Skip to main content

Part of the book series: Contemporary Endocrinology ((COE))

  • 180 Accesses

Abstract

Disorders of body fluids are among the most commonly encountered problems in the practice of clinical medicine. This is in large part because many different disease states can potentially disrupt the finely balanced mechanisms that control the intake and output of water and solute. Since body water is the primary determinant of the osmolality of the extracellular fluid (ECF), disorders of water metabolism can be broadly divided into hypoosmolar disorders, in which there is an excess of body water relative to body solute, and hyperosmolar disorders, in which there is a deficiency of body water relative to body solute. Because sodium is the main constituent of plasma osmolality (Posm), these disorders are typically characterized by hyponatremia and hypernatremia, respectively. Before discussing these disorders, this chapter will first review the regulatory mechanisms underlying water and sodium metabolism, the two major determinants of body fluid homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fanestil DD. Compartmentation of body water. In: Narins RG, ed. Clinical Disorders of Fluid and Electrolyte Metabolism. McGraw-Hill, New York, 1994, 3–20.

    Google Scholar 

  2. Rose BD. New approach to disturbances in the plasma sodium concentration. Am J Med 1986; 81: 1033–1040.

    Article  CAS  PubMed  Google Scholar 

  3. Verbalis JG. The syndrome of inappropriate antidiuretic hormone secretion and other hypoosmolar disorders. In: Schrier RW, ed. Diseases of the Kidney and Urinary Tract. Lippincott Williams zhaohuan Wilkins, Philadelphia, 2001, 2511–2548.

    Google Scholar 

  4. Vokes TP, Aycinena PR, Robertson GL. Effect of insulin on osmoregulation of vasopressin. Am J Physiol 1987; 252: E538 - E548.

    CAS  PubMed  Google Scholar 

  5. Verbalis JG. Body water and osmolality. In: Jamison RL, Wilkinson R, eds. Nephrology. Chapman zhaohuan Hall Medical, London. 1997, 89–94.

    Google Scholar 

  6. Fitzsimons JT. Physiology and pathophysiology of thirst and sodium appetite. In: Seldin DW, Giebisch G, eds. The Kidney, Physiology and Pathophysiology. Raven Press, New York, 1992, 1615–1648.

    Google Scholar 

  7. Stricker EM, Verbalis JG. Water intake and body fluids. In: Zigmond MJ, Bloom FE, Landis SC, Roberts JL, Squire LR, eds. Fundamental Neuroscience. Academic Press, San Diego, 1999, 1111–1126.

    Google Scholar 

  8. Robertson GL. Thirst and vasopressin function in normal and disordered states of water balance. J Lab Clin Med 1983; 101: 351–371.

    CAS  PubMed  Google Scholar 

  9. Thompson CJ, Bland J, Burd J, Baylis PH. The osmotic thresholds for thirst and vasopressin release are similar in healthy man. Clin Sci (Colch) 1986; 71: 651–656.

    CAS  Google Scholar 

  10. Phillips PA, Rolls BJ, Ledingham JG, Morton JJ, Forsling ML. Angiotensin II-induced thirst and vasopressin release in man. Clin Sci (Colch) 1985; 68: 669–674.

    CAS  Google Scholar 

  11. de Castro J. A microregulatory analysis of spontaneous fluid intake in humans: evidence that the amount of liquid ingested and its timing is mainly governed by feeding. Physiol Behav 1988; 3: 705–714.

    Article  Google Scholar 

  12. Robertson GL. Posterior pituitary. In: Felig P, Baxter J, Frohman L, eds. Endocrinology and Metabolism. McGraw-Hill, New York, 1995, 385–432.

    Google Scholar 

  13. Knepper MA. Molecular physiology of urinary concentrating mechanism: regulation of aquaporin water channels by vasopressin. Am J Physiol 1997; 272: F3 - F12.

    CAS  PubMed  Google Scholar 

  14. Robertson GL. The regulation of vasopressin function in health and disease. Recent Prog Horm Res 1976; 33: 333–385.

    CAS  PubMed  Google Scholar 

  15. Robinson AG. Disorders of antidiuretic hormone secretion. Clin Endocrinol Metab 1985; 14: 55–88.

    Article  CAS  PubMed  Google Scholar 

  16. Rowe JW, Shelton RL, Helderman JH, Vestal RE, Robertson GL. Influence of the emetic reflex on vasopressin release in man. Kidney Int 1979; 16: 729–735.

    Article  CAS  PubMed  Google Scholar 

  17. Robertson GL, Aycinena P, Zerbe RL. Neurogenic disorders of osmoregulation. Am J Med 1982; 72: 339–353.

    Article  CAS  PubMed  Google Scholar 

  18. Verbalis JG. Body sodium and extracellular fluid volume. In: Jamison R, Wilkinson R, eds. Nephrology. Chapman zhaohuan Hall Medical, London, 1997, 95–101.

    Google Scholar 

  19. Denton D. The Hunger for Salt: An Anthropological, Physiological and Medical Analysis. Springer-Verlag, Berlin. 1982.

    Google Scholar 

  20. Wilkins L, Richter CP. A great craving for salt by a child with cortico-adrenal insufficiency. JAMA 1940; 114: 866–868.

    Article  Google Scholar 

  21. Orth DN, Kovacs WJ. The adrenal cortex. In: Wilson JD, Foster DW, Kronenberg HM, Larsen PR, eds. Williams Textbook of Endocrinology. W.B. Saunders, Philadelphia. 1998, 517–664.

    Google Scholar 

  22. Kirchner KA Stein JH. Sodium metabolism. In: Narins RG ed. Clinical Disorders of Fluid and Electrolyte Metabolism. McGraw-Hill, New York, 1994, 45–80.

    Google Scholar 

  23. Reeves WB and Andreoli TE. Tubular sodium transport. In: Schrier RW, editor. Diseases of the Kidney and Urinary Tract. Lippincott Williams zhaohuan Wilkins, Philadelphia. 2001, 135–175.

    Google Scholar 

  24. Baylis C, Lemley KV. Glomerular filtration. In: Jamison RL, Wilkinson R, eds. Nephrology. Chapman zhaohuan Hall, London, 1997, 25–33.

    Google Scholar 

  25. Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA. Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest 1999; 104: R19 - R23.

    Article  CAS  PubMed  Google Scholar 

  26. Schneider EG, Radke KJ, Ulderich DA, Taylor R.E., Jr. Effect of osmolality on aldosterone secretion. Endocrinology 1985; 116: 1621–1626.

    Article  CAS  PubMed  Google Scholar 

  27. Hall JE, Granger JP, Smith MJ Jr, Premen AJ. Role of renal hemodynamics and arterial pressure in aldosterone “escape”. Hypertension 1984; 6: I183–1192.

    Article  CAS  PubMed  Google Scholar 

  28. Verbalis JG. Hyponatremia and hypoosmolar disrders. In: Greenberg A, ed. Primer on Kidney Diseases. Academic Press, San Diego. 2001, 57–63.

    Google Scholar 

  29. Katz MA. Hyperglycemia-induced hyponatremia-calculation of expected serum sodium depression. N Eng J Med 1973; 289: 843–844.

    Article  CAS  Google Scholar 

  30. Hillier TA, Abbott RD, Barrett EJ. Hyponatremia: evaluating the correction factor for hyperglycemia. Am J Med 1999; 106: 399–403.

    Article  CAS  PubMed  Google Scholar 

  31. Phillips PA, Rolls BJ, Ledingham JG, et al. Reduced thirst after water deprivation in healthy elderly men. N Engl J Med 1984; 311: 753–759.

    Article  CAS  PubMed  Google Scholar 

  32. Fujiwara TM, Morgan K, Bichet DG. Molecular biology of diabetes insipidus. Annu Rev Med 1995; 46: 331–343.

    Article  CAS  PubMed  Google Scholar 

  33. Knepper MA, Verbalis JG, Nielsen S. Role of aquaporins in water balance disorders. Curr Opin Nephrol Hypertens 1997; 6: 367–371.

    Article  CAS  PubMed  Google Scholar 

  34. Zerbe RL, Robertson GL. A comparison of plasma vasopressin measurements with a standard indirect test in the differential diagnosis of polyuria. N Eng J Med 1981; 305: 1539–1546.

    Article  CAS  Google Scholar 

  35. Robertson GL. Diabetes insipidus. Endocrinol Metab Clin North Am 1995; 24: 549–572.

    CAS  PubMed  Google Scholar 

  36. Robertson GL. Dipsogenic diabetes insipidus: a newly recognized syndrome caused by a selective defect in the osmoregulation of thirst. Trans Assoc Am Physicians 1995; 100: 241–249.

    Google Scholar 

  37. Thrasher TN, Keil LC, Ramsay DJ. Lesions of the organum vasculosum of the lamina terminalis (OVLT) attenuate osmotically-induced drinking and vasopressin secretion in the dog. Endocrinology 1982; 110: 1837–1839.

    Article  CAS  PubMed  Google Scholar 

  38. Johnson AK, Buggy J. Periventricular preoptic-hypothalamus is vital for thirst and normal water economy. Am J Physiol 1978; 234: R122 - R129.

    CAS  PubMed  Google Scholar 

  39. Baylis PH, Thompson CJ. Diabetes insipidus and hyperosmolar syndromes. In: Becker KL, ed. Principles and Practice of Endocrinology and Metabolism. Lippincott Williams zhaohuan Wilkins, Philadelphia. 2001, 285–293.

    Google Scholar 

  40. Gullans SR, Verbalis JG. Control of brain volume during hyperosmolar and hypoosmolar conditions. Annu Rev Med 1993; 44: 289–301.

    Article  CAS  PubMed  Google Scholar 

  41. Spital A. Diuretic-induced hyponatremia. Am J Nephrol 1999; 19: 447–452.

    Article  CAS  PubMed  Google Scholar 

  42. Chung HM, Kluge R, Schrier RW, Anderson RJ. Clinical assessment of extracellular fluid volume in hyponatremia. Am J Med 1987; 83: 905–908.

    Article  CAS  PubMed  Google Scholar 

  43. Bartter FC, Schwartz WB. The syndrome of inappropriate secretion of antidiuretic hormone. Am J Med 1987; 42: 790–806.

    Article  Google Scholar 

  44. OelkersW. Hyponatremia and inappropriate secretion of vasopressin (antidiuretic hormone) in patients with hypopituitarism. N Eng J Med 1989; 321: 492–496.

    Article  Google Scholar 

  45. Carroll PB, McHenry L, Verbalis JG. Isolated adrenocorticotrophic hormone deficiency presenting as chronic hyponatremia. NY State J Med 1990; 90: 210–213.

    CAS  Google Scholar 

  46. Schrier RW. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy (1). N Eng J Med 1988; 319: 1065–1072.

    Article  CAS  Google Scholar 

  47. Schrier RW. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy (2). N Eng J Med 1988; 319: 1127–1134.

    Article  CAS  Google Scholar 

  48. Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med 2000; 342: 1581–1589.

    Article  CAS  PubMed  Google Scholar 

  49. Arieff AI, Llach F, Massry SG. Neurological manifestations and morbidity of hyponatremia: correlation with brain water and electrolytes. Medicine 1976; 55: 121–129.

    Article  CAS  PubMed  Google Scholar 

  50. Verbalis JG, Gullans SR. Hyponatremia causes large sustained reductions in brain content of multiple organic osmolytes in rats. Brain Res 1991; 567: 274–282.

    Article  CAS  PubMed  Google Scholar 

  51. Vexler ZS, Ayus JC, Roberts TP, Fraser CL, Kucharczyk J, Arieff AI. Hypoxic and ischemic hypoxia exacerbate brain injury associated with metabolic encephalopathy in laboratory animals. J Clin Invest 1994; 93: 256–3264.

    Article  CAS  PubMed  Google Scholar 

  52. Ayus JC, Wheeler JM, Arieff AI. Postoperative hyponatremic encephalopathy in menstruant women. Ann Intern Med 1992; 117: 891–897.

    CAS  PubMed  Google Scholar 

  53. Arieff Al, Ayus J C, Fraser CL. Hyponatraemia and death or permanent brain damage in healthy children. Br Med J 1992; 304: 1218–31222.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Verbalis, J.G. (2003). Disorders of Water Metabolism. In: Hall, J.E., Nieman, L.K. (eds) Handbook of Diagnostic Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-293-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-293-7_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-172-1

  • Online ISBN: 978-1-59259-293-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics