Skip to main content

Th1 and Th2 Cytokines in Leishmaniasis

  • Chapter
  • 172 Accesses

Part of the book series: Infectious Disease ((ID))

Abstract

The intracellular protozoan Leishmania are obligate parasites of macrophages that can infect various mammalian hosts such as rodents, dogs, and humans (1). At least 20 Leishmania species can trigger pathogenic processes in humans. The host-to-host transmission of the parasite occurs through the bite of its hematophagous vector, the female sandfly, which is of the genus Phlebotomus in the Old World and Lutzomyia in the New World.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashford, R.W. (2000) The Leishmaniases as emerging and reemerging zoonoses. Int. J. Parasitol. 30, 1269–1281.

    Article  PubMed  CAS  Google Scholar 

  2. Laskay, T., Diefenbach, A., Rollinghoff, M., and Solbach, W. (1995) Early parasite containment is decisive for resistance to Leishmania major infection. Eur. J. Immunol. 25, 2220–2227.

    Article  PubMed  CAS  Google Scholar 

  3. Solbach, W. and Laskay, T. (2000) The host response to Leishmania infection. Adv. Immunol. 74, 275–317.

    Article  PubMed  CAS  Google Scholar 

  4. Reiner, S.L. and Locksley, R.M. (1995) The regulation of immunity to Leishmania major. Ann. Rev. Immunol. 13,151–177.

    Article  CAS  Google Scholar 

  5. Belkaid, Y., Mendez, S., Lira, R., Kadambi, N., Milon, G., and Sacks, D. (2000) A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity. J. Immunol. 165, 969–977.

    PubMed  CAS  Google Scholar 

  6. Afonso, L.C. and Scott, P. (1993) Immune responses associated with susceptibility of C57BL/10 mice to Leishmania amazonensis. Infect. Immun. 61, 2952–2959.

    PubMed  CAS  Google Scholar 

  7. Soong, L., Chang, C.H., Sun, J., Longley, B.J., Jr., Ruddle, N.H., Flavell, R.A., et al. (1997) Role of CD4+ T cells in pathogenesis associated with Leishmania amazonensis infection. J. Immunol. 158, 5374–5383.

    PubMed  CAS  Google Scholar 

  8. Torrentera, F.A., Glaichenhaus, N., Laman, J.D., and Carlier, Y. (2001) T-cell responses to immunodominant LACK antigen do not play a critical role in determining susceptibility of BALB/c mice to Leishmania mexicana. Infect. Immun. 69,617–621.

    CAS  Google Scholar 

  9. Hommel, M., Jaffe, C.L., Travi, B., and Milon, G. (1995) Experimental models for leishmaniasis and for testing anti-leishmanial vaccines. Ann. Trop. Med. Parasitol. 89, 55–73.

    PubMed  Google Scholar 

  10. Wilson, H.R., Dieckmann, B.S., and Childs, G.E. (1979) Leishmania braziliensis and Leishmania mexicana: experimental cutaneous infections in golden hamsters. Exp. Parasitol. 47, 270–283.

    Article  PubMed  CAS  Google Scholar 

  11. Nabors, G.S. and Farrell, J.P. (1994) Site-specific immunity to Leishmania major in SWR mice: the site of infection influences susceptibility and expression of the antileishmanial immune response. Infect. Immun. 62, 3655–3662.

    PubMed  CAS  Google Scholar 

  12. Bradley, D.J. and Kirkley, J. (1977) Regulation of Leishmania populations within the host. I. the variable course of Leishmania donovani infections in mice. Clin. Exp. Immunol. 30, 119–129.

    PubMed  CAS  Google Scholar 

  13. Lang, T., Ave, P., Huerre, M., Milon, G., and Antoine, J.C. (2000) Macrophage subsets harbouring Leishmania donovani in spleens of infected BALB/c mice: localization and characterization. Cell Microbiol. 2, 415–430.

    Article  PubMed  CAS  Google Scholar 

  14. Leclercq, V., Lebastard, M., Belkaid, Y., Louis, J., and Milon, G. (1996) The outcome of the parasitic process initiated by Leishmania infantum in laboratory mice: a tissue-dependent pattern controlled by the Lsh and MHC loci. J. Immunol. 157,4537–4545.

    PubMed  CAS  Google Scholar 

  15. Kaye, P.M., Cooke, A., Lund, T., Wattie, M., and Blackwell, J.M. (1992) Altered course of visceral leishmaniasis in mice expressing transgenic I-E molecules. Eur. J. Immunol. 22, 357–364.

    Article  PubMed  CAS  Google Scholar 

  16. Wilson, M.E. and Weinstock, J.V. (1996) Hepatic granulomas in murine visceral leishmaniasis caused by Leishmania chagasi. Methods 9, 248–254.

    Article  PubMed  CAS  Google Scholar 

  17. Melby, P.C., Chandrasekar, B., Zhao, W., and Coe, J.E. (2001) The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Thl-like cytokine response. J. Immunol. 166, 1912–1920.

    PubMed  CAS  Google Scholar 

  18. Mosmann, T.R. and Coffman, R.L. (1989) TH1 and TJ2 cells: different patterns of lymphokine secretion lead to different functional properties. Ann. Rev. Immunol. 7, 145–173.

    Article  CAS  Google Scholar 

  19. Romagnani, S. (1991) Human TH1 and TH2 subsets: doubt no more. Immunol. Today 12, 256–257.

    Article  PubMed  CAS  Google Scholar 

  20. Abbas, A., Murphy, K.M., and Sher, A. (1996) Functional diversity of helper T lymphocytes. Nature 383, 787–793.

    Article  PubMed  CAS  Google Scholar 

  21. Romagnani, S. (1996) Th1l and Th2 in human diseases. Clin. Immunol. Immunopathol. 80, 225–235.

    Article  PubMed  CAS  Google Scholar 

  22. Coffman, R.L., Lebman, D. A., and Rothman, P. (1993) Mechanism and regulation of immunoglobulin isotype switching. Adv. Immunol. 54, 229–270.

    Article  PubMed  CAS  Google Scholar 

  23. Kawano, Y., Noma, T., Kou, K., Yoshizawa, I., and Yata, J. (1995) Regulation of human IgG subclass production by cytokines: human IgG subclass production enhanced differentially by interleukin-6. Immunology 84, 278–284.

    PubMed  CAS  Google Scholar 

  24. Paul, W.E. and Seder, R.A. (1994) Lymphocyte responses and cytokines. Cell 76, 241–251.

    Article  PubMed  CAS  Google Scholar 

  25. Seder, R.A. (1994) Acquisition of lymphokine-producing phenotype by CD4+ T cells. J. Allergy Clin. Immunol. 94, 1195–1202.

    Article  PubMed  CAS  Google Scholar 

  26. Constant, S.L. and Bottomly, K. (1997) Induction of Thl and Th2 CD4+ T cell responses: the alternative approaches. Ann. Rev. Immunol. 15, 297–322.

    Article  CAS  Google Scholar 

  27. Seder, R.A., Germain, R.N, Linsley, P.S., and Paul, W.E. (1994) CD28-mediated costimulation of interleukin 2 (IL-2) production plays a critical role in T cell priming for 11–4 and interferon g production. J. Exp. Med. 179, 299–304.

    Article  PubMed  CAS  Google Scholar 

  28. Ding, A., Nathan, C.F., Graycar, J., Derynck, R., Stuehr, D.J., and Srimal, S. (1990) Macrophage deactivating factor and transforming growth factors-beta 1, — beta 2 and -beta 3 inhibit induction of macrophage nitrogen oxide synthesis by IFN-gamma. J. Immunol. 145, 940–944.

    PubMed  CAS  Google Scholar 

  29. Li, J., Hunter, C.A., and Farrell, J.P. (1999) Anti-TGF-beta treatment promotes rapid healing of Leishmania major infection in mice by enhancing in vivo nitric oxide production. J. Immunol. 162, 974–979.

    PubMed  CAS  Google Scholar 

  30. Barral-Netto, M., Barral, A., Brownell, C.E., Skeiky, Y.A.W., Ellingsworth, L.R., Twardzik, D.R., et al. (1992) Transforming growth factor-p in leishmanial infection: a parasite escape mechanism. Science 257, 545–548.

    Article  PubMed  CAS  Google Scholar 

  31. Brown, J.A., Titus, R.G., Nabavi, N., and Glimcher, L.H. (1996) Blockade of CD86 ameliorates Leishmania major infection by down regulating the Th2 response. J. Inf. Dis. 147, 1303–1308.

    Article  Google Scholar 

  32. Brown, D.R., Green, J.M., Moskowitz, N.H., Davis, M., Thompson, C.B., and Reiner, S.L. (1996) Limited role of CD28-mediated signals in T helper subset differenciation. J. Exp. Med. 184, 803–810.

    Article  PubMed  CAS  Google Scholar 

  33. Campbell, K.A., Ovendale, P.J., Kennedy, M.K., Fanslow, W.C., Reed, S.G., and Maliszewski, C.R. (1996) CD40 ligand is required for protective cell-mediated immunity to Leishmania major. Immunity 4, 283–289.

    Article  PubMed  CAS  Google Scholar 

  34. Kamanaka, M., Yu, P., Yasui, T., Yoshida, K., Kawabe, T., Horii, T., et al. (1996) Protective role of CD40 in Leishmania major infection at two distinct phases of cell-mediated immunity. Immunity 4, 275–281.

    Article  PubMed  CAS  Google Scholar 

  35. Ohshima, Y., Tanaka, Y., Tozawa, H., Takahashi, Y., Maliszewski, C, and Delespesse, G. (1997) Expression and function of OX40 ligand on human dendritic cells. J. Immunol. 159, 3838–3848.

    PubMed  CAS  Google Scholar 

  36. Brocker, T. (1999) The role of dendritic cells in T cell selection and survival. J. Leukocyte Biol. 66, 331–335.

    PubMed  CAS  Google Scholar 

  37. Flynn, S., Toellner, K.M, Raykundalia, C, Goodall, M., and Lane, P. (1998) CD4 T cell cytokine differentiation: the B cell activation molecule, OX40 ligand, instructs CD4 T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1. J. Exp. Med. 188, 297–304.

    Article  PubMed  CAS  Google Scholar 

  38. Ohshima, Y., Yang, L.P., Uchiyama, T., Tanaka, Y., Baum, P., Sergerie, M., et al. (1998) OX40 costimulation enhances interleukin-4 (IL-4) expression at priming and promotes the differentiation of naive human CD4(+) T cells into high IL-4-producing effectors. Blood 92, 3338–3345.

    PubMed  CAS  Google Scholar 

  39. Akiba, H., Miyahira, Y., Atsuta, M., Takeda, K., Nohara, C, Futagawa, T., et al. (2000) Critical contribution of OX40 ligand to T helper cell type 2 differentiation in experimental leishmaniasis. J. Exp. Med. 191, 375–380.

    Article  PubMed  CAS  Google Scholar 

  40. Trinchieri, G. (1998) Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv. Immunol. 70,83–243.

    Article  PubMed  CAS  Google Scholar 

  41. Chan, S.H., Perussia, B., Gupta, J.W., Kobayashi, M., Pospisil, M., Young, H.A., et al. (1991) Induction of IFN-y production by NK cell stimulatory factor (NKSF): characterization of the responder cells and synergy with other inducers. J. Exp. Med. 173, 869–879.

    Article  PubMed  CAS  Google Scholar 

  42. D’Andrea, A., Rengaraju, M., Valiante, N.M., Chehimi, J., Kubin, M., Aste, M., et al. (1992) Production of natural killer cell stimulatory factor (interleukin-12) by peripheral blood mononuclear cells. J. Exp. Med. 176, 1387–1398.

    Article  PubMed  Google Scholar 

  43. Hsieh, C.S., Macatonia, S.E., O’Garra, A., and Murphy, M K.M. (1995) T cell genetic background determines default T helper phenotype development in vitro. J. Exp. Med. 181, 713–721.

    Article  PubMed  CAS  Google Scholar 

  44. Macatonia, S.E., Hsieh, C.-S., Murphy, K.M., and O’Garra, A. (1993) Dendritic cells and macrophages are required for Thl development of CD4+ T cells from ocp TCR transgenic mice: IL-12 substitution for macrophages to stimulate IFN-y production is IFN-y dependent. Int. Immunol. 5, 1119–1128.

    Article  PubMed  CAS  Google Scholar 

  45. Seder, R.A., Gazzinelli, R., Sher, A., and Paul, W.E. (1993) Interleukin 12 acts directly on CD4+ T cells to enhance priming for inteferon-y production and diminishes interleukin 4 inhibition of such priming. Proc. Natl. Acad. Sci. USA 90, 10,188–10,192.

    Article  CAS  Google Scholar 

  46. Sypek, J.P., Chung, C.L., Mayor, S.E.H., Subramanyam, S.J., Goldman, S.J., Sieburth, D.S., et al. (1993) Resolution of cutaneous leishmanialsis: interleukin 12 iniates a protective T helper type 1 immune response. J. Exp. Med. III, 1797–1802.

    Article  Google Scholar 

  47. Heinzel, F.P., Rerko, R.M., Ahmed, F., and Pearlman, E. (1995) Endogenous IL-12 is required for control of Th2 cytokine responses capable of exacerbating Leishmaniasis in normally resistant mice. J. Immunol. 155, 730–739.

    PubMed  CAS  Google Scholar 

  48. Mattner, F., Magram, J., Ferrante, J., Launois, P., Di Padova, K., Behin, R., et al. (1996) Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized Th2 cell response. Eur. J. Immunol 26, 1553–1559.

    Article  PubMed  CAS  Google Scholar 

  49. Heinzel, F.P., Schoenhaut, D.S., Rerko, R.M., Rosser, L.E., and Gately, M.K. (1993) Recombinant interleukin 12 cures mice infected with Leishmania major. J. Exp. Med. III, 1505–1509.

    Article  Google Scholar 

  50. Szabo, S.J., Dighe, A.S., Gubler, U., and Murphy, K.M. (1997) Regulation of the interleukin (IL)-12Rp2 subunit expression in developping T helper (Thl) and Th2 cells. J. Exp. Med. 185, 817–824.

    Article  PubMed  CAS  Google Scholar 

  51. Guler, M.L., Gorham, J.D., Hsieh, C.S., Mackey, A.J., Steen, R.G., Dietrich, W.F., and Murphy, K.M. (1996) Genetic susceptibility to Leishmania: IL-12 responsiveness in TH1 cell development. Science 271, 984–987.

    Article  PubMed  CAS  Google Scholar 

  52. Himmelrich, H., Parra-Lopez, C, Tacchini-Cottier, F., Louis, J.A., and Launois, P. (1998) The IL-4 rapidly produced in BALB/c mice after infection with Leishmania major downregulates the IL-12 receptor (32 chain expression on CD4+ T cells resulting in a state of unresponsiveness to IL-12. J. Immunol. 161, 6156–6163.

    PubMed  CAS  Google Scholar 

  53. Jones, D., Elloso, M.M., Showe, L., Williams, D., Trinchieri, G., and Scott, P. (1998) Differential regulation of the interleukin-12 receptor during the innate immune response to Leishmania major. Infect. Immun. 66, 3818–3824.

    PubMed  CAS  Google Scholar 

  54. Jacobson, N.G., Szabo, S.J., Guler, M.L., Gorham, J.D., and Murphy, K.M. (1996) Regulation of interleukin-12 signalling during T helper phenotype development. Adv. Exp. Med. Biol. 409, 61–73.

    Article  PubMed  CAS  Google Scholar 

  55. Hondowicz, B.D., Park, A.Y., Elloso, M.M., and Scott, P. (2000) Maintenance of IL-12-responsive CD4+ T cells during a Th2 response in Leishmania major-infected mice. Eur. J. Immunol. 30, 2007–2014.

    Article  PubMed  CAS  Google Scholar 

  56. Jones, D.E., Buxbaum, L.U., and Scott, P. (2000) IL-4-independent inhibition of IL-12 responsiveness during Leishmania amazonensis infection. J. Immunol. 165, 364–372.

    PubMed  CAS  Google Scholar 

  57. Okamura, H., Tsutsi, H., Komatsu, T., Yutsudo, M., Hakura, A., Tanimoto, T., et al. (1995) Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378, 88–91.

    Article  PubMed  CAS  Google Scholar 

  58. Robinson, D., Shibuya, K., Mui, A., Zonin, F., Murphy, E., Sana, T., et al. (1997) IGIF does not drive Thl development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NFkappaB. Immunity 7, 571–581.

    Article  PubMed  CAS  Google Scholar 

  59. Wei, X.Q., Leung, B.P., Niedbala, W., Piedrafita, D., Feng, G.J., Sweet, M., et al. (1999) Altered immune responses and susceptibility to Leishmania major and Staphylococcus aureus infection in IL-18-deficient mice. J. Immunol. 163, 2821–2828.

    PubMed  CAS  Google Scholar 

  60. Monteforte, G.M., Takeda, K., Rodriguez-Sosa, M., Akira, S., David, J.R., and Satoskar, A.R. (2000) Genetically resistant mice lacking IL-18 gene develop Thl response and control cutaneous Leishmania major infection. J. Immunol. 164, 5890–5893.

    PubMed  CAS  Google Scholar 

  61. Xu, D., Trajkovic, V., Hunter, D., Leung, B.P., Schulz, K., Gracie, J.A., et al. (2000) IL-18 induces the differentiation of Thl or Th2 cells depending upon cytokine milieu and genetic background. Eur. J. Immunol. 30, 3147–3156.

    Article  PubMed  CAS  Google Scholar 

  62. Hsieh, C.-S., Macatonia, S.E., Tripp, C.S., Wolf, S.F., O’Garra, A., and Murphy, K.M. (1993) Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547–549.

    Article  PubMed  CAS  Google Scholar 

  63. Wenner, C.A., Guler, M.L., Macatonia, S.E., O’Garra, A., and Murphy, K.M. (1996) Roles of IFN-y and IFN-oe in IL-12-induced T helper cell-1 development. J. Immunol. 156, 1442–1447.

    PubMed  CAS  Google Scholar 

  64. Scott, P.A. (1991) IFN-y modulates the early development of Thl and Th2 responses in a murine model of cutaneous leishmaniasis. J. Immunol. 141, 3149–3155.

    Google Scholar 

  65. Belosevic, M., Finbloom, D.S., van der Meide, P.H., Slayter, M.V., and Nacy, C.A. (1989) Administration of monoclonal anti-IFN-y antibodies in vivo abrogates natural resistance of C3H/HeN mice to infection wih Leishmania major. J. Immunol. 143, 266–274.

    PubMed  CAS  Google Scholar 

  66. Wang, Z.E., Zheng, S., Corry, D.B., Dalton, D.K., Seder, R.A., Reiner, S.L., et al. (1994) Interferon gamma-independent effects of interleukin 12 administered during acute or established infection due to Leishmania major. Proc. Nat. Acad. Sci USA 91, 12,932–12,936.

    CAS  Google Scholar 

  67. Swihart, K., Fruth, U., Messmer, N., Hug, K., Behin, R., Huang, S., et al. (1995) Mice from a genetically resistant background lacking the interferon gamma receptor are susceptible to infection with Leishmania major but mount a polarized T helper cell 1-type CD4+ T cell response. J. Exp. Med. 181, 961–971.

    Article  PubMed  CAS  Google Scholar 

  68. Beil, W.J., Meinardus-Hager, G., Neugebauer, D.C., and Sorg, C. (1992) Differences in the onset of the inflammatory response to cutaneous leishmaniasis in resistant and susceptible mice. J. Leukocyte Biol. 52, 135–142.

    PubMed  CAS  Google Scholar 

  69. Tacchini-Cottier, F., Zweifel, C, Belkaid, Y., Mukankundiye, C, Vasei, M., Launois, P., et al. (2000) An immunomodulatory function for neutrophils during the induction of a CD4+ Th2 response in BALB/c mice infected with Leishmania major. J. Immunol. 165, 2628–2636.

    PubMed  CAS  Google Scholar 

  70. Fava, R.A., Olsen, N.J., Postlethwaite, A.E., Broadley, K.N., Davidson, J.M., Nanney, L.B., et al. (1991) Transforming growth factor beta 1 (TGF-beta 1) induced neutrophil recruitment to synovial tissues: implications for TGF-beta-driven synovial inflammation and hyperplasia. J. Exp. Med. 173, 1121–1132.

    Article  PubMed  CAS  Google Scholar 

  71. Cassatella, M.A., Meda, L., Gasperini, S., D’Andrea, A., Ma, X., and Trinchieri, G. (1995) Interleukin-12 production by human polymorphonuclear leukocytes. Eur. J. Immunol. 25, 1–5.

    Article  PubMed  CAS  Google Scholar 

  72. Laskay, T., Rollinghoff, M., and Solbach, W. (1993) Natural killer cells participate in the early defense against Leishmania major infection in mice. Eur. J. Immunol. 23, 2237–2241.

    Article  PubMed  CAS  Google Scholar 

  73. Reiner, S.L., Zheng, S., Wang, Z.-E., Stowring, L., and Locksley, R.M. (1994) Leishmania promastigotes evade interleukin 12 (IL-12) induction by macrophages and stimulate a broad range of cytokines from CD4+ T cells during initiation of infection. J. Exp. Med. 179, 447–456.

    Article  PubMed  CAS  Google Scholar 

  74. Scharton, T.M. and Scott, P. (1993) Natural killer cells are a source of interferon gamma that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J. Exp. Med. 178, 567–577.

    Article  PubMed  CAS  Google Scholar 

  75. Scharton-Kersten, T., Afonso, L.C.C., Wysocka, M., Trinchieri, G., and Scott, P. (1995) IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental leishmaniasis. J. Immunol. 154, 5320–5330.

    PubMed  CAS  Google Scholar 

  76. Wakil, A.E., Wang, Z.E., Ryan, J.C., Fowell, D.J., and Locksley, R.M. (1998) Interferon gamma derived from CD4(+) T cells is sufficient to mediate T helper cell type 1 development. J. Exp. Med. 188, 1651–1656.

    Article  PubMed  CAS  Google Scholar 

  77. Satoskar, A.R., Stamm, L.M., Zhang, X., Satoskar, A.A., Okano, M., Terhorst, C, et al. (1999) Mice lacking NK cells develop an efficient Thl response and control cutaneous Leishmania major infection. J. Immunol 162, 6747–6754.

    PubMed  CAS  Google Scholar 

  78. Wang, M., Ellison, C.A., Gartner, J.G., and HayGlass, K.T. (1998) Natural killer cell depletion fails to influence initial CD4 T cell commitment in vivo in exogenous antigen-stimulated cytokine and antibody responses. J. Immunol. 160, 1098–1105.

    PubMed  CAS  Google Scholar 

  79. Mattner, J., Schindler, H., Diefenbach, A., Rollinghoff, M., Gresser, L, and Bogdan, C. (2000) Regulation of type 2 nitric oxide synthase by type 1 interferons in macrophages infected with Leishmania major. Eur. J. Immunol. 30, 2257–2267.

    Article  PubMed  CAS  Google Scholar 

  80. Hsieh, C.-S., Heimberger, A.B., Gold, J.S., O’Garra, A., and Murphy, K.M. (1992) Differential regulation of T helper phenotype development by interleukins 4 and 10 in an ap T-cell-receptor transgenic system. Proc. Natl. Acad. Sci. USA 89,6065–6069.

    Article  PubMed  CAS  Google Scholar 

  81. Locksley, R.M., Heinzel, F.P., Sadick, M.D., Holaday, B.J., and Gardner, K.D. (1987) Murine cutaneous leishmaniasis: susceptibility correlates with differential expansion of helper T cell subset. Ann. Inst. Pasteur Immunol 138, 744–749.

    Article  PubMed  CAS  Google Scholar 

  82. Heinzel, F.P., Sadick, M.D., Holaday, B.J., Coffman, R.L., and Locksley, R.M. (1989) Reciprocal expression of interferon y or interleukin 4 during the resolution or progression of murine leishmaniasis. J. Exp. Med. 169, 59–72.

    Article  PubMed  CAS  Google Scholar 

  83. Coffman, R.L., Varkila, K., Scott, P., and Chatelain, R. (1991) Role of cytokines in the differentiation of CD4+ T cell subsets in vivo. Immunol. Rev. 123, 189–205.

    Article  PubMed  CAS  Google Scholar 

  84. Chatelain, R., Varkila, K., and Coffman, R.L. (1992) IL-4 induces a Th2 response in Leishmania mayor-infected mice. J. Immunol. 148, 1182–1187.

    PubMed  CAS  Google Scholar 

  85. Sadick, M.D., Heinzel, F.P., Holaday, B.J., Pu, R.T., Dawkins, R.S., and Locksley, R.M. (1990) Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon-y independent mechanism. J. Exp. Med. 171, 115–127.

    Article  PubMed  CAS  Google Scholar 

  86. Leal, L.M.C.C, Moss, D.W., Kuhn, R., Muller, W., and Liew, F.Y. (1993) Interleukin-4 transgenic mice of resistant background are susceptible to Leishmania major infection. Eur. J. Immunol. 23, 566–569.

    Article  PubMed  CAS  Google Scholar 

  87. Kopf, M., Brombacher, F., Kolher, G., Kienzle, G., Widmann, K.-H., Lefrang, K., et al. (1996) IL-4 deficient Balb/c mice resist infection with Leishmania major. J. Exp. Med. 184, 1127–1136.

    Article  PubMed  CAS  Google Scholar 

  88. Noben-Trauth, N., Kropf, P., and Muller, I. (1996) Susceptibility to Leishmania major infection in IL-4 deficient mice. Science 271, 912–913.

    Article  Google Scholar 

  89. Aman, M.J., Tayebi, N., Obiri, N.I., Puri, R.K., Modi, W.S., and Leonard, W.J. (1996) cDNA cloning and characterization of the human interleukin 13 receptor alpha chain. J. Biol. Chem. 271, 29,265–29,270.

    CAS  Google Scholar 

  90. Hilton, D.J., Zhang, J.G., Metcalf, D., Alexander, W.S., Nicola, N.A., and Willson, T.A. (1996) Cloning and characterization of a binding subunit of the interleukin 13 receptor that is also a component of the interleukin 4 receptor. Proc. Natl. Acad. Sci. USA 93, 497–501.

    Article  PubMed  CAS  Google Scholar 

  91. Gauchat, J.F., Schlagenhauf, E., Feng, N.P., Moser, R., Yamage, M., Jeannin, P., et al. (1997) A novel 4-kb interleukin-13 receptor alpha mRNA expressed in human B, T, and endothelial cells encoding an alternate type-II interleukin- 4/ interleukin-13 receptor. Eur. J. Immunol. 27, 971–978.

    Article  PubMed  CAS  Google Scholar 

  92. Noben-Trauth, N., Paul, W.E., and Sacks, D.L. (1999) IL-4- and IL-4 receptor-deficient BALB/c mice reveal differences in susceptibility to Leishmania major parasite substrains. J. Immunol. 162, 6132–6140.

    PubMed  CAS  Google Scholar 

  93. Mohrs, M., Ledermann, B., Kohler, G., Dorfmuller, A., Gessner, A., and Brombacher, F. (1999) Differences between IL-4- and IL-4 receptor alpha-deficient mice in chronic Llishmaniasis reveal a protective role for IL-13 receptor signaling. J. Immunol. 162, 7302–7308.

    PubMed  CAS  Google Scholar 

  94. Launois, P., Ohteki, T., Swihart, K., MacDonald, H.R., and Louis, J.A. (1995) In susceptible mice, Leishmania major induceS very rapid interleukin-4 production by CD4+ T cells which are NK1.1-. Eur. J. Immunol. 25, 3298–3307.

    Article  PubMed  CAS  Google Scholar 

  95. Launois, P., Maillard, I., Pingel, S., Swihart, K., Xenarios, I., Acha-Orbea, H., et al. (1997) IL-4 rapidly produced by V(34 Va8 CD4+ T cells in BALB/c mice infected with Leishmania major instructsTh2 cell development and susceptibility to infection. Immunity 16, 541–549.

    Article  Google Scholar 

  96. Launois, P., Tacchini-Cottier, F., Parra-Lopez, C, and Louis, J.A. (1998) Cytokines in parasitic diseases: the example of cutaneous leishmaniasis. Int. Rev. Immunol 17, 157–180.

    Article  PubMed  CAS  Google Scholar 

  97. Mougneau, E., Altare, F., Wakil, A.E., Zheng, S., Coppola, T., Wang, Z.E., et al. (1995) Expression cloning of a protective Leishmania antigen. Science 268, 563–536.

    Article  PubMed  CAS  Google Scholar 

  98. Himmelrich, H., Launois, P., Maillard, I., Biedermann, T., Tacchini-Cottier, F., Locksley, R.M., et al. (2000) In BALB/ c mice, IL-4 production during the initial phase of infection with Leishmanial major is necessary and sufficient to instruct Th2 cell development resulting in progressive disease. J. Immunol. 164, 4819–4825.

    PubMed  CAS  Google Scholar 

  99. Julia, V., Rassoulzadegan, M., and Glaichenhaus, N. (1996) Resistance to Leishmania major induced by tolerance to a single antigen. Science 274, 421–423.

    Article  PubMed  CAS  Google Scholar 

  100. Pingel, S., Launois, P., Fowell, D.J., Turck, C.W., Southwood, S., Sette, A., et al. (1999) Altered ligands reveal limited plasticity in the T cell response to a pathogenic epitope. J. Exp. Med. 189, 111 1–1120.

    Google Scholar 

  101. Malherbe, L., Filippi, C, Julia, V., Foucras, G., Moro, M., Appel, H., et al. (2000) Selective activation and expansion of high-affinity CD4+ T cells in resistant mice upon infection with Leishmania major. Immunity 13, 771–782.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tacchini-Cottier, F., Milon, G., Louis, J.A. (2003). Th1 and Th2 Cytokines in Leishmaniasis. In: Kotb, M., Calandra, T. (eds) Cytokines and Chemokines in Infectious Diseases Handbook. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-309-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-309-5_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-247-6

  • Online ISBN: 978-1-59259-309-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics