Skip to main content

Microglia

Roles of Microglia in Chronic Neurodegenerative Diseases

  • Chapter
Neuroinflammation

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 240 Accesses

Abstract

Over the last decade, the neuroinflammatory hypothesis of neurodegeneration has become well established. Our increased scientific understanding of the cascade(s) of events involved in chronic, slowly progressing neurodegenerative diseases has established the foundations for the first mechanistic drug discovery programs for the pharmacological treatment of these devastating diseases. An exciting feature of the neuroinflammatory hypothesis is that a target cell, microglia, has been identified for pharmacological approaches to halting or preventing slowly progressing neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McGeer, P. L., Itagaki, S., Boyes, B. E., and McGeer, E. G. (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38, 1285–1291.

    Article  PubMed  CAS  Google Scholar 

  2. McGeer, P. L., Akiyama, H., Itagaki, S., and McGeer, E. G. (1989) Immune system response in Alzheimer’s disease. Can. J. Neurol. Sci. 16, 516–527.

    PubMed  CAS  Google Scholar 

  3. McGeer, P. L., Walker, D. G., Akiyama, H., Kawamata, T., Guan, A. L., Parker, C. J., et al. (1991) Detection of the membrane inhibitor of reactive lysis (CD59) in diseased neurons of Alzheimer brain. Brain Res. 544, 315–319.

    Article  PubMed  CAS  Google Scholar 

  4. Itagaki, S., McGeer, P. L., and Akiyama, H. (1988) Presence of T-cytotoxic suppressor and leukocyte common antigen positive cells in Alzheimer’s disease brain tissue. Neuro-sci. Lett. 91, 259–264.

    Article  CAS  Google Scholar 

  5. Itagaki, S., McGeer, P. L., Akiyama, H., Zhu, S., and Selkoe, D. (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J. Neuroimmunol. 24, 173–182.

    Article  PubMed  CAS  Google Scholar 

  6. Griffin, W. S. T., Stanley, L. C., Ling, C., White, L., McLeod, V., Perrot, L. J., et al. (1989) Brain interleukin-1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl. Acad. Sci. USA 86, 7611–7615.

    Article  PubMed  CAS  Google Scholar 

  7. Griffin, W. S. T., Sheng, J. G., Roberts, G. W., and Mrak, R. E. (1995) Interleukin-1 expression in different plaque types in Alzheimer’ s disease: significance in plaque evolution. J. Neuropathol. Exp. Neurol. 54, 276–281.

    Article  PubMed  CAS  Google Scholar 

  8. Perlmutter, L. S., Barron, E., and Chui, H. C. (1990) Morphologic association between microglia and senile plaque amyloid in Alzheimer’s disease. Neurosci. Lett. 119, 32–36.

    Article  PubMed  CAS  Google Scholar 

  9. Perlmutter, L. S., Scott, S. A., Barrón, E., and Chui, H. C. (1992) MHC class II-positive microglia in human brain: association with Alzheimer lesions. J. Neurosci. Res. 33, 549–558.

    Article  PubMed  CAS  Google Scholar 

  10. Rozemuller, J. M., Eikelenboom, P., Pals, S. T., and Stam, F. C. (1989) Microglial cells around amyloid plaques in Alzheimer’s disease express leukocyte adhesion molecules of the LFA-1 family. Neurosci. Lett. 101, 288–292.

    Article  PubMed  CAS  Google Scholar 

  11. Rozemuller, J. M., Van der Valk, P., and Eikelenboom, P. (1992) Activated microglia and cerebral amyloid deposits in Alzheimer’s disease. Res. Immunol. 143, 646–649.

    Article  PubMed  CAS  Google Scholar 

  12. Tooyama, I., Kimura, H., Akiyama, H., and McGeer, P. L. (1990) Reactive microglia express class I and class II major histocompatibility complex antigens in Alzheimer’s disease. Brain Res. 523, 273–280.

    Article  PubMed  CAS  Google Scholar 

  13. Masliah, E., Mallory, M., Hansen, L., Alford, M., Albright, T., Terry, R., Shapiro, P., et al. (1991) Immunoreactivity of CD45, a protein phosphotyrosine phosphatase, in Alzheimer’s disease. Acta Neuropathol. (Berl.) 83, 12–20.

    Google Scholar 

  14. Cras, P., Kawai, M., Siedlak, S., Mulvihill, P., Gambetti, P., Lowery, D., et al. (1990) Neuronal and microglial involvement in (3-amyloid protein deposition in Alzheimer’s disease. Am. J. Pathol. 137, 241–246.

    PubMed  CAS  Google Scholar 

  15. Cras, P., Kawai, M., Siedlak, S., and Perry, G. (1991) Microglia are associated with the extracellular neurofibrillary tangles of Alzheimer disease. Brain Res. 558, 312–314.

    Article  PubMed  CAS  Google Scholar 

  16. Johnson, S. A., Lampert-Etchells, M., Pasinetti, G. M., Rozovsky, I., Finch, C. E., et al. (1992) Complement mRNA in the mammalian brain: responses to Alzheimer’s disease and experimental brain lesioning. Neurobiol. Aging 13, 641–648.

    Article  PubMed  CAS  Google Scholar 

  17. Akiyama, H. and McGeer, P. L. (1990) Brain microglia constituitively express (3–2 integrins. J. Neuroimmunol. 30, 81–93.

    Article  PubMed  CAS  Google Scholar 

  18. Akiyama, H., Kawamata, T., Dedhar, S., and McGeer, P. L. (1991) Immunohistochemical localization of vitronectin, its receptor and beta-3 integrin in Alzheimer brain tissue. J. Neuroimmunol. 32, 19–28.

    Article  PubMed  CAS  Google Scholar 

  19. Akiyama, H., Yamada, T., Kawamata, T., and McGeer, P. L. (1991) Association of amyloid P component with complement proteins in neurologically diseased brain tissue. Brain Res. 548, 349–352.

    Article  PubMed  CAS  Google Scholar 

  20. Akiyama, H., Ikeda, K., Kondo, H., Kato, M., and McGeer, P. L. (1993) Microglia express the type 2 plasminogen activator inhibitor in the brain of control subjects and patients with Alzheimer’s disease. Neurosci. Lett. 164, 233–235.

    Article  PubMed  CAS  Google Scholar 

  21. Akiyama, H., Nishimura, T., Kondo, H., Ikeda, K., Hayashi, Y., and McGeer, P. L. (1994) Expression of the receptor for macrophage colony stimulating factor by brain microglia and its upregulation in brains with Alzheimer’ s disease and amyotrophic lateral sclerosis. Brain Res. 639, 171–174.

    Article  PubMed  CAS  Google Scholar 

  22. Mrak, R. E., Sheng, J. G., and Griffin, W. S. T. (1995) Glial cytokines in Alzheimer’s disease: review and pathogenic implications. Hum. Pathol. 26, 816–823.

    Article  PubMed  CAS  Google Scholar 

  23. Yamada, T., Kawamata, T., Walker, D. G., and McGeer, P. L. (1992) Vimentin immunoreactivity in normal and pathological human brain tissue. Acta Neuropathol. (Berl.) 84, 157–162.

    Article  CAS  Google Scholar 

  24. Yamada, T., Miyazaki, K., Koshikawa, N., Takahashi, M., Akatsu, H., and Yamamoto, T. (1995) Selective localization of gelatinase A, an enzyme degrading (3-amyloid protein, in white matter microglia and in Schwann cells. Acta Neuropathol. (Berl.) 89, 199–203.

    Google Scholar 

  25. Yamada, T., Yoshiyama, Y., Sato, H., Seiki, M., Shinagawa, A., and Takahashi, M. (1995) White matter microglia produce membrane-type matrix metalloprotease, an activator of gelatinase A, in human brain tissues. Acta Neuropathol. (Berl.) 90, 421–424.

    Article  CAS  Google Scholar 

  26. Akiyama, H., Arai, T., Kondo, H., Tanno, E., Haga, C., and Ikeda, K. (2000) Cell mediators of inflammation in the Alzheimer disease brain. Alzheimer Dis. 14, S47 - S53.

    Article  CAS  Google Scholar 

  27. Arends, Y. M., Duyckaerts, C., Rozemuller, J. M., Eikelenboom, P., and Hauw, J. J. (2000) Microglia, amyloid and dementia in Alzheimer disease—a correlative study. Neurobiol. Aging 21, 39–47.

    Article  PubMed  CAS  Google Scholar 

  28. McGeer, P. L., McGeer, E. G., and Yasojima, K. (2000) Alzheimer disease and neuro-inflammation. J. Neural Transm. 59, 53–57.

    CAS  Google Scholar 

  29. Sheffield, L. G., Marquis, J. G., and Berman, N. J. (2000) Regional distribution of cortical microglia parallels that of neurofibrillary tangles in Alzheimer’s disease. Neurosci. Lett. 285, 165–168.

    Article  PubMed  CAS  Google Scholar 

  30. Togo, T., Akiyama, H., Kondo, H., Ikeda, K., Kato, M., Iseki, E., and Kosaka, K. (2000) Expression of CD40 in the brain of Alzheimer’s disease and other neurological diseases. Brain Res. 885, 117–121.

    Article  PubMed  CAS  Google Scholar 

  31. Wegiel, J., Wang, K. C., Tarnawski, M., and Lach, B. (2000) Microglial cells are the driving force in fibrillar plaque formation, whereas astrocytes are a leading factor in plaque degradation. Acta Neuropathol. 100, 356–364.

    Article  PubMed  CAS  Google Scholar 

  32. Cagnin, A., Brooks, D. J., Kennedy, A. M., Gunn, R. N., Myers, R., Turkheimer, F. E., et al. (2001) In-vivo measurement of activated microglia in dementia. Lancet 358, 461–467.

    Article  PubMed  CAS  Google Scholar 

  33. Park, C. H., Carboni, E., Wood, P. L., and Gee, K. W. (1996) Characterization of peripheral benzodiazepine type sites in a cultured murine BV-2 microglial cell line. Glia 16, 65–70.

    Article  PubMed  CAS  Google Scholar 

  34. Stephenson, D. T., Schober, D. A., Smalstig, E. B., Mincy, R. E., Gehlert, D. R., and Clemens, J. A. (1995) Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. J. Neurosci. 15, 5263–5274.

    PubMed  CAS  Google Scholar 

  35. Prosperi, C., Scali, C., Pepeu, G., and Casamenti, F. (2001) NO-flurbiprofen attenuates excitotoxin-induced brain inflammation, and releases nitric oxide in the brain. Jpn. J. Pharmacol. 86 (2), 230–235.

    Article  PubMed  CAS  Google Scholar 

  36. Rossner, S., Härtig, W., Schliebs, R., Brückner, G., Brauer, K., Perez-Polo, J. R., et al. (1995) IgG-saporin immunotoxin-induced loss of cholinergic cells differentially activates microglia in rat basal forebrain nuclei. J. Neurosci. Res. 41, 335–346.

    Article  PubMed  CAS  Google Scholar 

  37. Kim, W. G., Mohney, R. P., Wilson, B., Jeohn, G. H., Liu, B., and Hong, J. S. (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J. Neurosci. 20, 6309–6316.

    PubMed  CAS  Google Scholar 

  38. Coffey, P. J., Perry, V. H., Allen, Y., Sinden, J., and Rawlins, J. N. P. (1988) Ibotenic acid induced demyelination in the central nervous system: a consequence of a local inflammatory response. Neurosci. Lett. 84, 178–184.

    Article  PubMed  CAS  Google Scholar 

  39. Coffey, P. J., Perry, V. H., and Rawlins, J. N. P. (1990) An investigation into the early stages of the inflammatory response following ibotenic acid-induced neuronal degeneration. Neuroscience 35, 121–132.

    Article  PubMed  CAS  Google Scholar 

  40. Bernal, F., Saura, J., Ojuel, J., and Mahy, N. (2000) Differential vulnerability of hippocampus, basal ganglia, and prefrontal cortex to long-term NMDA excitotoxicity. Exp. Neurol. 161, 686–695.

    Article  PubMed  CAS  Google Scholar 

  41. Lu, X. R. and Ong, W.Y. (2001) Heme oxgenase-1 is expressed in viable astrocytes and mircoglia but in degenerating pyramidal neurons in the kainate-lesioned rat hippocampus. Exp. Brain Res. 137, 424–431.

    Article  PubMed  CAS  Google Scholar 

  42. Finsen, B. R., Jorgensen, M. B., Diemer, N. H., and Zimmer, J. (1993) Microglial MHC antigen expression after ischemic and kainic acid lesions of the adult rat hippocampus. Glia 7, 41–49.

    Article  PubMed  CAS  Google Scholar 

  43. Andersson, P.-B., Perry, V. H., and Gordon, S. (1991) The CNS acute inflammatory response to excitotoxic neuronal cell death. Immunol. Lett. 30, 177–182.

    Article  PubMed  CAS  Google Scholar 

  44. Jorgensen, M. B., Finsen, B. R., Jensen, M. B., Castellano, B., Diemer, N. H., and Zimmer, J. (1993) Microglial and astroglial reactions to ischemic kainic acid-induced lesions of the adult rat hippocampus. Exp. Neurol. 120, 70–88.

    Article  PubMed  CAS  Google Scholar 

  45. Wright, J. L. and Merchant, R. E. (1992) Histopathological effects of intracerebral injections of human recombinant tumor necrosis factor-a in the rat. Acta Neuropathol. (Berl.) 85, 93–100.

    Article  CAS  Google Scholar 

  46. Benzing, W. C., Wujek, J. R., Ward, E. K., Shaffer, D., Ashe, K. H., Younkin, S. G., et al. (1999) Evidence for glial-mediated inflammation in aged APP(SW) transgenic mice. Neurobiol. Aging 20, 581–589.

    Article  PubMed  CAS  Google Scholar 

  47. Mehlhorn, G., Hollborn, M., and Schliebs, R. (2000) Induction of cytokines in glial cells surrounding cortical beta-amyloid plaques in transgenic Tg2576 mice with Alzheimer pathology. Int. J. Dev. Neurosci. 18, 423–431.

    Article  PubMed  CAS  Google Scholar 

  48. Apelt, J. and Schliebs, R. (2001) 3-Amyloid-induced glial expression of both pro-and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Res. 894, 21–30.

    Google Scholar 

  49. Bornemann, K. D., Wiederhold, K. H., Pauli, C., Ermini, F., Stalder, M., Schnell, L., et al. (2001) A(3-Induce inflammatory processes in microglia cells of APP23 transgenic mice. Am. J. Pathol. 158, 63–73.

    Article  PubMed  CAS  Google Scholar 

  50. Murphy, G. M., Zhao, F. F., Yang, L., and Cordell, B. (2000) Expression of macrophage colony-stimulating factor receptor is increased in the A beta PPV717F transgenic mouse model of Alzheimer’s disease. Am. J. Pathol. 157, 895–904.

    Article  PubMed  CAS  Google Scholar 

  51. Matsuoka, Y., Picciano, M., Malester, B., LaFrancois, J., Zehr, C., Daeschner, J. M., et al. (2001) Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer’s disease. Am. J. Pathol. 158, 1345–1354.

    Article  PubMed  CAS  Google Scholar 

  52. McGeer, P. L., Kawamata, T., Walker, D. G., Akiyama, H., Tooyama, I., and McGeer, E. G. (1993) Microglia in degenerative neurological disease. Glia 7, 84–92.

    Article  PubMed  CAS  Google Scholar 

  53. Knott, C., Stern, G., and Wilkin, G. P. (2000) Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and-2. [review]. Mol. Cell. Neurosci. 16, 724–739.

    Article  PubMed  CAS  Google Scholar 

  54. Mirza, B., Hadberg, H., Thomsen, P., and Moos, T. (2000) The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 95 (2), 425–432.

    Article  PubMed  CAS  Google Scholar 

  55. Mackenzie, I. A. (2000) Activated microglia in dementia with Lewy bodies. Neurology 55, 132–134.

    Article  PubMed  CAS  Google Scholar 

  56. Jellinger, K. A. (2000) Cell death mechanisms in Parkinson’s disease. [review]. J. Neural Transm. 107, 1–29.

    Article  PubMed  CAS  Google Scholar 

  57. Mackenzie, I. A. (2000) Activated microglia in dementia with Lewy bodies. Neurology 55, 132–134.

    Article  PubMed  CAS  Google Scholar 

  58. Lawson, L. J., Perry, V. H., Dri, P., and Gordon, S. (1990) Heterogeneity in distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151–170.

    Article  PubMed  CAS  Google Scholar 

  59. Akiyama, H. and McGeer, P. L, (1989) Microglial response to 6-hydroxydopamine-induced substantia nigra lesions. Brain Res. 489, 247–253.

    Article  PubMed  CAS  Google Scholar 

  60. Haruhiko, A. and McGeer, P. L. (1989) Microglial response to 6-hydroxydopamine-induced substantia nigra lesions. Brain Res. 489, 247–253.

    Article  Google Scholar 

  61. Kim, W. G., Mohney, R. P., Wilson, B., Jeohn, G. H., Liu, B., and Hong, J. S. (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J. Neurosci. 20, 6309–6316.

    PubMed  CAS  Google Scholar 

  62. Herrera, A. J., Castano, A., Venero, J. L., Cano, J., and Machado, A. (2000) The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiology 7, 429–447.

    CAS  Google Scholar 

  63. Grunblatt, E., Mandel, S., and Youdim, M. H. (2000) MPTP and 6-hydroxydopamineinduced neurodegeneration as models for Parkinson’s disease: neuroprotective strategies. J. Neurol. 247, 95–102.

    Google Scholar 

  64. Li, H., Newcombe, J., Groome, P., and Cuzner, M. L. (1993) Characterization and distribution of phagocytic macrophages in multiple sclerosis plaques. Neuropathol. Appl. Neurobiol. 19, 214–223.

    Article  PubMed  CAS  Google Scholar 

  65. Bö, L., Mork, S., Kong, P. A., Nyland, H., Pardo, C. A., and Trapp, B. D. (1994) Detection of MHC class II-antigens on macrophages and microglia, but not on astrocytes and endothelia in active multiple sclerosis lesions. J. Neuroimmunol. 51, 135–146.

    Article  PubMed  Google Scholar 

  66. Brosnan, C. F., Cannella, B., Battistini, L., and Raine, C. S. (1995) Cytokine localization in multiple sclerosis lesions: correlation with adhesion molecule expression and reactive nitrogen species. Neurology 45 (Suppl. 6), S16 - S21.

    Article  PubMed  CAS  Google Scholar 

  67. Boyle, E. A. and McGeer, P. L. (1990) Cellular immune response in multiple sclerosis plaques. Am. J. Pathol. 137, 575–584.

    PubMed  CAS  Google Scholar 

  68. Banati, R. B., Newcombe, J., Gunn, R. N., Cagnin, A., Turkheimer, F., Heppner, F. G. et al. (2000) The peripheral benzodiazepine binding site in the brain in multiple sclerosisquantitative in vivo imaging of microglia as a measure of disease activity. Brain 123, 2321–2337.

    Article  PubMed  Google Scholar 

  69. Bitsch, A., Kuhlmann, T., Da Costa, C., Bunkowski, S., Polak, T., and Bruck, W. (2000) Tumour necrosis factor alpha mRNA expression in early multiple sclerosis lesions: correlation with demyelinating activity and oligodendrocyte pathology. Glia 29, 366–375.

    Article  PubMed  CAS  Google Scholar 

  70. Bever, C. T. Jr. and Garver, D. W. (1995) Increased cathepsin B activity in multiple sclerosis brain. J. Neurol. Sci. 131, 71–73.

    Article  PubMed  Google Scholar 

  71. Matsumoto, Y., Ohmori, K., and Fujiwara, M. (1992) Microglial and astroglial reactions to inflammatory lesions of experimental autoimmune encephalomyelitis in the rat central nervous system. J. Neuroimmunol. 37, 23–33.

    Article  PubMed  CAS  Google Scholar 

  72. Bauer, J., Sminia, T., Wouterlood, F. G., and Dijkstra, C. D. (1994) Phagocytic activity of macrophages and microglial cells during the course of acute and chronic relapsing experimental autoimmune encephalomyelitis. J. Neurosci. Res. 38, 365–375.

    Article  PubMed  CAS  Google Scholar 

  73. Renno, T., Krakowski, M., Piccirillo, C., Lin, J., and Owens, T. (1995) TNF-a expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis: regulation by Thl cytokines. J. Immunol. 154, 944–953.

    PubMed  CAS  Google Scholar 

  74. Bauer, J., Berkenbosch, F., VanDam, A.-M., and Dijkstra, C. D. (1993) Demonstration of interleukin-lß in Lewis rat brain during experimental allergic encephalomyelitis by immunocytochemistry at the light and ultrastructural level. J. Neuroimmunol. 48, 13–22.

    Article  PubMed  CAS  Google Scholar 

  75. Linington, C., Lassmann, H., Morgan, B. P., and Compston, D. A. S. (1989) Immunohistochemical localization of terminal complement component C9 in experimental allergic encephalomelitis. Acta Neuropathol. 79, 78–85.

    Article  PubMed  CAS  Google Scholar 

  76. Banati, R. B., Gehrmann, J., Lannes-Vieira, J., Wekerle, H., and Kreutzberg, G. W. (1995) Inflammatory reaction in experimental autoimmune encephalomyelitis (EAE) is accompanied by a microglial expression of the [3A4-amyloid precursor protein (APP). Glia 14, 209–215.

    Article  PubMed  CAS  Google Scholar 

  77. Sapp, E., Kegel, K. B., Aronin, N., Hashikawa, T., Uchiyama, Y., Tohyama, K. P. G. et al. (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain. J. Neuropathol. Exp. Neurol. 60, 161–172.

    PubMed  CAS  Google Scholar 

  78. Töpper, R., Gehrmann, J., Schwarz, M., Block, F., Noth, J., and Kreutzberg, G. W. (1993) Remote microglial activation in the quinolinic acid model of Huntington’s disease. Exp. Neurol. 123, 271–283.

    Article  PubMed  Google Scholar 

  79. Bresjanac, M. and Antauer, G. (2000) Reactive astrocytes of the quinolinc acid-lesioned rat striatum express GFR alpha 1 as well as GDNF in vivo. Exp. Neurol. 164, 53–59.

    Article  PubMed  CAS  Google Scholar 

  80. Ishizawa, K. and Dickson, D. W. (2001) Microglial activation parallels system degeneration in progressive supranuclear palsy and corticobasal degeneration. J. Neuropathol. Exp. Neurol. 60, 647–657.

    PubMed  CAS  Google Scholar 

  81. Aoki, T., Kobayashi, K., and Isaki, K. (1999) Microglial and astrocytic change in brains of Creutzfeldt-Jakob disease: an immunocytochemical and quantitative study. Clin. Neuropathol. 18, 51–60.

    PubMed  CAS  Google Scholar 

  82. Muhleisen, H., Gehrmann, J., and Meyermann, R. (1995) Reactive microglia in Creutzfeldt-Jakob disease. Neuropathol. Appl. Neurobiol. 21, 505–517.

    Article  PubMed  CAS  Google Scholar 

  83. Rezaie, P. and Lantos, P. L. (2001) Microglia and the pathogenesis of spongiform encephalopathies. [review]. Brain Res. Rev. 35, 55–72.

    Article  PubMed  CAS  Google Scholar 

  84. Bugiani, O., Giaccone, G., Piccardo, P., Morbin, M., Tagliavini, F., and Ghetti, B. (2000) Neuropathology of Gerstmann-Straussler-Scheinker disease. Microscopy 50, 10–15.

    Article  CAS  Google Scholar 

  85. Brown, D. R., Schmidt, B., and Kretzschmar, H. A. (1996) Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380, 345–347.

    Article  PubMed  CAS  Google Scholar 

  86. Glass, J. D. and Wesselingh, S. L. (2001) Microglia in HIV-associated neurological diseases. Microsc. Res. Tech. 54, 95–105.

    Article  PubMed  CAS  Google Scholar 

  87. Kure, K., Weidenheim, K. M., Lyman, W. D., and Dickson, D. W. (1990) Morphology and distribution of HIV-1 gp41-positive microglia in subacute AIDS encephalitis. Pattern of involvement resembling a multisystem degeneration. Acta Neuropathol. (Berl.) 80, 393–400.

    Article  CAS  Google Scholar 

  88. Cagnin, A., Myers, R., Gunn, R. N., Lawrence, A. D., Stevens, T., Kreutzberg, G. W., et al. (2001) In vivo visualization of activated glia by [11C] (R)-PK11195-PET following herpes encephalitis reveals projected neuronal damage beyond the primary focal lesion. Brain 124, 2014–2027.

    Article  PubMed  CAS  Google Scholar 

  89. Lynch, W. P., Czub, S., McAtee, F. J., Hayes, S. F., and Portis, J. L. (1991) Murine retrovirus-induced spongiform encephalopathy: productive infection of microglia and cerebellar neurons in accelerated CNS disease. Neuron 7, 365–379.

    Article  PubMed  CAS  Google Scholar 

  90. Lynch, W. P., Robertson, S. J., and Portis, J. L. (1995) Induction of focal spongiform neurodegeneration in developmentally resistant mice by implantation of murine retrovirus-infected microglia. J. Virol. 69, 1408–1419.

    PubMed  CAS  Google Scholar 

  91. Gillespie, J. S., Cavanagh, H. M. A., Behan, W. M. H., Morrison, L. J. A., McGarry, F., and Behan, P. O. (1993) Increased transcription of interleukin-6 in the brains of mice with chronic enterovirus infection. J. Gen. Virol. 74, 741–743.

    Article  PubMed  CAS  Google Scholar 

  92. Penfold, P. L., Madigan, M. C., Gillies, M. C., and Provis, J. M. (2001) Immunological and aetiological aspects of macular degeneration. Prog. Retin. Eye Res. 20, 385–414.

    Article  PubMed  CAS  Google Scholar 

  93. Rungger-Brandle, E., Dosso, A. A., and Leuenberger, P. M. (2000) Glial reactivity, an early feature of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 41, 1971–1980.

    PubMed  CAS  Google Scholar 

  94. Zeng, X. X., Ng, Y. K., and Ling, E. A. (2000) Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Vis. Neurosci. 17, 463–471.

    Article  PubMed  CAS  Google Scholar 

  95. Shin, D. H., Lee, H. Y., Lee, H. W., Lee, K. H., Lim, H. S., Jeon, G. S., et al. (2000) Activation of microglia in kainic acid induced rat retinal apoptosis. Neurosci. Lett. 292, 159–162.

    Article  PubMed  CAS  Google Scholar 

  96. Neufeld, A. H. (1999) Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma. Arch. Ophthalmol. 117, 1050–1056.

    Article  PubMed  CAS  Google Scholar 

  97. Wang, X., Tay, S. W., and Ng, Y. K. (2000) An immunohistochemical study of neuronal and glial cell reactions in retinae of rats with experimental glaucoma. Exp. Brain Res. 132, 476–484.

    Article  PubMed  CAS  Google Scholar 

  98. Beschorner, R., Engel, S., Mittelbronn, M., Adjodah, D., Dietz, K., Schluesener, H. J., et al. (2000) Differential regulation of the monocytic calcium-binding peptides macrophage-inhibiting factor related protein-8 (MRP8/S100A8) and allograft inflammatory factor-1 (AIF-1) following human traumatic brain injury. Acta Neuropathol. 100, 627–634.

    Article  PubMed  CAS  Google Scholar 

  99. Beschorner, R., Schluesener, H. J., Nguyen, T. D., Magdolen, V., Luther, T., Pedal, I., et al. (2000) Lesion-associated accumulation of uPAR/CD87-expressing infiltrating granulocytes, activated microglial cells/macrophages and upregulation by endothelial cells following TBI and FCI in humans. Acta Neuropathol. 100, 627–634.

    Article  PubMed  CAS  Google Scholar 

  100. Engel, S., Schluesener, H., Mittelbronn, M., Seid, K., Adjodah, D., Wehner, H. D., et al. (2000) Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14. Acta Neuropathol. 100, 313–322.

    Article  PubMed  CAS  Google Scholar 

  101. Beschorner, R., Adjodah, D., Schwab, J. M., Mittelbronn, M., Pedal, I., Mattern, R., et al. (2000) Long-term expression of heme oxygenase-1 (HO-1, HSP-32) following focal cerebral infarctions and traumatic brain injury in humans. Acta Neuropathol. 100, 377–384.

    Article  PubMed  CAS  Google Scholar 

  102. Aihara, N., Hall, J. J., Pitts, L. H., Fukuda, K., and Noble, L. J. (1995) Altered immunoexpression of microglia and macrophages after mild head injury. J. Neurotrauma 12, 53–64.

    Article  PubMed  CAS  Google Scholar 

  103. Griffin, W. S., Sheng, J. G., Gentleman, S. M., Graham, D. I., Mrak, R. E., and Riberts, G. W. (1994) Microglial interleukin-la expression in human head injury: correlations with neuronal and neuritic beta-amyloid precursor protein expression. Neurosci. Lett. 176, 133–136.

    Article  PubMed  CAS  Google Scholar 

  104. Takeuchi, A., Miyaishi, O., Kiuchi, K., and Isobe, K. (2001) Macrophage colony-stimulating factor is expressed in neuron and microglia after focal brain injury. J. Neurosci. Res. 65, 38–44.

    Article  PubMed  CAS  Google Scholar 

  105. Mautes, A. E. M. and Noble, L. J. (2000) Co-induction of HSP70 and heure oxygenase-1 in macrophages and glia after spinal cord contusion in the rat. Brain Res. 883, 233–237.

    Article  PubMed  CAS  Google Scholar 

  106. Schwab, J. M., Brechtel, K., Nguyen, T. D., and Schluesener, H. J. (2000) Persistent accumulation of cyclooxygenase-1 (COX-1) expressing microglia/macrophages and upregulation by endothelium following spinal cord injury. J. Neuroimmunol. 111, 122–130.

    Article  PubMed  CAS  Google Scholar 

  107. Dijkstra, S., Geisert, E. E., Gispen, W. H., Bar, P. R., and Joosten, E. J. (2000) Up-regulation of CD81 (target of the antiproliferative antibody; TAPA) by reactive microglia and astrocytes after spinal cord injury in the rat. J. Comp. Neurol. 428, 266–277.

    Article  PubMed  CAS  Google Scholar 

  108. Lee, Y. L., Shih, K., Bao, P., Ghirnikar, R. S., and Eng, L. F. (2000) Cytokine chemokine expression in contused rat spinal cord. Neurochem. Int. 36, 417–425.

    Article  PubMed  CAS  Google Scholar 

  109. Saito, N., Yamamoto, T., Watanabe, T., Abe, Y., and Kumagai, T. (2000) Implications of p53 protein expression in experimental spinal cord injury. J. Neurotrauma 17, 173–182.

    Article  PubMed  CAS  Google Scholar 

  110. Otto, V. I., Stahel, P. F., Rancan, M., Kariya, K., Shohami, E., Yatsiv, I., et al. (2001) Regulation of chemokines and chemokine receptors after experimental closed head injury. Neuroreport 12, 2059–2064.

    Article  PubMed  CAS  Google Scholar 

  111. Beer, R., Franz, G., Srinivasan, A., Hayes, R. L., Pike, B. R., Newcomb, J. K., et al. (2000) Temporal profile and cell subtype distribution of activated caspase-3 following experimental traumatic brain injury. J. Neurochem. 75, 1264–1273.

    Article  PubMed  CAS  Google Scholar 

  112. Beer, R., Franz, G., Schopf, M., Reindl, M., Zelger, B., Schmutzhard, E., et al. (2000) Expression of Fas and Fas ligand after experimental traumatic brain injury in the rat. J. Cereb. Blood Flow Metab. 20, 669–677.

    Article  PubMed  CAS  Google Scholar 

  113. Sitte, H. H., Wanschitz, J., Budka, H., and Berger, M. L. (2001) Autoradiography with [3H]PK11195 of spinal tract degeneration in amyotrophic lateral sclerosis. Acta Neuropathol. (Berl.) 101, 75–78.

    CAS  Google Scholar 

  114. Almer, G., Vukosavic, S., Romero, N., and Przedborski, S. (1999) Inducible nitric oxide synthase up-regulation in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem. 72, 2415–2425.

    Article  PubMed  CAS  Google Scholar 

  115. Nomura, H., Furuta, A., Suzuki, S. O., and Iwaki, T. (2001) Dorsal horn lesion resulting from spinal root avulsion leads to the accumulation of stress-responsive proteins. Brain Res. 893, 84–94.

    Article  PubMed  CAS  Google Scholar 

  116. Fu, K. Y., Light, A. R., and Maixner, W. (2000) Relationship between nociceptor activity, peripheral edema, spinal microglial activation and long-term hyperalgesia induced by formalin. Neuroscience 101, 1127–1135.

    Article  PubMed  CAS  Google Scholar 

  117. Herzberg. U. and Sagen, J. (2001) Peripheral nerve exposure to HIV viral envelope protein gp120 induces neuropathic pain and spinal gliosis. J. Neuroimmunol. 116, 29–39.

    Article  Google Scholar 

  118. Fu, K. Y., Light, A. R., and Maixner, W. (2000) Relationship between nociceptor activity, peripheral edema, spinal microglial activation and long-term hyperalgesia induced by formalin. Neuroscience 101, 1127–1135.

    Article  PubMed  CAS  Google Scholar 

  119. Winkelstein, B. A., Rutkowski, M. D., Sweitzer, S. M., Pahl, J. L., and DeLeo, J. A. (2001) Nerve injury proximal or distal to the DRG induces similar spinal glial activation and selective cytokine expression but differential behavioral responses. J. Comp. Neurol. 439, 127–139.

    Article  PubMed  CAS  Google Scholar 

  120. Colbum, R. W., Rickman, A. J., and DeLeo, J. A. (1999) The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp. Neurol. 157, 289–304.

    Article  Google Scholar 

  121. Stuesse, S. L., Cruce, W. R., Lovell, J. A., McBurney, D. L., and Crisp, T. (2000) Micro-glial proliferation in the spinal cord of aged rats with a sciatic nerve injury. Neurosci. Lett. 287, 121–124.

    Article  PubMed  CAS  Google Scholar 

  122. McGeer, P. L. and McGeer, E. G. (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Rev. 21, 195–218.

    Article  PubMed  CAS  Google Scholar 

  123. Wright, J. L. and Merchant, R. E. (1992) Histopathological effects of intracerebral injections of human recombinant tumor necrosis factor-a in the rat. Acta Neuropathol. (Berl.) 85, 93–100.

    Article  CAS  Google Scholar 

  124. Simmons, R. D. and Willenborg, D. O. (1990) Direct injection of cytokines into the spinal cord causes autoimmune encephalomyelitis-like inflammation. J. Neurol. Sci. 100, 37–42.

    Article  PubMed  CAS  Google Scholar 

  125. Rothwell, N. J. and Strijbos, P. J. L. M. (1995) Cytokines in neurodegeneration and repair. Int. J. Dev. Neurosci. 13, 179–185.

    Article  PubMed  CAS  Google Scholar 

  126. Murphy, G. M. Jr., Jia, X.-C., Song, Y., Ong, E., Shrivastava, R., Bocchini, V., et al. (1995) Macrophage inflammatory protein 1-a mRNA expression in an immortalized micro-glial cell line and cortical astrocyte cultures. J. Neurosci. Res. 40, 755–763.

    Article  PubMed  Google Scholar 

  127. Ringheim, G. E. (1995) Mitogenic effects of interleukin-5 on microglia. Neurosci. Lett. 201, 131–134.

    Article  PubMed  CAS  Google Scholar 

  128. Atanassov, C. L., Muller, C. D., Dumont, S., Rebel, G., Poindron, P., and Seiler, N. (1995) Effect of ammonia on endocytosis and cytokine production by immortalized human micro-glia and astroglia cells. Neurochem. Int. 27, 417–424.

    Article  PubMed  CAS  Google Scholar 

  129. Sebire, G., Hery, C., Peudenier, S., and Tardieu, M. (1993) Adhesion proteins on human microglial cells and modulation of their expression by IL 1-alpha and TNF-alpha. Res. Virol. 144, 47–52.

    Article  PubMed  CAS  Google Scholar 

  130. Cannella, B. and Raine, C. S. (1995) The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann. Neurol. 37, 424–435.

    Article  PubMed  CAS  Google Scholar 

  131. Ryan, R., Sloane, B. F., Sameni, M., and Wood, P. L. (1995) Microglial cathepsin B: an immunological examination of cellular and secreted species. J. Neurochem. 65, 1035–1045.

    Article  PubMed  CAS  Google Scholar 

  132. Banati, R. B., Rothe, G., Valet, G., and Kreutzberg, G. W. (1993) Detection of lysosomal cysteine proteinases in microglia: flow cytometric measurement and histochemcial localization of cathepsin B and L. Glia 7, 183–191.

    Article  PubMed  CAS  Google Scholar 

  133. Kingham, P. J. and Pocock, J. M. (2001) Microglial secreted cathepsin B induces neuronal apoptosis. J. Neurochem. 76, 1475–1484.

    Article  PubMed  CAS  Google Scholar 

  134. Gresser, O., Weber, E., Hellwig, A., Riese, S., Regnier-Vigouroux, A. (2001) Immunocompetent astrocytes and microglia display major differences in the processing of the invariant chain and in the expression of active cathepsin L and cathepsin S. Eur. J. Immunol. 31, 1813–1824.

    Article  PubMed  CAS  Google Scholar 

  135. Yoshiyama, Y., Arai, K., Oki, T., and Hattori, T. (2000) Expression of invariant chain and pro-cathepsin L in Alzheimer’s brain. Neurosci. Lett. 290, 125–128.

    Article  PubMed  CAS  Google Scholar 

  136. Liuzzo, J. P., Petanceska, S. S., and Devi, L. A. (1999) Neurotrophic factors regulate cathepsin S in macrophages and microglia: a role in the degradation of myelin basic protein and amyloid beta peptide. Mol. Med. 5, 334–343.

    PubMed  CAS  Google Scholar 

  137. Cataldo, A. M. and Nixon, R. A. (1990) Increased cathepsin B activity in multiple sclerosis brain. Proc. Natl. Acad. Sci. USA 87, 3861–3865.

    Article  PubMed  CAS  Google Scholar 

  138. Bever, C. T. Jr. and Garver, D. W. (1995) Increased cathepsin B activity in multiple sclerosis brain. J. Neurol. Sci. 131, 71–73.

    Article  PubMed  Google Scholar 

  139. Ihara, M., Tomimoto, H., Kinoshita, M., Oh, J., Noda, M., Wakita, H., et al. (2001) Chronic cerebral hypoperfusion induces MMP-2 but not MMP-9 expression in the micro-glia and vascular endothelium of white matter. J. Cereb. Blood Flow Metab. 21, 828–834.

    Article  PubMed  CAS  Google Scholar 

  140. Gottschall, P. E., Yu, X., and Bing, B. (1995) Increased production of gelatinase B (matrix metalloproteinase-9) and interleukin-6 by activated rat microglia in culture. J. Neurosci. Res. 42, 335–342.

    Article  PubMed  CAS  Google Scholar 

  141. Yoshiyama, Y., Sato, H., Seiki, M., Shinagawa, A., Takahashi, M., and Yamada, T. (1998) Expression of the membrane-type 3 matrix metalloproteinase (MT3-MMP) in human brain tissues. Acta Neuropathol. (Berl.) 96, 347–350.

    Article  CAS  Google Scholar 

  142. Yoshiyama, Y., Asahina, M., and Hattori, T. (2000) Selective distribution of matrix metalloproteinase-3 (MMP-3) in Alzheimer’s disease brain. Acta Neuropathol. (Berl.) 99, 91–95.

    Article  CAS  Google Scholar 

  143. Leake, A., Morris, C. M., and Whateley, J. (2000) Brain matrix metalloproteinase 1 levels are elevated in Alzheimer’s disease. Neurosci. Lett. 291, 201–203.

    Article  PubMed  CAS  Google Scholar 

  144. Schlomann, U., Rathke-Hartlieb, S., Yamamoto, S., Jockusch, H., and Bartsch, J. W. (2000) Tumor necrosis factor a induces a metalloprotease-disintegrin, ADAM8 (CD 156): implications for neuron-glia interactions during neurodegeneration. J. Neurosci. 20, 7964–7971.

    PubMed  CAS  Google Scholar 

  145. Nakajima, K., Tsuzaki, N., Takemoto, N., and Kohsaka, S. (1992) Production and secretion of plasminogen in cultured rat brain microglia. FEBS Lett. 308, 179–182.

    Article  PubMed  CAS  Google Scholar 

  146. Nakajima, K., Tsuzaki, N., Shimojo, M., Hamanoue, M., and Kohsaka, S. (1992) Micro-glia isolated from rat brain secrete a urokinase-type plasminogen activator. Brain Res. 577, 285–292.

    Article  PubMed  CAS  Google Scholar 

  147. Behrendt, N., Ronne, E., and Dane, K. (1993) Binding of the urokinase-type plasminogen activator to its cell surface receptor is inhibited by low doses of suramin. J. Biol. Chem. 268, 5985–5989.

    PubMed  CAS  Google Scholar 

  148. Nakajima, K., Shimojo, M., Hamanoue, M., Ishiura, S., Sugita, H., and Kohsaka, S. (1992) Identification of elastase as a secretory protease from cultured rat microglia. J. Neurochem. 58, 1401–1408.

    Article  PubMed  CAS  Google Scholar 

  149. Matsuo, M., Hamasaki, Y., Fujiyama, F., and Miyazaki, S. (1995) Eicosanoids are produced by microglia, not by astrocytes, in rat glial cell cultures. Brain Res. 685, 201–204.

    Article  PubMed  CAS  Google Scholar 

  150. Minghetti, L. and Levi, G. (1995) Induction of prostanoid biosynthesis by bacterial lipopolysaccharide and isoproterenol in rat microglial cultures. J. Neurochem. 65, 2690–2698.

    Article  PubMed  CAS  Google Scholar 

  151. McGeer, P. L., Harada, N., Kimura, H., McGeer, E. G., and Schulzer, M. (1992) Prevalence of dementia amongst elderly Japanese with leprosy: apparent effect of chronic drug therapy. Dementia 3, 146–149.

    Google Scholar 

  152. Breitner, J. C. S., Welsh, K. A., Helms, M. J., Gaskell, P. C., Gau, B. A., Roses, A. D., et al. (1995) Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol. Aging 16, 523–530.

    Article  PubMed  CAS  Google Scholar 

  153. McGeer, P. L. and Rogers, J. (1992) Anti-inflammatory agents as a therapeutic approach to Alzheimer’ s disease. Neurology 42, 447–449.

    Article  PubMed  CAS  Google Scholar 

  154. Hull, M., Lieb, K., and Fiebich, B. L. (2000) Anti-inflammatory drugs: a hope for Alzheimer’ s disease? [review]. Expert Opin. 9, 671–683.

    CAS  Google Scholar 

  155. Blain, H., Jouzeau, J.Y., Blain, A., Terlain, B., Trechot, P., Touchon, J., et al. (2000) Alzheimer’s disease and non steroidal anti-inflammatory drugs with selectivity for cyclooxygenase-2: rationale and perspectives. Presse Med. 29, 267–273 (in French).

    PubMed  CAS  Google Scholar 

  156. Halliday, G. M., Shepherd, C. E., McCann, H., Reid, W. J., Grayson, D. A., Broe, G. A., et al. (2000) Effect of anti-inflammatory medications on neuropathological findings in Alzheimer disease. Arch. Neurol. 57, 831–836.

    Article  PubMed  CAS  Google Scholar 

  157. Hoozemans, J. M., Rozemuller, A. M., Janssen, I., De Groot, C. A., Veerhuis, R., Eikelenboom, P. (2001) Cyclooxygenase expression in microglia and neurons in Alzheimer’s disease and control brain. Acta Neuropathol. 101, 2–8.

    PubMed  CAS  Google Scholar 

  158. Yermakova, A. V., Rollins, J., Callahan, L. M., Rogers, J., and O’Banion, M. K. (1999) Cyclooxygenase-1 in human Alzheimer and control brain: quantitative analysis of expression by microglia and CA3 hippocampal neurons. J. Neuropathol. Exp. Neurol. 58, 1135–1146.

    Article  PubMed  CAS  Google Scholar 

  159. Woodroofe, M. N., Sarna, G. S., Wadhwa, M., Hayes, G. M., Loughlin, A. J., Tinker, A., et al. (1991) Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J. Neuroimmunol. 33, 227–236.

    Article  PubMed  CAS  Google Scholar 

  160. Bauer, J., Ganter, U., Strauss, S., Stadtmüller, G., Frommberger, U., Bauer, H., et al. (1992) The participation of interleukin-6 in the pathogenesis of Alzheimer’s disease. Res. Immunol. 143, 650–657.

    Article  PubMed  CAS  Google Scholar 

  161. Yan, H. Q., Banos, M. A., Herregodts, P., Hooghe, R., and Hooghe-Peters, E. L. (1992) Expression of interleukin (IL)-1(3, IL-6 and their respective receptors in the normal rat brain and after injury. Eur. J. Immunol. 22, 2963–2971.

    Article  PubMed  CAS  Google Scholar 

  162. Castrell, J. V., Andus, T., Kunz, D., and Heinrich, P. C. (1989) Interleukin-6: the major regulator of acute-phase protein synthesis in man and rat. Ann. NYAcad. Sci. 557, 87–101.

    Article  Google Scholar 

  163. Wood, J. A., Wood, P. L., Ryan, R., Graff-Radford, N. R., Pilapil, C., Robitaille, Y., and Quirion, R. (1993) Cytokine indices in Alzheimer’s temporal cortex: no changes in mature IL-1 [3 or IL-1RA but increases in the associated acute phase proteins IL-6, a2-macroglobulin and C-reactive protein. Brain Res. 625, 245–252.

    Article  Google Scholar 

  164. Shohami, E., Novikov, M., Bass, R., Yamin, A., and Gailly, R. (1994) Closed head injury triggers early production of TNFalpha and IL-6 by brain injury. J. Cereb. Blood Flow Metab. 14, 615–619.

    Article  PubMed  CAS  Google Scholar 

  165. Minami, M., Kuraishi, Y., and Satoh, M. (1991) Effects of kainic acid on messenger RNA levels of IL-1 beta, IL-6, TNFalpha and LIF in the rat brain. Biochem. Biophys. Res. Cornmun. 176, 593–598.

    Article  CAS  Google Scholar 

  166. Gillespie, J. S., Cavanagh, H. M. A., Behan, W. M. H., Morrison, L. J. A., McGarry, F., and Behan, P. O. (1993) Increased transcription of interleukin-6 in the brains of mice with chronic enterovirus infection. J. Gen. Virol. 74, 741–743.

    Article  PubMed  CAS  Google Scholar 

  167. McGeer, P. L. and McGeer, E. G. (1992) Complement proteins and complement inhibitors in Alzheimer’s disease. Res. Immunol. 143, 621–624.

    Article  PubMed  CAS  Google Scholar 

  168. Ishii, T. and Haga, S. (1992). Complements, microglial cells and amyloid fibril formation. Res. Immunol. 143, 614–616.

    Article  PubMed  CAS  Google Scholar 

  169. McGeer, P. L., Kawamata, T., Walker, D. G., Akiyama, H., Tooyama, I., and McGeer, E. G. (1993) Microglia in degenerative neurological disease. Glia 7, 84–92.

    Article  PubMed  CAS  Google Scholar 

  170. Hofman, F. M., Hinton, D. R., Johnson, K., and Merrill, J. E. (1989) Tumor necrosis factor identified in multiple sclerosis brain. J. Exp. Med. 170, 607–612.

    Article  PubMed  CAS  Google Scholar 

  171. Walker, D. G. and McGeer, P. L. (1992) Complement gene expression in human brain: comparison between normal and Alzheimer disease cases. Mol. Brain Res. 14, 109–116.

    Article  PubMed  CAS  Google Scholar 

  172. Brachova, L., Lue, L, Schultz, J., el Rashidy, T., and Rogers, J. (1993) Association cortex, cerebellum, and serum concentrations of Clq and factor B in Alzheimer’s disease. Mol. Brain Res. 18, 329–334.

    Article  PubMed  CAS  Google Scholar 

  173. Walker, D. G., Kim, S. U., and McGeer, P. L. (1995) Complement and cytokine gene expression in cultured microglia derived from postmortem human brains. J. Neurosci. Res. 40, 478–493.

    Article  PubMed  CAS  Google Scholar 

  174. Walker, D. G., Yasuhara, O., Patston, P. A., McGeer, E. G., and McGeer, P. L. (1995) Complement Cl inhibitor is produced by brain tissue and is cleaved in Alzheimer disease. Brain Res. 675, 75–82.

    Article  PubMed  CAS  Google Scholar 

  175. Gordon, D. L., Sadlon, T. A., Wesselingh, S. L., Russell, S. M., Johnstone, R. W., and Purcell, D. F. J. (1992) Human astrocytes express membrane cofactor protein (CD46), a regulator of complement activation. J. Neuroimmunol. 36, 199–208.

    Article  PubMed  CAS  Google Scholar 

  176. McGeer, P. L., Walker, D. G., Akiyama, H., Kawamata, T., Guan, A. L., Parker, C. J., Okada, N., and McGeer, E. G. (1991) Detection of the membrane inhibitor of reactive lysis (CD59) in diseased neurons of Alzheimer brain. Brain Res. 544, 315–319.

    Article  PubMed  CAS  Google Scholar 

  177. Gordon, D. L., Sadlon, T., Hefford, C., and Adrian, D. (1993) Expression of CD50, a regulator of the membrane attack complex of complement, on human astrocytes. Mol. Brain Res. 18, 335–338.

    Article  PubMed  CAS  Google Scholar 

  178. McGeer, P. L., Kawamata, T., and Walker, D. G. (1992) Distribution of clusterin in Alzheimer brain tissue. Brain Res. 579, 337–341.

    Article  PubMed  CAS  Google Scholar 

  179. Bertrand, P., Poirier, J., Oda, T., Finch, C. E., and Pasinetti, G. M. (1995) Association of apolipoprotein E genotype with brain levels of apolipoprotein E and apolipoprotein J (clusterin) in Alzheimer disease. Mol. Brain Res. 33, 174–178.

    CAS  Google Scholar 

  180. Akiyama, H., Kawamata, T., Dedhar, S., and McGeer, P. L. (1991) Immunohistochemical localization of vitronectin, its receptor and beta-3 integrin in Alzheimer brain tissue. J. Neuroimmunol. 32, 19–28.

    Article  PubMed  CAS  Google Scholar 

  181. Sobel, R. A., Chen, M., Maeda, A., and Hinojoza, J. R. (1995) Vitronectin and integrin vitronectin receptor localization in multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 54, 202–213.

    Article  PubMed  CAS  Google Scholar 

  182. Wisniewski, T. and Frangione, B. (1992) Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci. Lett. 135, 235–238.

    Article  PubMed  CAS  Google Scholar 

  183. Griffin, W. S. T., Sheng, J. G., Roberts, G. W., and Mrak, R. E. (1995) Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J. Neuropathol. Exp. Neurol. 54, 276–281.

    Article  PubMed  CAS  Google Scholar 

  184. McGeer, P. L., Akiyama, H., Kawamata, T., Yamada, T., Walker, D. G., and Ishii, T. (1992) Immunohistochemical localization of beta-amyloid precursor protein sequences in Alzheimer and normal brain tissue by light and electron microscopy. J. Neurosci. Res. 31, 428–442.

    Article  PubMed  CAS  Google Scholar 

  185. Konig, G., Monning, U., Czech, C., Prior, R., Banatis, R., Schreiter-Gasser, U., et al. (1992) Identification and differential expression of a novel alternative splice isoform of the ßA4 amyloid precursor protein (APP) mRNA in leukocytes and brain microglial cells. J. Biol. Chem. 267, 10804–10809.

    PubMed  CAS  Google Scholar 

  186. Töpper, R., Gehrmann, J., Banati, R., Schwarz, M., Block, F., Noth, J., et al. (1995) Rapid appearance of (3-amyloid precursor protein immunoreactivity in glial cells following excitotoxic brain injury. Acta Neuropathol. 89, 23–28.

    Article  PubMed  Google Scholar 

  187. Perlmutter, L. S., Barron, E., and Chui, H. C. (1990) Morphologic association between microglia and senile plaque amyloid in Alzheimer’s disease. Neurosci. Lett. 119, 32–36.

    Article  PubMed  CAS  Google Scholar 

  188. Frackowiak, J., Wisniewski, H. M., Wegiel, J., Merz, G. S., Iqbal, K., and Wang, K. L. (1992) Ultrastructure of the microglia that phagocytose amyloid and the microglia that produce (3-amyloid fibrils. Acta Neuropathol. (Berl.) 84, 225–233.

    Article  CAS  Google Scholar 

  189. Mackenzie, I. R. A., Hao, C. H., and Munoz, D. G. (1995) Role of microglia in senile plaque formation. Neurobiol. Aging 16, 797–804.

    Article  PubMed  CAS  Google Scholar 

  190. Araujo, D. M. and Cotman, C. W. (1992) (3-Amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer’s disease. Brain Res. 569, 141–145.

    Google Scholar 

  191. Aihara, N., Ishii, S., Kume, K., and Shimizu, T. (2000) Interaction between neurone and microglia mediated by platelet-activating factor. Genes Cells 5, 397–406.

    Article  PubMed  CAS  Google Scholar 

  192. Dijkstra, S., Geisert, E. E., Gispen, W. H., Bar, P. R., and Joosten, E. J. (2000) Up-regulation of CD81 (target of the antiproliferative antibody; TAPA) by reactive micro-glia and astrocytes after spinal cord injury in the rat. J. Comp. Neurol. 428, 266–277.

    Article  PubMed  CAS  Google Scholar 

  193. Frigerio, S., Silei, V., Ciusani, E., Massa, G., Lauro, G. M., and Salmaggi, A. (2000) Modulation of Fas-Ligand (Fas-L) on human microglial cells: an in vitro study. J. Neuroimmunol. 105, 109–114.

    Article  PubMed  CAS  Google Scholar 

  194. Boje, K. M. and Arora, P. K. (1992) Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 587, 250–256.

    Article  PubMed  CAS  Google Scholar 

  195. Chao, C. C., Hu, S., Molitor, T. W., Shaskan, E. G., and Peterson, P. K. (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J. Immunol. 149, 2736–2741.

    PubMed  CAS  Google Scholar 

  196. Colton, C. A. and Gilbert, D. L. (1993) Microglia, an in vivo source of reactive oxygen species in the brain. Adv. Neurol. 59, 321–326.

    PubMed  CAS  Google Scholar 

  197. Wood, P. L., Choksi, S., and Bocchini, V. (1994) Inducible microglial nitric oxide synthase: a large membrane pool. Neuroreport 5, 977–980.

    Article  PubMed  CAS  Google Scholar 

  198. Chao; C. C., Hu, S., Close, K., Choi, C. S., Molitor, T. W., Novick, W. J., et al. (1992) Cytokine release from microglia: differential inhibition by pentoxifylline and dexamethasone. J. Infect. Dis. 166, 847–853.

    Article  PubMed  CAS  Google Scholar 

  199. Peterson, P. K., Hu, S., Anderson, W. R., and Chao, C. C. (1994) Nitric oxide production and neurotoxicity mediated by activated microglia from human versus mouse brain. J. Infect. Dis. 170, 457–460.

    Article  PubMed  CAS  Google Scholar 

  200. Bö, L., Dawson, T. M., Wesselingh, S., Mörk, S., Choi, S., Kong, P. A., et al. (1994) Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann. Neurol. 36, 778–786.

    Article  PubMed  Google Scholar 

  201. Walker, D. G., Kim, S. U., and McGeer, P. L. (1995) Complement and cytokine gene expression in cultured microglia derived from postmortem human brains. J. Neurosci. Res. 40, 478–493.

    Article  PubMed  CAS  Google Scholar 

  202. Sherman, M. P., Griscavage, J. M., and Ignarro, L. J. (1992) Nitric oxide-mediated neuronal injury in multiple sclerosis. Med. Hypotheses 39, 143–146.

    Article  PubMed  CAS  Google Scholar 

  203. Colasanti, M., Persichini, T., Di Pucchio, T., Gremo, F., and Lauro, G. M. (1995) Human ramified microglial cells produce nitric oxide upon Escherichia coli lipopolysaccharide and tumor necrosis factor a stimulation. Neurosci. Lett. 200, 144–146.

    Article  PubMed  CAS  Google Scholar 

  204. Bagasra, O., Michaels, F. H., Zheng, Y. M., Bobroski, L. E., Spitsin, S. V., Fu, Z. F., et al. (1995) Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc. Natl. Acad. Sci. USA 92, 12041–12045.

    Article  PubMed  CAS  Google Scholar 

  205. Kontes, H. K. and Wei, E. P. (1986) Superoxide production in experimental brain injury. J. Neurosurg. 64, 803–807.

    Article  Google Scholar 

  206. Colton, C. A., Yao, J., Gilbert, D., and Oster-Granite, M. L. (1990) Enhanced production of superoxide anion by microglia from trisomy 16 mice. Brain Res. 519, 236–242.

    Article  PubMed  CAS  Google Scholar 

  207. Zhou, Y., Richardson, J. S., Mombourquette, M. J., and Weil, J. A. (1995) Free radical formation in autopsy samples of Alzheimer and control cortex. Neurosci. Lett. 195, 89–92.

    Article  PubMed  CAS  Google Scholar 

  208. Schwab, J. M., Brechtel, K., Nguyen, T. D., and Schluesener, H. J. (2000) Persistent accumulation of cyclooxygenase-1 (COX-1) expressing microglia/macrophages and upregulation by endothelium following spinal cord injury. J. Neuroimmunol. 111, 122–130.

    Article  PubMed  CAS  Google Scholar 

  209. Schwab, J. M., Nguyen, T. D., Postler, E., Meyermann, R., and Schluesener, H. J. (2000) Selective accumulation of cyclooxygenase-l-expressing microglial cells/macrophages in lesions of human focal cerebral ischemia. Acta Neuropathol. 99, 609–614.

    Article  PubMed  CAS  Google Scholar 

  210. Advances in Alzheimer Therapy. Sixth International Stockholm/Springfield Symposium, 2000.

    Google Scholar 

  211. Wood, P. L. (1998) Disease-modifying drugs for Alzheimer’s disease?: inhibitors of apoptosis, APP processing and prostaglandin formation. IDrugs 1, 675–677.

    PubMed  CAS  Google Scholar 

  212. Hadland, B. K., Manley, N. R., Su, D. M., Longmore, G. D., Moore, C. L., Wolfe, M. S., et al. (2001) Gamma-secretase inhibitors repress thymocyte development. Proc. Natl. Acad. Sci. USA 98, 7487–7491.

    Article  PubMed  CAS  Google Scholar 

  213. Brayden, D. J., Templeton, L., McClean, S., Barbour, R., Huang, J. P., Nguyen, M., et al. (2001) Encapsulation in biodegradable microparticles enhances serum antibody response to parenterally-delivered beta-amyloid in mice. Vaccine 19, 4185–4193.

    Article  PubMed  CAS  Google Scholar 

  214. Akama, K. T. and Van Eldik, L. J. (2000) 13-Amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1 beta-and tumor necrosis factor-alpha (TNF alpha)-dependent, and involves a TNF alpha receptor-associated factor-and NF kappa B-inducing kinase-dependent signaling mechanism. J. Biol. Chem. 275, 7918–7924.

    Google Scholar 

  215. Justicia, C., Gabriel, C., and Planas, A. M. (2000) Activation of the JAK/STAT pathway following transient focal cerebral ischemia: signaling through Jakl and Stat3 in astrocytes. Glia 30, 253–270.

    Article  PubMed  CAS  Google Scholar 

  216. Tan, J., Town, T., and Mullan, M. (2000) CD45 inhibits CD40L-induced microglial activation via negative regulation of the Src/p44/42 MAPK pathway. J. Biol. Chem. 275, 37224–37231.

    Article  PubMed  CAS  Google Scholar 

  217. Tan, J., Town, T., Mori, T., Wu, Y. J., Saxe, M., Crawford, F., et al. (2000) CD45 opposes beta-amyloid peptide-induced microglial activation via inhibition of p44/42 mitogen-activated protein kinase. J. Neurosci. 20, 7587–7594.

    PubMed  CAS  Google Scholar 

  218. Hasegawa, H., Nakai, M., Tanimukai, S., Taniguchi, T., Terashima, A., Kawamata, T., et al. (2001) Microglial signaling by amyloid beta protein through mitogen-activated protein kinase mediating phosphorylation of MARCKS. Neuroreport 12, 2567–2571.

    Article  PubMed  CAS  Google Scholar 

  219. Fabrizi, C., Silei, V., Menegazzi, M., Salmona, M., Bugiani, O., Tagliavini, F., et al. (2001) The stimulation of inducible nitric-oxide synthase by the prion protein fragment 106–126 in human microglia is tumor necrosis factor-alpha-dependent and involves p38 mitogen-activated protein kinase. J. Biol. Chem. 276, 25692–25696.

    Article  PubMed  CAS  Google Scholar 

  220. Ryu, J., Pyo, H., Jou, I., and Joe, E. H. (2000) Thrombin induces NO release from cultured rat microglia via protein kinase C, mitogen-activated protein kinase, and NF-kappa B. J. Biol. Chem. 275, 29955–29959.

    Article  PubMed  CAS  Google Scholar 

  221. Schlapbach, R., Spanaus, K. S., Malipiero, U., Lens, S., Tasinato, A., Tschopp, J., et al. (2000) TGF-beta induces the expression of the FLICE-inhibitory protein and inhibits Fas-mediated apoptosis of microglia. Eur. J. Immunol. 30, 3680–3688.

    Article  PubMed  CAS  Google Scholar 

  222. Lee, Y. B., Schrader, J. W., and Kim, S. U. (2000) p38 map kinase regulates TNF-alpha production in human astrocytes and microglia by multiple mechanisms. Cytokine 12, 874–880.

    Google Scholar 

  223. Hide, I., Tanaka, M., Inoue, A., Nakajima, K., Kohsaka, S., Inoue, K., et al. (2000) Extra-cellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J. Neurochem. 75, 965–972.

    Article  PubMed  CAS  Google Scholar 

  224. Zhu, X. W., Rottkamp, C. A., Boux, H., Takeda, A., Perry, G., and Smith, M. A. (2000) Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J. Neuropathol. Exp. Neurol. 59, 880–888.

    PubMed  CAS  Google Scholar 

  225. Zhu, X., Rottkamp, C. A., Hartzler, A., Sun, Z., Takeda, A., Boux, H., et al. (2001) Activation of MKK6, an upstream activator of p38, in Alzheimer’s disease. J. Neurochem. 79, 311–318.

    Google Scholar 

  226. Hensley, K., Floyd, R. A., Zheng, N. Y., Nael, R., Robinson, K. A., Nguyen, X., et al. (1999) p38 kinase is activated in the Alzheimer’s disease brain. J. Neurochem. 72, 2053–2058.

    Google Scholar 

  227. Monnet-Tschudi, F., Zurich, M. G., Pithon, E., Van Melle, G., and Honegger, P. (1995) Microglial responsiveness as a sensitive marker for trimethyltin (TMT) neurotoxicity. Brain Res. 690, 8–14.

    Article  PubMed  CAS  Google Scholar 

  228. McCann, M. J., O’Callaghan, J. P., Martin, P. M., Bertram, T., and Streit, W. J. (1996) Differential activation of microglia and astrocytes following trimethyl tin-induced neuro-degeneration. Neuroscience 72, 273–281.

    Article  PubMed  CAS  Google Scholar 

  229. Maier, W. E., Brown, H. W., Tilson, H. A., Luster, M. I., and Harry, G. J. (1995) Trimethyltin increases interleukin (IL)-1a, IL-6 and tumor necrosis factor a mRNA levels in rat hippocampus. J. Neuroimmunol. 59, 65–75.

    Article  PubMed  CAS  Google Scholar 

  230. Mogi, M., Togari, A., Tanaka, K., Ogawa, N., Ichinose, H., and Nagatsu, T. (2000) Increase in level of tumor necrosis factor-alpha in 6-hydroxydopamine-lesioned striatum in rats is suppressed by immunosuppressant FK506. Neurosci. Lett. 289, 165–168.

    Article  PubMed  CAS  Google Scholar 

  231. Tikka, T., Fiebich, B. L., Goldsteins, G., Keinanen, R., and Koistinaho, J. (2001) Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J. Neurosci. 21, 2580–2588.

    PubMed  CAS  Google Scholar 

  232. Hensley, K., Robinson, K. A., Pye, Q. N., Floyd, R. A., Cheng, I., Garland, W. A., et al. (2000) CPI-1189 inhibits interleukin lbeta-induced p38-mitogen-activated protein kinase phosphorylation: an explanation for its neuroprotective properties? Neurosci. Lett. 281, 179–182.

    Article  PubMed  CAS  Google Scholar 

  233. Pulliam, L., Irwin, I., Kusdra, L., Rempel, H., Flitter, W. D., and Garland, W. A. (2001) CPI-1189 attenuates effects of suspected neurotoxins associated with AIDS dementia: a possible role for ERK activation. Brain Res. 893, 95–103.

    Article  PubMed  CAS  Google Scholar 

  234. Bjugstad, K. B., Flitter, W. D., Garland, W. A., Su, G. C., and Arendash, G. W. (1998) Preventive actions of a synthetic antioxidant in a novel animal model of AIDS dementia. Brain Res. 795, 349–357.

    Article  PubMed  CAS  Google Scholar 

  235. Bjugstad, K. B., Flitter, W. D., Garland, W. A., Philpot, R. M., Kirstein, C. L., and Arendash, G. W. (2000) CPI-1189 prevents apoptosis and reduces glial fibrillary acidic protein immunostaining in a TNF-alpha infusion model for AIDS dementia complex. J. Neurovirol. 6, 478–491.

    Article  PubMed  CAS  Google Scholar 

  236. Lim, G. P., Chu, T., Yang, F. S., Beech, W., Frautschy, S. A., and Cole, G. M. (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 21, 8370–8377.

    PubMed  CAS  Google Scholar 

  237. Wood, P. L. (1994) Microglia: a possible cellular target for pharmacological approaches to neurodegenerative disorders. Drug News Perspect. 7, 138–157.

    Google Scholar 

  238. Lee, Y. B., Schrader, J. W., and Kim, S. U. (2000) p38 map kinase regulates TNF-alpha production in human astrocytes and microglia by multiple mechanisms. Cytokine 12, 874–880.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wood, P.L. (2003). Microglia. In: Wood, P.L. (eds) Neuroinflammation. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-297-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-297-5_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9720-5

  • Online ISBN: 978-1-59259-297-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics