Skip to main content

Glutamate and the Self-Administration of Psychomotor-Stimulant Drugs

  • Chapter
Glutamate and Addiction

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 223 Accesses

Abstract

Psychomotor-stimulant drugs such as the amphetamines and cocaine are self-administered by humans and laboratory animals and produce locomotor activation. Repeated exposure to these drugs produces long-term enhancements in their ability to elicit these locomotor responses so that subsequent re-exposure to the drug, weeks to months later, produces greater behavioral activation than seen initially. Most importantly, previous exposure to such sensitizing regimens of amphetamine injections has also been reported to produce long-lasting enhancements in animals’ predisposition to self-administer the drug. The long-term neurobiological changes associated with these enhancements may also figure importantly in the reinstatement of drug taking in individuals that have been drug-free for some time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sulzer, D., Chen, T.-K., Lau, Y. Y., Kristensen, H., Rayport, S., and Ewing, A. (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J. Neurosci. 15, 4102–4108.

    PubMed  CAS  Google Scholar 

  2. Sulzer, D. and Rayport, S. (1990) Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: a mechanism of action. Neuron 5, 797–808.

    Article  PubMed  CAS  Google Scholar 

  3. Pijnenberg, A. J. J., Honig, W. M. M., van der Heyden, J. A. M., and van Rossum, J. M. (1976) Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity. Eue J. Pharmacol. 35, 45–58.

    Google Scholar 

  4. Vezina, P. and Stewart, J. (1990) Amphetamine administered to the ventral tegmental area but not to the nucleus accumbens sensitizes rats to systemic morphine: lack of conditioned effects. Brain Res. 516 99–106.

    Google Scholar 

  5. Roberts, D. C. S., Zis, A. P, and Fibiger, H. C. (1975) Ascending catecholaminergic pathways and amphetamine induced locomotion: Importance of dopamine and apparent non-involvement of norepinephrine. Brain Res. 93, 441–445.

    Article  PubMed  CAS  Google Scholar 

  6. Kelly, R. H. and Iversen, S. D. (1976) Selective 6-OHDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant induced locomotor activity in rats. Eue. J. Pharamacol. 40, 45–56.

    Article  CAS  Google Scholar 

  7. Joyce, E. M. and Koob, G. F. (1981) Amphetamine-, scopolamine-and caffeine-induced locomotor activity following 6hydroxydopamine lesions of the mesolimbic dopamine system. Psychopharmacology 73, 311–313.

    Article  PubMed  CAS  Google Scholar 

  8. Dougherty, G. G., Jr. and Ellinwood, E. H., Jr. (1981) Chronic d-amphetamine in nucleus accumbens: lack of tolerance or reverse tolerance of locomotor activity. Life Sci. 28, 2295–2298.

    Article  PubMed  CAS  Google Scholar 

  9. Kalivas, P. W. and Weber, B. (1988) Amphetamine injected into the ventral mesencephalon sensitizes rats to peripheral amphetamine and cocaine. J. Pharmacol. Exp. Ther. 245, 1095–1102.

    PubMed  CAS  Google Scholar 

  10. Hooks, M. S., Jones, G. H., Liem, B. J., and Justice, J. B., Jr. (1992) Sensitization and individual differences to intraperitoneal amphetamine, cocaine or caffeine following repeated intracranial amphetamine infusions. Pharmacol. Biochem. Behay. 43, 815–823.

    Google Scholar 

  11. Perugini, M. and Vezina, P. (1994) Amphetamine administered to the ventral tegmental area sensitizes rats to the locomotor effects of nucleus accumbens amphetamine. J. Pharmacol. Exp. Thee. 270, 690–696.

    CAS  Google Scholar 

  12. Cador, M., Bjijou, Y., and Stinus, L. (1995) Evidence of a complete independence of the neurobiological substrates of the induction and expression of behavioral sensitization to amphetamine. Neuroscience 65, 385–395.

    Google Scholar 

  13. Kalivas, P. W. and Duffy, P. (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine. II. Dopamine perikarya. J. Neurosci. 13, 276–284.

    PubMed  CAS  Google Scholar 

  14. Stewart, J. and Vezina, P. (1989) Microinjections of SCH-23390 into the ventral tegmental area and substantia nigra pars reticulata attenuate the development of sensitization to the locomotor effects of systemic amphetamine. Brain Res. 495, 401–406.

    Article  PubMed  CAS  Google Scholar 

  15. Vezina, P. and Queen, A. L. (2000) Induction of locomotor sensitization by amphetamine requires the activation of NMDA receptors in the rat ventral tegmental area. Psychopharmacology 151, 184–191.

    Google Scholar 

  16. Kim, J. H. and Vezina, P. (1998) Metabotropic glutamate receptors are necessary for sensitization by amphetamine. NeuroReport 9, 403–406.

    Article  PubMed  Google Scholar 

  17. Bjijou, Y., Stinus, L., Le Moal, M., and Cador, M. (1996) Evidence for selective involvement of dopamine D1 receptors in the ventral tegmental area in the behavioral sensitization induced by intraventral tegmental area injections of d-amphetamine. J. Pharmacol. Exp. Thee. 277, 1177–1187.

    Google Scholar 

  18. Vezina, P. (1996) DI dopamine receptor activation is necessary for the induction of sensitization by amphetamine in the ventral tegmental area. J. Neurosci. 16, 2411–2420.

    PubMed  CAS  Google Scholar 

  19. Beitner-Johnson, D. and Nestler, E. J. (1991) Morphine and cocaine exert common chronic actions on tyrosine hydroxylase in dopaminergic brain reward regions. J. Neurochem. 57, 344–347.

    Article  PubMed  CAS  Google Scholar 

  20. Sorg, B. A., Shiouh-yi, C., and Kalivas, P. W. (1993) Time course of tyrosine hydroxylase expression following behavioral sensitization to cocaine. J. Pharmacol. Exp. Ther. 266, 424–430.

    PubMed  CAS  Google Scholar 

  21. Nestler, E. J., Terwilliger, R. Z., Walker, J. R., Sevarino, K. A., and Duman, R. S. (1990) Chronic cocaine treatment decreases levels of the G protein subunits G;a and Ga in discrete regions of rat brain. J. Neurochem. 55, 1079–1082.

    Google Scholar 

  22. Henry, D. J., Greene, M. A., and White, F. J. (1989) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: repeated administration. J. Pharmacol. Exp. Ther. 251, 833–839.

    PubMed  CAS  Google Scholar 

  23. Wolf, M. E., White, F. J., Nassar, R., Brooderson, R. J., and Khansa, M. R. (1993) Differential development of autoreceptor subsensitivity and enhanced dopamine release during amphetamine sensitization. J. Pharmacol. Exp. Ther. 264, 249–255.

    PubMed  CAS  Google Scholar 

  24. Robinson, T. E. (1988) Stimulant drugs and stress: factors influencing individual differences in the susceptibility to sensitization, in Sensitization in the Nervous System (Kalivas, P. W. and Branes, C. D., Eds.), Telford, Caldwell, NJ, pp. 145–173.

    Google Scholar 

  25. Hamamura, T., Akiyama, K., Akimoto, K., Kashihara, K., Okumura, K., Ujike, H., et al. (1991) Co-administration of either a selective D1 or D2 dopamine antagonist with methamphetamine prevents methamphetamine-induced behavioral sensitization and neurochemical change, studied by in vivo intracerebral dialysis. Brain Res. 546, 40–46.

    Article  PubMed  CAS  Google Scholar 

  26. Robinson, T. E. (1991) The neurobiology of amphetamine psychosis: evidence from studies with an animal model, in Biological Basis of Schizophrenia ( Nakazawa, T., ed.), Japan Scientific Societies, Tokyo.

    Google Scholar 

  27. Segal, D. S. and Kuczenski, R. (1992) In vivo microdialysis reveals a diminished amphetamine-induced DA response corresponding to behavioral sensitization produced by repeated amphetamine pretreatment. Brain Res. 571, 330–337.

    Article  PubMed  CAS  Google Scholar 

  28. Kalivas, P. W. and Duffy, P. (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine axon terminals. J. Neurosci. 13, 266–275.

    PubMed  CAS  Google Scholar 

  29. Paulson, P. E. and Robinson, T. E. (1995) Amphetamine-induced time-dependent sensitization of dopamine neurotransmission in the dorsal and ventral striatum: a microdialysis study in behaving rats. Synapse 19, 56–65.

    Article  PubMed  CAS  Google Scholar 

  30. Kuczenski, R., Segal, D., and Todd, P. K. (1997) Behavioral sensitization and extracellular dopamine responses to amphetamine after various treatments. Psychopharmacology 134, 221–229.

    Article  PubMed  CAS  Google Scholar 

  31. Vezina, P. (1993) Amphetamine injected into the ventral tegmental area sensitizes the nucleus accumbens dopaminergic response to systemic amphetamine: an in vivo microdialysis study in the rat. Brain Res. 605, 332–337.

    Article  PubMed  CAS  Google Scholar 

  32. Wolf, M. E., White, F. J., and Hu, X.-T. (1994) MK-80l prevents alterations in the mesoaccumbens dopamine system associated with behavioral sensitization to amphetamine. J. Neurosci. 14, 1735–1745.

    PubMed  CAS  Google Scholar 

  33. Hu, X.-T., Koeltzow, T. E., Cooper, D. C., Robertson, G. S., White, F. J., and Vezina, P (2002). Repeated ventral tegmental area amphetamine administration alters Dl dopamine receptor signaling in the nucleus accumbens. Synapse,in press.

    Google Scholar 

  34. Christie, M. J., Summers, R. J., Stephenson, J. A., Cook, C. J., and Beart, P. M. (1987) Excitatory amino acid projections to the nucleus accumbens septi in the rat: a retrograde transport study utilizing D[3H]aspartate and [3H]GABA. Neuroscience 22, 425–439.

    Google Scholar 

  35. Meredith, G. E., Pennartz, C. M., and Groenewegen, H. J. (1993) The cellular framework for chemical signalling in the nucleus accumbens. [review] Prog. Brain Res. 99, 3–24.

    Article  PubMed  CAS  Google Scholar 

  36. Sesack, S. R. and Pickel, V. M. (1990) In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apppositon to each other. Brain Res. 527, 266–279.

    Article  PubMed  CAS  Google Scholar 

  37. Sesack, S. R. and Pickel, V. M. (1992) Prefrontal cortical efferents in ther rat synapse on unlabeled neuronal targets of catecholamine terminals in the nuclues accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp. Neurol. 320, 145–160.

    Article  PubMed  CAS  Google Scholar 

  38. Mogenson, G. J., Brudzynski, S. M., Wu, M., Yang, C. R., and Yim, C. C. Y. (1993) From motivation to action: a review of dopaminergic regulation of limbic–nucleus accumbens–ventral pallidum–pedunculopontine nucleus circuitries involved in limbic-motor integration, in Limbic Motor Circuits and Neuropsychiatry (Kalivas. P. W. and Barnes, C. D., Eds), CRC, Boca Raton, FL, pp. 193–236.

    Google Scholar 

  39. Freed, W. J. (1994) Glutamatergic mechanisms mediating stimulant and antipsychotic drug effects. Neurosci. Biobehay. Rev. 18, 111–120.

    Article  CAS  Google Scholar 

  40. Schmidt, W. J. and Kretschmer, B. D. (1997) Behavioural pharmacology of glutamate receptors in the basal ganglia. Neurosci. Biobehay. Rev. 21, 381–392.

    Article  CAS  Google Scholar 

  41. Vezina, P. and Kim, J.-H. (1999) Metabotropic glutamate receptors and the generation of locomotor activity: interactions with midbrain dopamine. Neurosci. Biobehay. Rev. 23, 577–589.

    Article  CAS  Google Scholar 

  42. Phillipson, 0. (1979) Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: a horseradish peroxidase study in the rat. J. Comp. Neurol. 187, 117–144.

    Article  PubMed  CAS  Google Scholar 

  43. Christie, M. J., Bridge, S., James, L. B., and Beart, P. M. (1985) Excitotoxin lesions suggest an aspartatergic projection from rat medial prefrontal cortex to ventral tegmental area. Brain Res. 333, 169–172.

    Article  PubMed  CAS  Google Scholar 

  44. Sesack, S. R., Deutch, A. Y., Roth, R. H., and Bunney, B. S. (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J. Comp. Neurol. 290, 213–242.

    Article  PubMed  CAS  Google Scholar 

  45. Cornwall, J., Cooper, J. D., and Phillipson, O. T. (1990) Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res. Bull. 25, 271–284.

    Article  PubMed  CAS  Google Scholar 

  46. Kalivas, R. W. (1993) Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res. Rev. 18, 75–113.

    Article  PubMed  CAS  Google Scholar 

  47. Oakman, S. A., Faris, P. L., Kerr, P. E., Cozzari, C., and Harman, B. K. (1995) Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J. Neurosci. 15, 5859–5869.

    PubMed  CAS  Google Scholar 

  48. Smith, Y., Charara, A., and Parent, A. (1996) Glutamatergic inputs from the pedunculopontine nucleus of midbrain dopaminergic neurons in primates: phaseolus vulgaris-leucoagglutinun anterode labeling combined with postembedding glutamate and GABA immunohistochemistry. J. Comp. Neurol. 364, 254–266.

    Article  PubMed  Google Scholar 

  49. Mercuri, N. B., Stratta, F., Calabresi, P., and Bernardi, G. (1992) Electrophysiological evidence for the presence of ionotropic and metabotropic excitatory amino acid receptors on dopaminergic neurons of the rat mesencephalon. Funct. Neurol. 7, 231–234.

    PubMed  CAS  Google Scholar 

  50. Gariano, R. F. and Groves, R. M. (1988) Burst firing induced in mid-brain dopamine neurons by stimulation of the medial prefrontal and anterior cingulate cortices. Brain Res. 462, 194–198.

    CAS  Google Scholar 

  51. Suaud-Chagny, M. F., Chergui, K., Chouvet, G., and Gonon, J. (1992) Relationship between dopamine release in the rat nucleus accumbens and the discharge activity of dopaminergic neurons during local in vivo application of amino acids in the ventral tegmental area. Neuroscience, 49, 63–72.

    Article  PubMed  CAS  Google Scholar 

  52. Murase, S., Grenhoff, J., Chouvet, G., Gonon, F. G., and Svensson, T. H. (1993) Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo. Neurosci. Lett. 157, 53–56.

    Article  PubMed  CAS  Google Scholar 

  53. Karreman, M. and Moghaddam, B. (1996) The prefrontal cortex regulates the basal release of dopamine in the limbic stria-turn: an effect mediated by ventral tegmental area. J. Neurochem. 66, 589–598.

    Article  PubMed  CAS  Google Scholar 

  54. Karreman, M., Westerink, B. H. C., and Moghaddam, B. (1996) Excitatory amino acid receptors in the ventral tegmental area regulate dopamine release in the ventral striatum. J. Neurochem. 67, 601–607.

    Google Scholar 

  55. Pycock, C. J. and Dawbarn, D. (1980) Acute motor effects of N-methyl-D-aspartic acid and kainic acid applied focally to mesencephalic dopamine cell body regions in the rat. Neurosci. Lett. 18, 85–90.

    Article  PubMed  CAS  Google Scholar 

  56. Kalivas, R. W., Duffy, R, and Barrow, J. (1989) Regulation of the mesocoticolimbic dopamiine system by glutamic acid receptor subtypes. J. Pharmacol. Exp. Ther. 251, 378–387.

    PubMed  CAS  Google Scholar 

  57. Schenk, S. and Partridge, B. (1997) Sensitization and tolerance in psychostimulant self-administration. Pharmacol. Biochem. Behan 57, 543–550.

    Article  CAS  Google Scholar 

  58. Swanson, C. J. and Kalivas, P. W. (2000) Regulation of locomotor activity by metabotropic glutamate receptors in the nucleus accumbens and ventral tegmental area. J. Pharmacol. Exp. Ther. 292, 406–414.

    PubMed  CAS  Google Scholar 

  59. Zhang, X. F., Hu, X. T., White, F. J., and Wolf, M. E. (1997) Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. J. Pharmacol. Exp. Ther. 281, 699–706.

    PubMed  CAS  Google Scholar 

  60. Wolf, M. E. (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol. 54, 679–720.

    Article  PubMed  CAS  Google Scholar 

  61. Karler, R., Calder, L. D., and Turkanis, S. A. (1991) DNQX blockade of amphetamine behavioral sensitization. Brain Res. 552, 295–300.

    Article  PubMed  CAS  Google Scholar 

  62. Stewart, J. and Druhan, J. P. (1993) Development of both conditioning and sensitization of the behavioral activating effects of amphetamine is blocked by the noncompetitive NMDA receptor antagonist, MK-801. Psychopharmacology 110, 125–132.

    Article  PubMed  CAS  Google Scholar 

  63. Wolf, M. E., Drahlin, S. L., Hu, X. T., Xue, C. J., and White, K. (1995) Effects of lesions of prefrontal cortex, amygdala, or fornix on behavioral sensitization to amphetamine: Comparison with N-methyl-D-aspartate antagonists. Neuroscience 69, 417–439.

    Article  PubMed  CAS  Google Scholar 

  64. Li, Y., Vartanian, A. J., White, F. J., Xue, C. J., and Wolf, M. E. (1997) Effects of the AMPA receptor antagonist NBQX on the development and expression of behavioral sensitization to cocaine and amphetamine. Psychopharmacology 134, 266–276.

    Article  PubMed  CAS  Google Scholar 

  65. Kalivas, P. W. and Alesdatter, J. E. (1993) Involvement of NMDA receptor stimulation in the VTA and amygdala in behavioral sensitization to cocaine. J. Pharmacol. Exp. Ther. 267, 486–495.

    PubMed  CAS  Google Scholar 

  66. Cador, M., Bjijou, Y., Cailhol, S., and Stinus, L. (1999) d-Amphetamine-induced behavioral sensitization: implications of a glutamatergic medial prefrontal cortex-ventral tegmental area innervation. Neuroscience 94, 705–721.

    Google Scholar 

  67. Kalivas, P. W. and Duffy, P. (1995) DI receptors modulate glutamate transmission in the ventral tegmental area. J. Neurosci. 15, 5379–5388.

    Google Scholar 

  68. Wolf, M. E. and Xue, C.-J. (1998) Amphetamine and Dl dopamine receptor agonists produce biphasic effects on glutamate efflux in rat ventral tegmental area: modification by repeated amphetamine administration. J. Neurochem. 70, 198–209.

    Article  PubMed  CAS  Google Scholar 

  69. Wang, T. and French, E. D. (1993) Electrophysiological evidence for the existence of NMDA and non-NMDA receptors on rat ventral tegmental dopamine neurons. Synapse 13, 270–277.

    Article  PubMed  CAS  Google Scholar 

  70. Fitzgerald, L. W., Ortiz, J., Hamedani, A. G., and Nestler, E. J. (1996) Drugs of abuse and stress increase the expression of G1uR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J Neurosci. 16, 274–282.

    PubMed  CAS  Google Scholar 

  71. White F. J., Hu, X.-T., Henry, D. J., and Zhang, X.-F. (1995) Repeated administration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. J Pharmacol. Exp. Ther. 273, 445–454.

    PubMed  CAS  Google Scholar 

  72. Li, Y., Hu, X.-T., Berney, T. G., Vartanian, A. J., Stine, C. D., Wolf, M. E., (1999) Both glutamate receptor antagonists and prefrontal cortex lesions prevent induction of cocaine sensitization and associated neuroadaptations. Synapse 34, 169–180.

    Google Scholar 

  73. Pierce, R. C., Reeder, D. C., Hicks, J., Morgan, Z. R., and Kalivas, P. W. (1998) Ibotenic acid lesions of the dorsal prefrontal cortex disrupt the expression of behavioral sensitization to cocaine. Neuroscience 82, 1103–1114.

    Article  PubMed  CAS  Google Scholar 

  74. Li, Y. and Wolf, M. E. (1997) Ibotenic acid lesions of prefrontal cortex do not prevent expression of behavioral sensitization to amphetamine. Behay. Brain Res. 84, 285–289.

    Article  CAS  Google Scholar 

  75. Kalivas, P. W. and Duffy, P. (1998) Repeated cocaine administration alters D-1 dopamine receptor regulation of extracellular glutamate levels in the ventral tegmental area. J. Neurochem. 70 1497–1502.

    Google Scholar 

  76. Xue, C. J., Ng, J. P., Li, Y., and Wolf, M. E. (1996) Acute and repeated systemic amphetamine administration: effects on extracellular glutamate, aspartate, and serine levels in rat ventral tegmental area and nucleus accumbens. J. Neurochem. 67, 352–363.

    Article  PubMed  CAS  Google Scholar 

  77. Bonci, A. and Williams, J. T. (1996) A common mechanism mediates long-term changes in synaptic transmission after chronic cocaine and morphine. Neuron 16, 631–639.

    Article  PubMed  CAS  Google Scholar 

  78. Martin, L. J. Blackstone, C. D., Huganir, R. L, and Price, L. (1992) Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron 9 259–270.

    Google Scholar 

  79. Aniksztejn, L., Otani, S., and Ben-Ari, Y. (1992) Quisqualate metabotropic receptors modulate NMDA currents and facilitate induction of long-term potentiation through protein kinase C. Eur. J. Neurosci. 4, 500–505.

    Article  PubMed  Google Scholar 

  80. Glaum, S. R. and Miller, R. J. (1993) Activation of metabotropic glutamate receptors produces reciprocal regulation of ionotropic glutamate and GABA responses in the nucleus of the tractus solitarius of the rat. J. Neurosci. 13, 1636–1641.

    PubMed  CAS  Google Scholar 

  81. Colwell, C. S. and Levine, M. S. (1994) Metabotropic glutamate receptors modulate NMDA receptor function in neostriatal neurons. Neuroscience 61, 497–507.

    Article  PubMed  CAS  Google Scholar 

  82. Fiorillo, C. D. and Williams, J. T. (1998) Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature 394, 78–82.

    Article  PubMed  CAS  Google Scholar 

  83. Paladini, C. A., Fiorillo, C. D., Morikawa, H., and Williams, J. T. (2001) Amphetamine selectively blocks inhibitory glutamate transmission in dopamine neurons. Nature Neurosci. 4, 275–281.

    Article  PubMed  CAS  Google Scholar 

  84. Fiorillo, C. D. and Williams, J. T. (2000) Selective inhibition by adenosine of mGluR IPSPs in dopamine neurons after cocaine treatment. J Neurophysiol. 83, 1307–1314.

    PubMed  CAS  Google Scholar 

  85. Bonci, A., Grillner, P., Siniscalchi, A., Mercuri, N. B., and Bernardi, G. (1997) Glutamate metabotropic receptor agonists depress excitatory and inhibitory transmission on rat mesencephalic principal neurons. Eue J. Neurosci. 9, 2359–2369.

    Article  CAS  Google Scholar 

  86. Wigmore, M. A. and Lacey, M. G. (1998) Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurons in vitro. Br. J. Pharmacol. 123, 667–674.

    Article  PubMed  CAS  Google Scholar 

  87. Wittmann, M., Marino, M. J., Bradley, S. R., and Conn, R J. (2001) Activation of group III mGluRs inhibits GABAergic and glutamatergic transmission in the substantia nigra pars reticulata. J Neurophysiol. 85, 1960–1968.

    PubMed  CAS  Google Scholar 

  88. Manzoni, O. J. and Williams, J. T. (1999) Presynaptic regulation of glutamate release in the ventral tegmental area during morphine withdrawal. J. Neurosci. 19, 6629–66636.

    PubMed  CAS  Google Scholar 

  89. Bell, K. and Kalivas, P. W. (1996) Context-specific cross-sensitization between systemic cocaine and intra-accumbens AMPA infusion in the rat. Psychopharmacology 127, 377–383.

    PubMed  CAS  Google Scholar 

  90. Pierce, R. C., Bell, K., Duffy, P., and Kalivas, P. W. (1996) Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J. Neurosci. 16, 1550–1560.

    PubMed  CAS  Google Scholar 

  91. Reid, M. S. and Berger, S. P. (1996) Evidence for sensitization of cocaine-induced nucleus accumbens glutamate release. NeurOreport 7, 1325–1329.

    Article  PubMed  CAS  Google Scholar 

  92. Robinson, S. E., Kunko, P. M., Smith, J. A., Wallace, M. J., Mo, Q., and Maher, J. R. (1997) Extracellular aspartate concentration increases in nucleus accumbens after cocaine sensitization. Eue J. Pharmacol. 319, 31–36.

    Article  CAS  Google Scholar 

  93. Pierce, R. C., Duffy, P., and Kalivas, P. W. (1996) Changes in excitatory amino acid transmission in the nucleus accumbens associated with behavioral sensitization to cocaine during early withdrawal. Neurosci. 1, article #100 08.

    Google Scholar 

  94. Youngren, K. D., Daly, D. A., and Moghaddam, B. (1993) Distinct actions of endogenous excitatory amino acids on the outflow of dopamine in the nucleus accumbens. J. Pharmacol. Exp. Thee. 264, 289–293.

    CAS  Google Scholar 

  95. Smith, J. A., Mo, Q., Guo, H., Kunko, P. M., and Robinson, S. E. (1995) Cocaine increases extraneuronal levels of aspartate and glutamate in the nucleus accumbens. Brain Res. 683, 264–269.

    Article  PubMed  CAS  Google Scholar 

  96. Taber, M. T., Baker, G. B., and Fibiger, H. C. (1996) Glutamate receptor agonists decrease extracellular dopamine in the rat nucleus accumbens in vivo. Synapse 24, 165–172.

    Article  PubMed  CAS  Google Scholar 

  97. Kalivas, P. W. and Duffy, P. (1997) Dopamine regulation of extracellular glutamate in the nucleus accumbens. Brain Res. 761, 173–177.

    Article  PubMed  CAS  Google Scholar 

  98. Reid, M. S., Hsu, K., Jr., and Berger, S. P. (1997) Cocaine and amphetamine preferentially stimulate glutamate release in the limbic system: studies on the involvement of dopamine. Synapse 27, 95–105.

    Article  PubMed  CAS  Google Scholar 

  99. Segovia, G., Del Acro, A., and Mora, F. (1997) Endogenous glutamate increases extracellular concentrations of dopamine, GABA, and taurine through NMDA and AMPA/kainate receptors in striatum of the freely moving rat: a microdialysis study. J. Neurochem. 69, 1476–1483.

    Article  PubMed  CAS  Google Scholar 

  100. West, A. R. and Galloway, M. P. (1997) Inhibition of glutamate reuptake potentiates endogenous nitric oxide-facilitated dopamine efflux in the rat striatum: an in vivo microdialysis study. Neurosci. Leu. 230, 21–24.

    Article  CAS  Google Scholar 

  101. Dalia, A., Uretsky, N. J., and Wallace, L. J. (1998) Dopaminergic agonists administered into the nucleus accumbens: effects on extracellular glutamate and on locomotor activity. Brain Res. 788, 111–117.

    Article  PubMed  CAS  Google Scholar 

  102. Perugini, M. and Vezina, P. (1994) Lack of sensitization to the locomotor effects of direct DI dopamine receptor agonists in rats having been pre-exposed to amphetamine. Soc. Neurosci. Abst. 20, 825.

    Google Scholar 

  103. Pierce, R. C. and Kalivas, P. W. (1995) Amphetamine produces sensitized increses in locomotion and extracellular dopamine preferentially in the nucleus accumbens shell of rats administered repeated cocaine. J. Pharmacol. Exp. Ther. 275, 1019–1029.

    PubMed  CAS  Google Scholar 

  104. Kim, J. H., Perugini, M., Austin, J. D., and Vezina, P. Previous exposure to amphetamine enhances the subsequent locomotor response to a Di dopamine receptor agonist when glutamate reuptake is inhibited. J. Neurosci. 21, 1–6.

    Google Scholar 

  105. Kim, J. H. and Vezina, P. (1998) The metabotropic glutamate receptor antagonist (RS)-MCPC produces hyperlocomotion in amphetamine pre-exposed rats. Neuropharmacology 37, 189–197.

    Article  PubMed  CAS  Google Scholar 

  106. Manzoni, O. J., Michel, J.-M., and Bockaert, J. (1997) Metabotropic glutamate receptors in the rat nucleus accumbens. Eur. J. Neurosci. 9, 1514–1523.

    Article  PubMed  CAS  Google Scholar 

  107. Gaiardi, M., Bartoletti, M., Bacchi, A., Gubellini, C., Costa, M., and Babbini, M. (1991) Role of repeated exposure to morphine in determining its affective properties: place and taste conditioning studies in rats. Psychopharmacology 103, 183–186.

    Article  PubMed  CAS  Google Scholar 

  108. Lett, R. T. (1989) Repeated exposures intensify rather that diminish the rewarding effects of amphetamine, morphine, and cocaine. Psychophramacology 98, 357–362.

    Article  CAS  Google Scholar 

  109. Shippenberg, T. S. and Heidbreder, C. H. (1995) Sensitization to the conditioned rewarding effects of cocaine: pharmacological and temporal characteristics. J. Pharmacol. Exp. Thee. 273, 808–815.

    CAS  Google Scholar 

  110. Horger B. A., Shelton, K., and Schenk, S. (1990) Pre-exposure sensitizes rats to the rewarding effects of cocaine. Pharmacol. Biochem. Behay. 37, 707–711.

    Article  CAS  Google Scholar 

  111. Horger, B. A., Giles, M. K., and Schenk, S. (1992) Preexposure to amphetamine and nicotine predisposes rats to self-administer a low dose of cocaine. Psycopharamacology 107, 271–276.

    Article  CAS  Google Scholar 

  112. Piazza, P. V., Deminiere, J., Le Moal, M., and Simon, H. (1989) Factors that predict individual vulnerability to amphetamine self-administration. Science 245, 1511–1513.

    Article  PubMed  CAS  Google Scholar 

  113. Piazza, P. V., Maccari, S. Deminière, J.-M., Le Moal, M., Mormède, P., and Simon, H. (1991) Corticosterone levels determine individual vulnerability to amphetamine self-administration. Proc. Natl. Acad. Sci. USA 88, 2088–2092.

    Article  PubMed  CAS  Google Scholar 

  114. Pierre, P. J. and Vezina, P. (1997) Predisposition to self-administer amphetamine: the contribution of response to novelty and prior exposure to the drug. Psychopharmacology 129, 277–284.

    Article  PubMed  CAS  Google Scholar 

  115. Valadez, A., and Schenk, S. (1994) Persistence of the ability of amphetamine pre-exposure to facilitate acquistion of cocaine self-administration. Pharmacol. Biochem. Behay. 47, 203–205.

    Article  CAS  Google Scholar 

  116. Woolverton, W. L., Cervo, L., and Johanson, C. E. (1984) Effects of repeated mehtamphetamine administration on methamphetamine self-administration in rhesus monkeys. Pharmacol. Biochem. Behay. 21, 737–741.

    Article  CAS  Google Scholar 

  117. Mendrek, A., Blaha, C., and Phillips, A. G. (1998) Pre-exposure to amphetamine sensitizes rats to its rewarding properties as measured by a progressive ratio schedule. Psychopharmacology 135, 416–422.

    Article  PubMed  CAS  Google Scholar 

  118. Lorrrain, D. S., Arnold, G. M., and Vezina, P. (2000) Previous exposure to amphetamine increases incentive to obtain the drug: Long-lasting effects revealed by the progressive ratio schedule. Behay. Brain Res. 107, 9–19.

    Article  Google Scholar 

  119. Robinson T. E. and Berridge, K. C. (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247–291.

    Article  PubMed  CAS  Google Scholar 

  120. Shaham, Y. and Stewart, J. (1995) Stress reinstates heroin-seeking in drug-free animals: an effect mimicking heroin, not withdrawal. Psychopharmacology 119, 334–341.

    Article  PubMed  CAS  Google Scholar 

  121. Shaham, Y., Rajabi, H., and Stewart, J. (1996) Relapse to heroin-seeking under opioid maintenance: the effects of opioid withdrawal, heroin priming and stress. J. Neurosci. 16, 1957–1963.

    PubMed  CAS  Google Scholar 

  122. Shaham, Y. and Stewart, J. (1996) Effects of opioid and dopamine receptor antagonists on relapse induced by stress and re-exposure to heroin in rats. Psychopharmacology 125, 385–391.

    Article  PubMed  CAS  Google Scholar 

  123. Stewart, J., deWit, H., and Eikelboom, R. (1984) The role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychol. Rev. 91, 251–268.

    Article  PubMed  CAS  Google Scholar 

  124. Stewart, J. and deWit, H. (1987) Reinstatement of drug-taking behavior as a method of assessing incentive motivational properties of drugs, in Methods of Assessing the Reinforcing Properties of Abused Drugs ( Bozarth, M. A., ed.), Springer-Verlag, New York, pp. 211–227.

    Chapter  Google Scholar 

  125. Koob, G. F. and Bloom, F. E. (1988) Cellular and molecular mechanisms of drug dependence. Science 242, 715–723.

    Article  PubMed  CAS  Google Scholar 

  126. Wise, R. A., and Bozarth, M. A. (1987) A psychomotor stimulant theory of addiction. Psychol. Rev. 94, 469–492.

    Article  PubMed  CAS  Google Scholar 

  127. Bozarth, M. and Wise, R. A. (1981) Heroin reward is dependent on a dopaminergic sustrate. Life Sci. 29, 1881–1886.

    Article  PubMed  CAS  Google Scholar 

  128. Hoebel, B. G., Monaco, A. P., Hernandez, L., Aulisi, E. F., Stanley, B. G., and Lenard, L. (1983) Self-injection of amphetamine directly into the brain. Psychopharmacology 81, 158–163.

    Article  PubMed  CAS  Google Scholar 

  129. Pettit, H. O., Ettenberg, A., Bloom, F. E., and Koob, G. F. (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 84, 167–173.

    Article  PubMed  CAS  Google Scholar 

  130. Roberts, D. C. S., Koob, G. F., Klonoff, P. and Fibiger, H. C. (1980) Extinction and recovery of cocaine self-administration following 6-OHDA lesions of the nucleus accumbens. Pharmacol. Biochem. Behay. 12, 781–787.

    Article  CAS  Google Scholar 

  131. Zito, K. A., Vickers, G., and Roberts, D. C. S. (1985) Disruption of cocaine and heroin self-administration following kainic acid lesions of the nucleus accumbens. Pharmacol. Biochem. Behay. 23, 1029–1036.

    Article  CAS  Google Scholar 

  132. Woolverton, W. L. and Virus, R. M. (1989) The effects of D1 and D2 dopamine antagonists on behavior maintained by cocaine or food. Pharmacol. Biochem. Behay. 32, 691–697.

    Article  CAS  Google Scholar 

  133. Caine, S. B. and Koob, G. E (1994) Effects of dopamine Dl and D2 antagonists on cocaine self-administration under different schedules of reinforcement in the rat. J. Pharmacol. Exp. Thee. 270, 209–218.

    CAS  Google Scholar 

  134. Clarke, P. B., Jakubovic, A., and Fibiger, H. C. (1988) Anatomical analysis of the involvement of mesolimbocortical dopamine in the locomotor stimulant actions of d-amphetamine and apomorphine. Psychopharmacology 96, 511–520.

    Article  PubMed  CAS  Google Scholar 

  135. McCreary, A. C. and Marsden, C. A. (1993) Dopamine D1 receptor antagonism by SCH-23390 prevents expression of conditioned sensitization following repeated administration of cocaine. Neuropharmacology 32, 387–391.

    Article  PubMed  CAS  Google Scholar 

  136. Meyer, M. E., Cottrell, G. A., Van Hartesveldt, C., and Potter, T. J. (1993) Effects of dopamine D1 antagonists SCH-23390 and SKF-83566 on locomotor activities in rats. Pharmacol. Biochem. Behay. 44, 429–432.

    Article  CAS  Google Scholar 

  137. Vezina, P., Pierre, P. J., and Lorrain, D. S. (1999) The effect of previous exposure to amphetamine on drug-induced locomotion and self-administration of a low dose of the drug. Psychopharmacology 147, 125–134.

    Google Scholar 

  138. Dakis, C. A., and Gold, M. S. (1985) New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci. Behay. Rev. 9, 469–77.

    Article  Google Scholar 

  139. Hurd, Y. L., Weiss, E, Koob, G., and Ungerstedt, U. (1990) The influence of cocaine self-administration on in vivo dopamine and acetylcholine neurotransmission in rat caudateputamen. Neurosci. Lett. 109, 227–233.

    Article  PubMed  CAS  Google Scholar 

  140. Pettit, H. O. and Justice, J. B., Jr. (1989) Dopamine in the nucleus accumbens during cocaine self-administration as studied as by in vivo microdialysis. Pharmacol. Biochem. Behay. 34, 899–904.

    Google Scholar 

  141. Wise, R. A., Newton, P., Leeb, K., Burnette, B., Pocock, D., and Justice, J. B., Jr. (1995) Fluctuations in nucleus accumbens dopamine concentration during intravenous cocaine self-administration in rats. Psychopharmacology 120, 10–20.

    Google Scholar 

  142. De Wit, H. and Stewart, J. (1983) Drug reinstatement of heroin-reinforced responding in the rat. Psychopharmacology 79, 29–31.

    Article  PubMed  Google Scholar 

  143. Erb. S., Shaham, Y., and Stewart, J. (1996) Stress reinstates cocaine-seeking behavior after prolonged extinction and a drug-free period. Psychopharmacolog 128, 408–412.

    Article  CAS  Google Scholar 

  144. Stewart, J. (1984) Reinstatement of heroin and cocaine self-administration behavior in the rat by intracerebral application of morphine in the ventral tegmental area. Pharmacol. Biochem. Behay. 20, 917–923.

    Article  CAS  Google Scholar 

  145. Stewart, J. and Vezina, P. (1988) A comparison of the effects of infra-accumbens injections of amphetamine and morphine on reinstatement of heroin intravenous self-administration behavior. Brain Res. 457, 287–294.

    Article  PubMed  CAS  Google Scholar 

  146. Stewart, J. and Wise, R. A. (1992) Reinstatement of heroin self-administration habits: morphine prompts and naltrexone discourages renewed responding after extinction. Psychopharmacology 108, 79–84.

    Article  PubMed  CAS  Google Scholar 

  147. Hooks, M. S., Duffy, P., Striplin, C., and Kalivas, P. W. (1994) Behavioral and neurochemical sensitization following cocaine self-administration. Psychopharmacology 115, 265–272.

    Article  PubMed  CAS  Google Scholar 

  148. Phillips, A. G. and Di Ciano, P. (1996) Behavioral sensitization is induced by intravenous self-administration of cocaine by rats. Psychopharmacology 124, 279–281.

    Article  PubMed  CAS  Google Scholar 

  149. Vezina, P., Lorrain, D. S., Arnold, G. M., Austin, J. D., and Suto, N. (2002) Sensitization of midbrain dopamine neuron reactivity promotes the pursuit of amphetamine. J. Neurosci.,in press.

    Google Scholar 

  150. Neisewander, J. L., O’Dell, L. E., Tran-Nguyen, T. L., Castaneda, E., and Fuchs, R. A. (1996) Dopamine overflow in the nucleus accumbens during extinction and reinstatement of cocaine self-administration behavior. Neuropsychopharmacology 15, 506–14.

    Article  PubMed  CAS  Google Scholar 

  151. Suto, N., Austin, J. D., Kramer, M. K., Tanabe, L. M., and Vezina, R. (2000) Previous exposure to amphetamine in the VTA leads to excessive cocaine self-administration in a D1 DA receptor dependent manner. Soc. Neurosci. Abst. 26, 793.

    Google Scholar 

  152. Pierre, P. J., and Vezina, P. (1998) D1 dopamine receptor blockade prevents the facilitation of amphetamine self-administration induced by prior exposure to the drug. Psychopharmacology 138, 159–166.

    Article  PubMed  CAS  Google Scholar 

  153. Suto, N, Austin, J. D., Tanabe, L. M., and Vezina, P. (2001) Previous exposure to VTA amphetamine promotes the self-administration of cocaine: DI dopamine and NMDA glutamate receptor dependence. Drug and Alcohol Dependence 63, 631.

    Google Scholar 

  154. Suto, N., Austin, J. D., Tanabe, L. M., Svoboda, R. A., and Vezina, P. (2001) VTA amphetamine pre-exposure facilitates cocaine self-administration: glutamate receptor dependence. Soc. Neurosci. Abst.,27 979.3.

    Google Scholar 

  155. Schenk, S., Valadez, A., McNamara, C., House, D. T., Higley, D., Bankson, M. S., et al. (1993) Development and expression of sensitization to cocaine’s reinforcing properties: role of NMDA receptors. Psychopharmacology 111, 332–338.

    Article  PubMed  CAS  Google Scholar 

  156. Cornish, J. L., Duffy, P., and Kalivas, P. W. (1999) A role for nucleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience 93, 1359–1367.

    Article  PubMed  CAS  Google Scholar 

  157. Cornish, J. L., and Kalivas, P. W. (2000) Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J. Neurosci. 20, 1–5.

    Google Scholar 

  158. Vezina, P., Suto, N., Austin, J. D., Tanabe, L. M., and Creekmore, E. (2001) Previous exposure to amphetamine enhances cocaine self-administration as well as its reinstatement by nucleus accumbens AMPA. Soc. Neurosci. Abst. 27, 979. 17.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vezina, P., Suto, N. (2002). Glutamate and the Self-Administration of Psychomotor-Stimulant Drugs. In: Herman, B.H., Frankenheim, J., Litten, R.Z., Sheridan, P.H., Weight, F.F., Zukin, S.R. (eds) Glutamate and Addiction. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-306-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-306-4_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-234-6

  • Online ISBN: 978-1-59259-306-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics