ras oncogene. J Biol Chem 1989; 264: 19951–19955.PubMedGoogle Scholar
  307. 307.
    Chotani MA, Touhalisky K, Chiu IM. The small GTPases Ras, Rac, and Cdc42 transcriptionally regulate expression of human fibroblast growth factor 1. J Biol Chem 2000; 275: 30432–30438.PubMedCrossRefGoogle Scholar
  308. 308.
    Marshall CJ, Vousden K, Ozanne B. The involvement of activated ras genes in determining the transformed phenotype. Proc R Soc Lond B Biol Sci 1985; 226: 99–106.PubMedCrossRefGoogle Scholar
  309. 309.
    Glick AB, Sporn MB, Yuspa SH. Altered regulation of TGF-beta 1 and TGF-alpha in primary keratinocytes and papillomas expressing v-Ha-ras. Mol Carcinog 1991; 4: 210–219.PubMedCrossRefGoogle Scholar
  310. 310.
    Castelli C, Sensi M, Lupetti R, Mortarini R, Panceri P, Anichini A, et al. Expression of interleukin 1 alpha, interleukin 6, and tumor necrosis factor alpha genes in human melanoma clones is associated with that of mutated N-RAS oncogene. Cancer Res 1994; 54: 4785–4790.PubMedGoogle Scholar
  311. 311.
    Demetri GD, Ernst TJ, Pratt II ES, Zenzle BW, Rheinwald JG, Griffin J. D. Expression of ras oncogenes in cultured human cells alters the transcriptional posttranscriptional regulation of cytokine genes. J Clin Invest 1990; 86: 1261–1269.PubMedCrossRefGoogle Scholar
  312. 312.
    Dickson RB, Kasid A, Huff KK, Bates SE, Knabbe C, Bronzert D, et al. Activation of growth factor secretion in tumorigenic states of breast cancer induced by 1713-estradiol or v-Ha-ras oncogene. Proc Natl Acad Sci USA 1987; 84: 837–841.PubMedCrossRefGoogle Scholar
  313. 313.
    Bowen-Pope DF, Vogel A, Ross R. Production of platelet-derived growth factor-like molecules and reduced expression of platelet-derived growth factor receptors accompany transformation by a wide spectrum of agents. Proc Natl Acad Sci USA 1984; 81: 2396–2400.PubMedCrossRefGoogle Scholar
  314. 314.
    Craig AM, Nemir M, Mukherjee BB, Chambers AF, Denhardt DT. Identification of the major phosphoprotein secreted by many rodent cell lines as 2ar/osteopontin: enhanced expression in H-ras-transformed 3T3 cells. Biochem Biophys Res Commun 1988; 157: 166–173.PubMedCrossRefGoogle Scholar
  315. 315.
    Cohen RL, Nicias J, Lee WM, Wun TC, Crowley CW, Levinson AD, et al. Effects of cellular transformation on expression of plasminogen activator inhibitors 1 and 2. Evidence for independent regulation. J Biol Chem 1989; 264: 8375–8383.PubMedGoogle Scholar
  316. 316.
    Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER, Brown LF, Cohen C, Moses M, Kilroy S, Arnold RS, Lambeth JD. Reactive oxygen generated by NOX-1 triggers the angiogenic switch. Proc Natl Acad Sci USA 2002; 2: 715–720.CrossRefGoogle Scholar
  317. 317.
    LeCouter J, Kowalski J, Foster J, Hass P, Zhang Z, Dillard-Telm L, Frantz G, Rangell L, De Guzman L, Keller GA, Peale F, Gurney A, Hillan KJ, Ferrara N. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 2001; 6850: 877–884.CrossRefGoogle Scholar
  318. 318.
    Izumi Y, Xu L, di tomaso E, Fukumura D, Jain RV. Tumor biology: herceptin acts as anti-angigenic cocktail. Nature 2002; 6878: 279–280.CrossRefGoogle Scholar
  319. 319.
    Yu JL, Rak JW, Coomber BL, Hicklin DJ, Kerbel RS. Effect of p53 status on tumor espons to autoangiogenic therapy. Science 2002; 295, 559, 1526–1528.Google Scholar
  320. 320.
    Rak J, Yu JL, Kerbel RS, Coomber BL. What do oncogenic mutations have to do with angiogenesis/vascular dependence of tumors? Cancer Res 2002, 62; 7: 1931–1934.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Janusz Rak
  • Robert S. Kerbel

There are no affiliations available

Personalised recommendations