Skip to main content

Peroxisome Proliferator-Activated Receptor Gamma Agonists

Potential Therapeutic Agents for Neuroinflammation

  • Chapter
Neuroinflammation

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 231 Accesses

Abstract

Inflammatory processes play a central role in a number of diseases afflicting the nervous system. There is considerable controversy over whether inflammatory mechanisms are the cause or consequence of neurodegenerative changes. Moreover, if inflammatory changes are secondary to more primary neuropathological changes, do they exacerbate neuronal dysfunction and promote cell death? In some neurological diseases, the inflammatory cells are the primary effectors of the pathology; for example, in multiple sclerosis, T cells direct macrophage-mediated loss of myelin. In other diseases such as stroke, peripheral leukocytes are recruited to the lesion site along with the parallel activation of the endogenous microglia. These cells act in concert to mount a robust pro-inflammatory response that greatly expands and exacerbates the primary infarct. Traumatic brain injury is also associated with inflammatory cell infiltration and induction of a local inflammatory response. More recently, human immunodeficiency virus (HIV) and CreutzfeldtJakob disease have been shown to have an inflammatory component arising secondary to the primary neuropathological process. The involvement of an inflammatory component in the etiology of Alzheimer’s disease (AD) has recently received considerable attention (1). Indeed, the only demonstrated effective therapy for AD patients is long-term treatment with nonsteroidal anti-inflammatory drugs (NSAIDs). The mechanistic basis of the efficacy of NSAIDs in AD remains unclear. However, the recent recognition that NSAIDs can bind to and activate the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) has offered an explanation for the efficacy of these drugs in AD and has opened new therapeutic approaches to this disease. Indeed, the newly appreciated anti-inflammatory actions of PPARγ agonists may allow novel therapies for other central nervous system (CNS) indications with an inflammatory component.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., et al. (2000) Inflammation and Alzheimer’s disease. Neurobiol. Aging 21, 383–421.

    Article  PubMed  CAS  Google Scholar 

  2. McGeer, P. L., Kawamata, T., Walker, D. G., Akiyama, H., Tooyama, I., and McGeer, E. G. (1993) Microglia in degenerative neurological disease. Glia 7, 84–92.

    Article  PubMed  CAS  Google Scholar 

  3. Perlmutter, L. S., Barron, E., and Chui, H. C. (1990) Morphologic association between microglia and senile plaque amyloid in Alzheimer’s disease. Neurosci. Leu. 119, 32–36.

    Article  CAS  Google Scholar 

  4. Bornemann, K. D., Wiederhold, K. H., Pauli, C., Ermini, F., Stalder, M., Schnell, L., et al. (2001) Abeta-induced inflammatory processes in microglia cells of APP23 transgenic mice. Am. J. Pathol. 158, 63–73.

    Article  PubMed  CAS  Google Scholar 

  5. Bamberger, M. and Landreth, G. (2001) Microglial Interaction with f3-amyloid-implications for the pathogenesis of Alzheimer’s disease. Microsc. Res. Tech. 54, 59–70.

    Article  PubMed  CAS  Google Scholar 

  6. Combs, C. K., Johnson, D. J., Cannady, S. B., Lehman, T. M., and Landreth, G. E. (1999) Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of (3-amyloid and prion proteins. J. Neurosci. 19, 928–939.

    PubMed  CAS  Google Scholar 

  7. McDonald, D. R., Brunden, K. R., and Landreth, G. E. (1997) Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J. Neurosci. 17, 2284–2294.

    PubMed  CAS  Google Scholar 

  8. McDonald, D., Bamberger, M., Combs, C., and Landreth, G. (1998) (3-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP-1 monocytes. J. Neurosci. 18, 4451–4460.

    Google Scholar 

  9. Combs, C., Bates, P., Karlo, J., and Landreth, G. (2001) Regulation of beta-amyloid stimulated proinflammatory responses by peroxisome proliferator-activated receptor alpha. Neurochem. Int. 39, 449–557.

    Article  PubMed  CAS  Google Scholar 

  10. McGeer, P. L. and Rogers, J. (1992) Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology 42, 447–449.

    Article  PubMed  CAS  Google Scholar 

  11. McGeer, P. L. and McGeer, E. G. (1999) Inflammation of the brain in Alzheimer’s disease: implications for therapy. J. Leukocyte Biol. 65, 409–415.

    PubMed  CAS  Google Scholar 

  12. Breitner, J. C. (1996) The role of anti-inflammatory drugs in the prevention and treatment of Alzheimer’s disease. Annu. Rev. Med. 47, 401–411.

    Article  PubMed  CAS  Google Scholar 

  13. Stewart, W. F., Kawas, C., Corrada, M., and Metter, E. J. (1997) Risk of Alzheimer’s disease and duration of NSAID use. Neurology 48, 626–632.

    Article  PubMed  CAS  Google Scholar 

  14. Mackenzie, I. R. and Munoz, D. G. (1998) Nonsteroidal anti-inflammatory drug use and Alzheimer-type pathology in aging. Neurology 50, 986–990.

    Article  PubMed  CAS  Google Scholar 

  15. Sainati, S., Ingram, D., Talwalker, G., and Geis, G. (2000) Results of a double-blind, randomized, placebo-controlled study of celecoxib in the treatment of Alzheimer’s disease. Sixth International Stockholm/Springfield Symposium on Advances in Alzheimer Therapy, p. 180.

    Google Scholar 

  16. Lehmann, J. M., Lenhard, J. M., Oliver, B. B., Ringold, G. M., and Kliewer, S. A. (1997) Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 272, 3406–3410.

    Article  PubMed  CAS  Google Scholar 

  17. Combs, C. K., Johnson, D. E., Karlo, J. C., Cannady, S. B., and Landreth, G. E. (2000) Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J. Neurosci. 20, 558–567.

    PubMed  CAS  Google Scholar 

  18. Heneka, M. T., Feinstein, D. L., Galea, E., Gleichmann, M., Wullner, U., and Klockgether, T. (1999) Peroxisome proliferator-activated receptor gamma agonists protect cerebellar granule cells from cytokine-induced apoptotic cell death by inhibition of inducible nitric oxide synthase. J. Neuroimmunol. 100, 156–168.

    Article  PubMed  CAS  Google Scholar 

  19. Heneka, M. T., Klockgether, T., and Feinstein, D. L. (2000) Peroxisome proliferator-activated receptor-gamma ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo. J. Neurosci. 20, 6862–6867.

    PubMed  CAS  Google Scholar 

  20. Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J., and Glass, C. K. (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391, 79–82.

    Article  PubMed  CAS  Google Scholar 

  21. Barone, F. C. and Feuerstein, G. Z. (1999) Inflammatory mediators and stroke: new opportunities for novel therapeutics. J. Cereb. Blood Flow Metab. 19, 819–834.

    Article  PubMed  CAS  Google Scholar 

  22. Loddick, S. A. and Rothwell, N. J. (1996) Neuroprotective effects of human recombinant interleukin-1 receptor antagonist in focal cerebral ischaemia in the rat../. Cereb. Blood Flow Metab. 16, 932–940.

    CAS  Google Scholar 

  23. Matsuo, Y., Onodera, H., Shiga, Y., Nakamura, M., Ninomiya, M., Kihara, T., et al. (1994) Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Effects of neutrophil depletion. Stroke 25, 1469–1475.

    Article  PubMed  CAS  Google Scholar 

  24. Chopp, M., Li, Y., Jiang, N., Zhang, R. L., and Prostak, J. (1996) Antibodies against adhesion molecules reduce apoptosis after transient middle cerebral artery occlusion in rat brain. J. Cereb. Blood Flow Metab. 16, 578–584.

    Article  PubMed  CAS  Google Scholar 

  25. Noseworthy, J. H., Lucchinetti, C., Rodriguez, M., and Weinshenker, B. G. (2000) Multiple sclerosis. N. Engl. J. Med. 343, 938–952.

    Article  PubMed  CAS  Google Scholar 

  26. Yang, X. Y., Wang, L. H., Chen, T., Hodge, D. R., Resau, J. H., DaSilva, L., et al. (2000) Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. PPARgamma co-association with transcription factor NFAT. J. Biol. Chem. 275, 4541–4544.

    Article  PubMed  CAS  Google Scholar 

  27. Gelman, L., Fruchart, J. C., and Auwerx, J. (1999) An update on the mechanisms of action of the peroxisome proliferator-activated receptors (PPARs) and their roles in inflammation and cancer. Cell. Mol. Life Sci. 55, 932–943.

    Article  PubMed  CAS  Google Scholar 

  28. Niino, M., Iwabuchi, K., Kikuchi, S., Ato, M., Morohashi, T., Ogata, A., et al. (2001) Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by an agonist of peroxisome proliferator-activated receptor-gamma. J. Neuroimmunol. 116, 40–48.

    Article  PubMed  CAS  Google Scholar 

  29. Blumberg, B. and Evans, R. M. (1998) Orphan nuclear receptors—new ligands and new possibilities. Genes Dey. 12, 3149–3155.

    Article  CAS  Google Scholar 

  30. Willson, T. M., Brown, P. J., Sternbach, D. D., and Henke, B. R. (2000) The PPARs: from orphan receptors to drug discovery. J. Med. Chem. 43, 527–550.

    Article  PubMed  CAS  Google Scholar 

  31. Murphy, G. J. and Holder, J. C. (2000) PPAR-gamma agonists: therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol. Sci. 21, 469–474.

    Article  PubMed  CAS  Google Scholar 

  32. Ricote, M., Huang, J. T., Welch, J. S., and Glass, C. K. (1999) The peroxisome proliferatoractivated receptor (PPARgamma) as a regulator of monocyte/macrophage function. J. Leukocyte Biol. 66, 733–739.

    PubMed  CAS  Google Scholar 

  33. Desvergne, B. and Wahli, W. (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649–688.

    Article  PubMed  CAS  Google Scholar 

  34. Willson, T. M. and Wahli, W. (1997) Peroxisome proliferator-activated receptor agonists. Curr. Opin. Chem. Biol. 1, 235–241.

    Article  PubMed  CAS  Google Scholar 

  35. Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., et al. (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395, 137–143.

    Article  PubMed  CAS  Google Scholar 

  36. Uppenberg, J., Svensson, C., Jaki, M., Bertilsson, G., Jendeberg, L., and Berkenstam, A. (1998) Crystal structure of the ligand binding domain of the human nuclear receptor PPARgamma. J. Biol. Chem. 273, 31,108–31, 112.

    Google Scholar 

  37. He, T. C., Chan, T. A., Vogelstein, B., and Kinzler, K. W. (1999) PPARdelta is an APCregulated target of nonsteroidal anti-inflammatory drugs. Cell 99, 335–345.

    Article  PubMed  CAS  Google Scholar 

  38. Lemberger, T., Desvergne, B., and Wahli, W. (1996) Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu. Rev. Cell. Dev. Biol. 12, 335–363.

    Article  PubMed  CAS  Google Scholar 

  39. Yu, K., Bayona, W., Kallen, C. B., Harding, H. P., Rayera, C. P., McMahon, G., et al. (1995) Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J. Biol. Chem. 270, 23,975–23, 983.

    CAS  Google Scholar 

  40. Forman, B. M., Tontonoz, P., Chen, J., Brun, R. P., Spiegelman, B. M., and Evans, R. M. (1995) 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83, 803–812.

    Google Scholar 

  41. Rossi, A., Kapahi, P., Natoli, G., Takahashi, T., Chen, Y., Karin, M., et al. (2000) Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature 403, 103–108.

    Article  PubMed  CAS  Google Scholar 

  42. Straus, D. S., Pascual, G., Li, M., Welch, J. S., Ricote, M., Hsiang, C. H., et al. (2000) 15-Deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc. Natl. Acad. Sci. USA 97, 4844–4849.

    Article  PubMed  CAS  Google Scholar 

  43. Nagy, L., Tontonoz, P., Alvarez, J. G., Chen, H., and Evans, R. M. (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93, 229–240.

    Article  PubMed  CAS  Google Scholar 

  44. Olefsky, J. M. (2000) Treatment of insulin resistance with peroxisome proliferator-activated receptor gamma agonists. J. Clin. Invest. 106, 467–472.

    Article  PubMed  CAS  Google Scholar 

  45. Steppan, C. M., Bailey, S. T., Bhat, S., Brown, E. J., Banerjee, R. R., Wright, C. M., et al. (2001) The hormone resistin links obesity to diabetes. Nature 409, 307–312.

    Article  PubMed  CAS  Google Scholar 

  46. Jiang, C., Ting, A. T., and Seed, B. (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391, 82–86.

    Article  PubMed  CAS  Google Scholar 

  47. Jump, D. B. and Clarke, S. D. (1999) Regulation of gene expression by dietary fat. Annu. Rev. Nutr. 19, 63–90.

    Article  PubMed  CAS  Google Scholar 

  48. de Urquiza, A. M., Liu, S., Sjoberg, M., Zetterstrom, R. H., Griffiths, W., Sjovall, J., et al. (2000) Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290, 2140–2144.

    Article  PubMed  Google Scholar 

  49. Tontonoz, P., Nagy, L., Alvarez, J. G., Thomazy, V.A., and Evans, R. M. (1998) PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93, 241–252.

    Article  PubMed  CAS  Google Scholar 

  50. Michaud, S. E. and Renier, G. (2001) Direct regulatory effect of fatty acids on macrophage lipoprotein lipase: potential role of PPARs. Diabetes 50, 660–666.

    Article  PubMed  CAS  Google Scholar 

  51. Li, M., Pascual, G., and Glass, C. K. (2000) Peroxisome proliferator-activated receptor gamma-dependent repression of the inducible nitric oxide synthase gene. Mol. Cell. Biol. 20, 4699–4707.

    Article  PubMed  CAS  Google Scholar 

  52. Subbaramaiah, K., Lin, D. T., Hart, J. C., and Dannenberg, A. J. (2001) Peroxisome proliferator-activated receptor gamma ligands suppress the transcriptional activation of cyclooxygenase-2. Evidence for involvement of activator protein-1 and CREB-binding protein/ p300. J. Biol. Chem. 276, 12,440–12, 448.

    Google Scholar 

  53. Delerive, P., Gervois, P., Fruchart, J. C., and Staels, B. (2000) Induction of IkappaBalpha expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-alpha activators. J. Biol. Chem. 275, 36703–36707.

    Article  PubMed  CAS  Google Scholar 

  54. Thieringer, R., Fenyk-Melody, J. E., Le Grand, C. B., Shelton, B. A., Detmers, P. A., Somers, E. P., et al. (2000) Activation of peroxisome proliferator-activated receptor gamma does not inhibit IL-6 or TNF-alpha responses of macrophages to lipopolysaccharide in vitro or in vivo. J. Immunol. 164, 1046–1054.

    PubMed  CAS  Google Scholar 

  55. Chawla, A., Barak, Y., Nagy, L., Liao, D., Tontonoz, P., and Evans, R. M. (2001) PPARgamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat. Med. 7, 48–52.

    Article  PubMed  CAS  Google Scholar 

  56. Moore, K. J., Rosen, E. D., Fitzgerald, M. L., Randow, F., Andersson, L. P., Altshuler, D., et al. (2001) The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nat. Med. 7, 41–47.

    Article  PubMed  CAS  Google Scholar 

  57. Lemberger, T., Braissant, O., Juge-Aubry, C., Keller, H., Saladin, R., Staels, B., et al. (1996) PPAR tissue distribution and interactions with other hormone-signaling pathways. Ann. NY Acad. Sci. 804, 231–251.

    Article  PubMed  CAS  Google Scholar 

  58. Murao, K., Ohyama, T., Imachi, H., Ishida, T., Cao, W. M., Namihira, H., et al. (2000) TNF-alpha stimulation of MCP-1 expression is mediated by the Akt/PKB signal transduction pathway in vascular endothelial cells. Biochem. Biophys. Res. Commun. 276, 791–796.

    Article  PubMed  CAS  Google Scholar 

  59. Kintscher, U., Goetze, S., Wakino, S., Kim, S., Nagpal, S., Chandraratna, R. A., Graf, K., et al. (2000) Peroxisome proliferator-activated receptor and retinoid X receptor ligands inhibit monocyte chemotactic protein-l-directed migration of monocytes. Eur. J. Pharmacol. 401, 259–270.

    Article  PubMed  CAS  Google Scholar 

  60. Ricote, M., Huang, J., Fajas, L., Li, A., Welch, J., Najib, J., et al. (1998) Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc. Natl. Acad. Sci. USA 95, 7614–7619.

    Article  PubMed  CAS  Google Scholar 

  61. Kitamura, Y., Kakimura, J., Matsuoka, Y., Nomura, Y., Gebicke-Haerter, P. J., and Taniguchi, T. (1999) Activators of peroxisome proliferator-activated receptor-gamma (PPARgamma) inhibit inducible nitric oxide synthase expression but increase heme oxygenase-1 expression in rat glial cells. Neurosci. Lett. 262, 129–132.

    Article  PubMed  CAS  Google Scholar 

  62. Colville-Nash, P. R., Qureshi, S. S., Willis, D., and Willoughby, D. A. (1998) Inhibition of inducible nitric oxide synthase by peroxisome proliferator-activated receptor agonists: correlation with induction of heme oxygenase 1. J. Immunol. 161, 978–984.

    PubMed  CAS  Google Scholar 

  63. Wiesinger, H. (2001) Arginine metabolism and the synthesis of nitric oxide in the nervous system. Prog. Neurobiol. 64, 365–391.

    Article  PubMed  CAS  Google Scholar 

  64. Heneka, M. T. and Feinstein, D. L. (2001) Expression and function of inducible nitric oxide synthase in neurons. J. Neuroimmunol. 114, 8–18.

    Article  PubMed  CAS  Google Scholar 

  65. Ogawa, O., Umegaki, H., Sumi, D., Hayashi, T., Nakamura, A., Thakur, N. K., et al. (2000) Inhibition of inducible nitric oxide synthase gene expression by indomethacin or ibuprofen in beta-amyloid protein-stimulated J774 cells. Eur. J. Pharmacol. 408, 137–141.

    Article  PubMed  CAS  Google Scholar 

  66. Maggi, L. B. Jr., Sadeghi, H., Weigand, C., Scarim, A. L., Heitmeier, M. R., and Corbett, J. A. (2000) Anti-inflammatory actions of 15-deoxy-delta 12,14-prostaglandin J2 and troglitazone: evidence for heat shock-dependent and -independent inhibition of cytokine-induced inducible nitric oxide synthase expression. Diabetes 49, 346–355.

    Article  PubMed  CAS  Google Scholar 

  67. Pasinetti, G. M. and Aisen, P. S. (1998) Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer’s disease brain. Neuroscience 87, 319–324.

    Article  PubMed  CAS  Google Scholar 

  68. Kitamura, Y, Shimohama, S., Koike, H., Kakimura, J., Matsuoka, Y., Nomura, Y., et al. (1999) Increased expression of cyclooxygenases and peroxisome proliferator-activated receptor-gamma in Alzheimer’s disease brains. Biochem. Biophys. Res. Commun. 254, 582–586.

    Article  PubMed  CAS  Google Scholar 

  69. Inoue, H., Tanabe, T., and Umesono, K. (2000) Feedback control of cyclooxygenase-2 expression through PPARgamma. J. Biol. Chem. 275, 28028–28032.

    PubMed  CAS  Google Scholar 

  70. Gilroy, D. W., Colville-Nash, P. R., Willis, D., Chivers, J., Paul-Clark, M. J., and Willoughby, D. A. (1999) Inducible cyclooxygenase may have anti-inflammatory properties. Nat. Med. 5, 698–701.

    Article  PubMed  CAS  Google Scholar 

  71. Lohray, B. B., Bhushan, V., Reddy, A. A., Rao, P. B., Reddy, N. J., Harikishore, P., et al. (1999) Novel euglycemic and hypolipidemic agents. 4. Pyridyl-and quinolinyl-containing thiazolidinediones. J. Med. Chem. 42, 2569–2581.

    Article  PubMed  CAS  Google Scholar 

  72. Reddy, K. A., Lohray, B. B., Bhushan, V., Reddy, A. S., Rao Mamidi, N. V., Reddy, P. P., et al. (1999) Novel antidiabetic and hypolipidemic agents. 5. Hydroxyl versus benzyloxy containing chroman derivatives. J. Med. Chem. 42, 3265–3278.

    Article  PubMed  CAS  Google Scholar 

  73. Zhu, Y., Alvares, K., Huang, Q., Rao, M. S., and Reddy, J. K. (1993) Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver. J. Biol. Chem. 268, 26817–26820.

    PubMed  CAS  Google Scholar 

  74. Cullingford, T. E., Bhakoo, K., Peuchen, S., Dolphin, C. T., Patel, R., and Clark, J. B. (1998) Distribution of mRNAs encoding the peroxisome proliferator-activated receptor alpha, beta, and gamma and the retinoid X receptor alpha, beta, and gamma in rat central nervous system. J. Neurochem. 70, 1366–1375.

    Article  PubMed  CAS  Google Scholar 

  75. Braissant, O. and Wahli, W. (1998) Differential expression of peroxisome proliferatoractivated receptor-alpha, -beta, and -gamma during rat embryonic development. Endocrinology 139, 2748–2754.

    Article  PubMed  CAS  Google Scholar 

  76. Kainu, T., Wikstrom, A. C., Gustafsson, J. A., and Pelto-Huikko, M. (1994) Localization of the peroxisome proliferator-activated receptor in the brain. Neuroreport 5, 2481–2485.

    Article  PubMed  CAS  Google Scholar 

  77. Bernardo, A., Levi, G., and Minghetti, L. (2000) Role of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and its natural ligand 15-deoxy-deltal2, 14-prostaglandin J2 in the regulation of microglial functions. Eur. J. Neurosci. 12, 2215–2223.

    Article  PubMed  CAS  Google Scholar 

  78. Kitamura, Y., Taniguchi, T., Kimura, H., Nomura, Y., and Gebicke-Haerter, P. J. (2000) Interleukin-4-inhibited mRNA expression in mixed rat glial and in isolated microglial cultures. J. Neuroimmunol. 106, 95–104.

    Article  PubMed  CAS  Google Scholar 

  79. Petrova, T. V., Akama, K. T., and Van Eldik, L. J. (1999) Cyclopentenone prostaglandins suppress activation of microglia: down-regulation of inducible nitric-oxide synthase by 15-deoxy-Delta12,14-prostaglandin J2. Proc. Natl. Acad. Sci. USA 96, 4668–4673.

    Article  PubMed  CAS  Google Scholar 

  80. Lim, G. P., Yang, F., Chu, T., Chen, P., Beech, W., Teter, B., et al. (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J. Neurosci. 20, 5709–5714.

    PubMed  CAS  Google Scholar 

  81. Klegeris, A., Walker, D. G., and McGeer, P. L. (1997) Interaction of Alzheimer betaamyloid peptide with the human monocytic cell line THP-1 results in a protein kinase C-dependent secretion of tumor necrosis factor-alpha. Brain Res. 747, 114–121.

    Article  PubMed  CAS  Google Scholar 

  82. Chattopadhyay, N., Singh, D. P., Heese, O., Godbole, M. M., Sinohara, T., Black, P. M., et al. (2000) Expression of peroxisome proliferator-activated receptors (PPARS) in human astrocytic cells: PPARgamma agonists as inducers of apoptosis. J Neurosci. Res. 61, 67–74.

    Article  PubMed  CAS  Google Scholar 

  83. Fitch, M. T., Doller, C., Combs, C. K., Landreth, G. E., and Silver, J. (1999) Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J. Neurosci. 19, 8182–8198.

    PubMed  CAS  Google Scholar 

  84. Nishijima, C., Kimoto, K., and Arakawa, Y. (2001) Survival activity of troglitazone in rat motoneurones. J. Neurochem. 76, 383–390.

    Article  PubMed  CAS  Google Scholar 

  85. Rohn, T. T., Wong, S. M., Cotman, C. W., and Cribbs, D. H. (2001) 15-deoxy-delta12,14prostaglandin J2, a specific ligand for peroxisome proliferator-activated receptor-gamma, induces neuronal apoptosis. Neuroreport 12, 839–843.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Landreth, G.E., Sundararajan, S., Heneka, M.T. (2003). Peroxisome Proliferator-Activated Receptor Gamma Agonists. In: Wood, P.L. (eds) Neuroinflammation. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-297-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-297-5_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9720-5

  • Online ISBN: 978-1-59259-297-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics