Skip to main content

Comparative Analysis of Copper and Iron Metabolism in Photosynthetic Eukaryotes vs Yeast and Mammals

  • Chapter
Handbook of Copper Pharmacology and Toxicology

Abstract

Copper and iron are essential micronutrients for all organisms because of their function as cofactors in enzymes that catalyze redox reactions in fundamental metabolic processes. Prominent examples of such enzymes include cytochrome oxidase in respiration, plastocyanin in photosynthesis, superoxide dismutase in oxidative stress, and ceruloplasmin in iron metabolism. Copper and iron carry out very similar functions in biology because both exhibit stable, redox-interchangeable ionic states with the potential to generate less stable electron-deficient intermediates during multielectron redox reactions involving oxygen chemistry. The major difference between copper and iron in biological systems derives from their individual ligand preferences and coordination geometries. The bioavailability of copper and iron is low so that organisms are faced with the challenge of acquiring sufficient copper and iron for cellular requirements while avoiding the buildup of levels that could lead to cellular toxicity. Over the last decade, it has become apparent that organisms have developed a suite of strategies to combat such challenges, so that an intricate balance between uptake, utilization, storage and detoxification, and efflux pathways for copper and iron exists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Askwith, C. and Kaplan, J. (1998) Iron and copper transport in yeast and its relevance to human disease. Trends Biochem. Sci. 23, 135–138.

    Article  PubMed  CAS  Google Scholar 

  2. Labbe, S. and Thiele, D. J. (1999) Pipes and wiring: the regulation of copper uptake and distribution in yeast. Trends Microbiol. 7, 500–505.

    Article  PubMed  CAS  Google Scholar 

  3. Dancis, A., Haile, D., Yuan, D. S., et al. (1994) The Saccharomyces cerevisiae copper transport protein (Ctrlp). J. Biol. Chem. 269, 25,660–25, 667.

    Google Scholar 

  4. Pena, M. M. O., Puig, S., and Thiele, D. J. (2000) Characterization of the Saccharomyces cerevisiae high affinity copper transporter Ctr3. J. Biol. Chem. 275, 33,244–33, 251.

    Google Scholar 

  5. Pena, M. M. O., Lee, J., and Thiele, D. J. (1999) A delicate balance: homeostatic control of copper uptake and distribution. J. Nutr. 129, 1251–1260.

    PubMed  CAS  Google Scholar 

  6. Georgatsu, E., Mavrogiannis, L. A., Fragiadakis, G. S., et al. (1997) The yeast Frelp/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Maclp activator. J. Biol. Chem. 272, 13,786–13, 792.

    Google Scholar 

  7. Hassett, R. and Kosman, D. J. (1995) Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J. Biol. Chem. 270, 128–134.

    CAS  Google Scholar 

  8. Eide, D. J. (1998) The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu. Rev. Nutr. 18 441–469.

    Google Scholar 

  9. Gross, C., Kelleher, M., Iyer, V. R., et al. (2000) Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J. Biol. Chem. 275, 32,310–32, 316.

    Google Scholar 

  10. Winge, D. R., Jensen, L. T., and Srinivasan, C. (1998) Metal-ion regulation of gene expression in yeast. Curr. Opin. Chem. Biol. 2, 216–221.

    Google Scholar 

  11. Ooi, C. E., Rabinovich, E., Dancis, A., et aI. (1996) Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane transporter Ctrlp in the apparent absence of endocytosis. EMBO J. 15, 3515–3523.

    CAS  Google Scholar 

  12. Hassett, R., Dix, D. R. Eide, D. J., et al. (2000) The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae. Biochem. J. 351 477–484.

    Google Scholar 

  13. Cohen, A., Nelson, H., and Nelson, N. (2000) The family of SMF metal ion transporters in yeast cells. J. Biol. Chem. 275, 33,388–33, 394.

    Google Scholar 

  14. Radisky, D. and Kaplan, J. (1999) Regulation of transition metal transport across the yeast plasma membrane. J. Biol. Chem. 274, 4481–4484.

    Article  PubMed  CAS  Google Scholar 

  15. Kampfenkel, K., Kushnir, S., Babiychuk, E., et al. (1995) Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. J. Biol. Chem. 47, 28,479–28, 486.

    Google Scholar 

  16. Harrison, M., Jones, C. E., and Dameron, C. T. (1999) Copper chaperones: function, structure and coper-binding properties. J. Biol. Inorg. Chem. 4, 145–153.

    Article  PubMed  CAS  Google Scholar 

  17. Harrison, M. D., Jones, C. E., Solioz, M., et al. (2000) Intracellular copper routing: the role of copper chaperones. TIES 25, 29–32.

    CAS  Google Scholar 

  18. O’Halloran, T. V. and Culotta, V. C. (2000) Metallochaperones, an intracellular shuttle service for metal ions. J. Biol. Chem. 275, 25,057–25, 060.

    Google Scholar 

  19. Valentine, J. S. (1997) Delivering copper inside yeast and human cells. Science, 278, 817–818.

    Article  PubMed  CAS  Google Scholar 

  20. Culotta, V. C., Sturtz, L., Jensen, L., et al. (2001) Metals and oxidative stress: new insights from yeast. J. Exp. Bot. 52 (Suppl.). 61.

    Google Scholar 

  21. Yuan, D. S., Stearman, R., Dancis, A., et al. (1995) The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc. Natl. Acad. Sci. USA, 92, 2632–2636.

    Article  PubMed  CAS  Google Scholar 

  22. Davis-Kaplan, S. R., Askwith, C. C., Bengtzen, A. C., et al. (1998) Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: An unexpected role for intracellular chloride channels. Proc. Natl. Acad. Sci. USA 95, 13,641–13, 645.

    Google Scholar 

  23. Gaxiola, R. A., Yuan, D. S., Klausner, R. D., et al. (1998) The yeast CLC chloride channel functions in cation homeostasis. Proc. Natl. Acad. Sci. USA, 95, 4046–4050.

    Article  PubMed  CAS  Google Scholar 

  24. Glerum, D. M., Shtanko, A., and Tzagoloff, A. (1996) SCOI and SCO2 act as high copy suppressors of a mitochondrial copper recruitment defect in Saccharomyces cerevisiae. J. Biol. Chem. 271 20,531–20,535.

    Google Scholar 

  25. Rentzsch, A., Krummeck-Weiß, G., Hofer, A., et al. (1999) Mitochondria) copper metabolism in yeast: mutational analysis of Scolp involved in the biogenesis of cytochrome c oxidase. Curr. Genet. 35, 10–108.

    Article  Google Scholar 

  26. Martins, L. J., Jensen, L. T., Simons, J. R.. et al. (1998) Metalloregulation of FREI and FRE2 homology in Saccharomyces cerevisiae. J. Biol. Chem. 273 23,716–23,721.

    Google Scholar 

  27. Stearman, R., Yuan, D. S., Yamaguchi-Iwai, Y., et al. (1996) A permease—oxidase complex involved in high-affinity iron uptake in yeast. Science 271, 1552–1557.

    Article  PubMed  CAS  Google Scholar 

  28. Askwith, C., Eide, D., Van Ho, A., et al. (1994) The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76, 403–410.

    Article  PubMed  CAS  Google Scholar 

  29. Askwith, C. and Kaplan, J. (1997) An oxidase—permease-based iron transport system in Schizosaccharomyces pombe and its expression in Saccharomyces cerevisiae. J. Biol. Chem. 272, 401–405.

    CAS  Google Scholar 

  30. Hammacott, J. E., Williams, P. H., and Cashmore, A. M. (2000) Candida albicans CFL1 encodes a functional ferric reductase activity that can rescue a Saccharomyces cerevisiae fie) mutant. Microbiology 146, 869–876.

    CAS  Google Scholar 

  31. Ramanan, N. and Wang, Y. (2000) A high-affinity iron permease essential for Candida albicans virulence. Science 288, 1062–1064.

    Article  PubMed  CAS  Google Scholar 

  32. Dix, D., Bridgham, J., Broderius, M., et al. (1997) Characterization of the FET4 protein of yeast. Evidence for a direct role in the transport of iron. J. Biol. Chen. 272, 11,770–11, 777.

    Google Scholar 

  33. Yun, C.-W., Ferea, T. Rashford, J. et al. (2000) Desferrioxamine-mediated iron uptake in Saccharomyces cereivisiae. Evidence for two pathways of iron uptake. J. Biol. Chem. 275 10,709–10,715.

    Google Scholar 

  34. Yun, C.-W., Tiedeman, J. S., Moore, R. E., et al. (2000) Siderophore—iron uptake in Saccharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters. J. Biol. Chem. 275, 16,354–16, 359.

    Google Scholar 

  35. Heymann, P., Ernst, J. F., and Winkelmann, G. (1999) Identification of a fungal triacetylfusarinine C siderophore transport gene (TAFI) in Saccharomyces cerevisiae as a member of the major facilitator superfamily. Biometals 12, 301–306.

    Article  PubMed  CAS  Google Scholar 

  36. Heymann, P., Ernst, J. F., and Winkelmann, G. (2000) Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arnlp) in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 186, 221–227.

    Article  CAS  Google Scholar 

  37. Lesuisse, E., Blaiseau, P. L., Dancis, A., et al. (2001) Siderophore uptake and use by the yeast Saccharomyces cerevisiae. Microbiology 147 (Pt. 2), 289–298.

    CAS  Google Scholar 

  38. Lesuisse, E., Simon-Casteras, M., and Labbe, P. (1998) Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 144 (Pt. 2), 3455–3462.

    Article  PubMed  CAS  Google Scholar 

  39. Klionsky, D. J., Herman, P. K., and Emr, S. D. (1990) The fungal vacuole: composition, function and biogenesis. Microbiol. Rev. 54, 266–292.

    PubMed  CAS  Google Scholar 

  40. Raguzzi, F., Lesuisse, E., and Chrichton, R.R. (1988) Iron storage in Saccharornyces cerevisiae. FEBS Lett. 231, 253258.

    Google Scholar 

  41. Urbanowski, J. L. and Piper, R. C. (1999) The iron transporter Fthlp forms a complex with the FetS iron oxidase and resides on the vacuolar membrane. J. Biol. Chem, 274, 38,061–38, 070.

    Google Scholar 

  42. Babcock, M., Silva, D. D., Oaks, R., et al. (1997) Regulation of mitochondrial iron accumulation by Yfhl, a putative homolog of frataxin. Science 276, 1709–1712.

    Article  PubMed  CAS  Google Scholar 

  43. Radisky, D. C., Babcock, M. C., and Kaplan, J. (1999) The yeast frataxin homologue mediates mitochondrial iron efflux. J. Biol. Chem. 274, 4497–4499.

    Article  PubMed  CAS  Google Scholar 

  44. Chen, O. S. and Kaplan, J. (2000) CCCI supresses mitochondrial damage in the yeast model of Friedreich’s ataxia by limiting mitochondrial iron accumulation. J. Biol. Chem. 275, 7626–7632.

    CAS  Google Scholar 

  45. Kispal, G., Csere, P., Prohl, C., et al. (1999) The mitochondrial proteins Atmlp and Nfslp are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 18, 3981–3989.

    Google Scholar 

  46. Li, J., Kogan, M. Knight, S. A. B. et al. (1999) Yeast mitochondrial protein, Nfslp, coordinately regulates iron-sulphur cluster proteins, cellular iron uptake, and iron distribution. J. Biol. Chem. 274 33,025–33,034.

    Google Scholar 

  47. Leighton, J. and Schatz, G. (1995) An ABC transporter in the mitochondrial inner membrane is required for normal growth of yeast. EMBO J. 4, 188–195.

    Google Scholar 

  48. Knight, S. A. B., Sepuri, N. B. V., Pain, D., et al. (1998) Mt-Hsp70 homolog, Ssc2p, required for maturation of yeast frataxin and mitochondrial iron homeostasis. J. Biol. Chem. 273 18,389–18,393.

    Google Scholar 

  49. Jensen, L. and Culotta, V. (2000) Role of Saccharomyces’ cerevisiae ISA1 and ISA2 in iron homeostasis. Mol. Cell. Biol. 20, 3919–3927.

    Google Scholar 

  50. Robertson, L. S., Causton, H. C., Young, R. A., et al. (2000) The yeast A kinases differentially regulate iron uptake and respiratory function. Proc. Natl. Acad. Sci. USA 97, 5984–5988.

    Article  PubMed  CAS  Google Scholar 

  51. Dancis, A., Roman, D. G., Anderson, G. J., et al. (1992) Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc. Natl. Acad. Sci. USA 89, 3869–3873.

    Article  PubMed  CAS  Google Scholar 

  52. Jungmann, J., Reins, H., Lee, J., et al. (1993) MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J. 12, 5051–5056.

    CAS  Google Scholar 

  53. Lin, S.-J., Pufahl, R. A., Dancis, A., et al. (1997) A role for the Saccharomyces cerevisiae ATXI gene in copper trafficking and iron transport. J. Biol. Chem. 272, 9215–9220.

    Article  PubMed  CAS  Google Scholar 

  54. Yamaguchi-Iwai, Y., Stearman, R., Dancis, A., et al. (1996) Iron-regulated DNA binding by the AFT] protein controls the iron regulation in yeast. EMBO J. 15, 3377–3384.

    CAS  Google Scholar 

  55. Labbe, S., Pena, M. M. O., Fernandes, A. R., et al. (1999) A copper-sensing transcription factor regulates iron uptake genes in Saccharomyces pombe. J. Biol. Chem. 274, 36,252–36, 260.

    Google Scholar 

  56. Elvehjem, C. A. (1935) The biological significance of copper and its relation to iron metabolism. Physiol. Rev. 15, 471–507.

    CAS  Google Scholar 

  57. Hart, E. B., Steenbock, H., Waddell, J., et al. (1928) Iron in nutrition. VII. Copper as a supplement to iron for hemoglobin building in the rat. J. Biol. Chem. 77, 797–812.

    CAS  Google Scholar 

  58. Holmberg, C. G. and Laurell, C. B. (1948) Investigations in serum copper. II. Isolation of the copper-containing protein, and a description of some of its properties. Acta Chem. Scand. 2, 550–556.

    Article  CAS  Google Scholar 

  59. Eisenstein, R. S. (2000) Discovery of the ceruloplasmin homologue hephaestin: new insight into the copper/iron connection. Nutr. Rev. 58, 22–26.

    Article  PubMed  CAS  Google Scholar 

  60. Vulpe, C. D., Kuo, Y. M., Murphy, T. L., et al. (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nature Genet. 21, 195–199.

    Article  PubMed  CAS  Google Scholar 

  61. Crampton, R. F., Matthews, D. M., and Poisner, R. (1965) Observations on the mechanism of absorption of copper by the small intestine. J. Physiol. 178, 111–126.

    PubMed  CAS  Google Scholar 

  62. Van Campen, D.R. (] 971) Absorption of copper from the gastrointestinal tract, in Intestinal Absorption of Metal Ions, Trace Elements and Radionuclides (Skoryna, S. C. and Waldron-Edwards, D., eds.), Pergamon, Oxford, pp. 211–227.

    Google Scholar 

  63. Zhou, B. and Gitschier, J. (1997) hCTRI: a human gene for copper uptake identified by complementation in yeast. Proc. Natl. Acad. Sci. USA 94, 7481–7486.

    Google Scholar 

  64. Lee, J. and Thiele, D. J. (2001) Essential role for mammalian copper transporters in copper homeostasis and embryonic development. J. Exp. Bot. 52 (Suppl.), 84.

    Article  Google Scholar 

  65. Hamza, I. Schaefer, M., Klomp, L. W. J. et al. (1999) Interaction of the copper chaperone HAH1 with the Wilson disease protein is essential for copper homeostasis. Proc. Natl. Acad. Sci. USA 96 13,363–13,368.

    Google Scholar 

  66. Larin, D., Mekios, C., Das, K., et al. (1999) Characterization of the interaction between the Wilson and Menkes disease proteins and the cytoplasmic copper chaperone, HAH1P. J. Biol. Chem. 274, 28,497–28, 504.

    Google Scholar 

  67. Hamza, I., Chen, J. Gitlin, J. D., et al. (2001) Critical role for metallochaperone Atoxl in perinatal copper homeostasis. J. Exp. Bot. 52(Suppl.) 84.

    Google Scholar 

  68. Petris, M. J., Strausak, D. and Mercer, J. F. B. (2000) The Menkes copper transporter is required for the activation of tyrosinase. Hum. Mol. Genet. 9, 2845–2851.

    Article  PubMed  CAS  Google Scholar 

  69. Petris, M. J., Mercer, J. F. B., Culvenor, J. G. et al. (1996) Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J. 15, 6084–6095.

    Google Scholar 

  70. Petris, M. J., Mercer, J. F. B., and Camakaris, J. (1999) The cell biology of the Menkes disease protein. Adv. Exp. Biol. Med. 448, 53–66.

    Article  CAS  Google Scholar 

  71. Petris, M. J., Camakaris, J., Greenough, M., et al. (1998) A C-terminal di-leucine is required for localization of the Menkes protein in the trans-Golgi network. Hum. Mol. Genet. 7, 2063–2071.

    Article  PubMed  CAS  Google Scholar 

  72. Petris, M. J. and Mercer, J. F. B. (1999) The Menkes protein (ATP7A; MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal. Hum. Mol. Genet. 8, 2107–2115.

    Article  PubMed  CAS  Google Scholar 

  73. Linder, M. C., Wooten, L., Cerveza, P., et al. (1998) Copper transport. Am. J. Clin. Nutr. 67, 965S - 9715.

    PubMed  CAS  Google Scholar 

  74. Hung, I. H., Suzuki, M., Yamaguchi, Y., et al. (1997) Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 272, 21,461–21, 466.

    Google Scholar 

  75. Schaefer, M., Hopkins, R. G., Failla, M. A., et al. (1999) Hepatocyte-specific localization and copper-dependent trafficking of the Wilson’s disease protein in the liver. Am. J. Physiol. 276, G639 — G646.

    PubMed  CAS  Google Scholar 

  76. Suzuki, M. and Gitlin, J. D. (1999) Intracellular localization of the Menkes and Wilson’s disease proteins and their role in intracellular copper transport. Pediatr. Int. 41, 436–442.

    Article  PubMed  CAS  Google Scholar 

  77. Terada, K., Aiba, N., Yang, X.-L. et al. (1999) Biliary excretion of copper in LEC rat after introduction of copper transporting P-type ATPase, ATP7B. FEBS Lett. 448, 53–56.

    Article  PubMed  CAS  Google Scholar 

  78. Terada, K., Nakako, T., Yang, X.-L., et al. (1998) Restoration of holoceruloplasmin synthesis in LEC rat after infusion of recombinant adenovirus bearing WND cDNA. J. Biol. Chem. 273, 1815–1820.

    Article  PubMed  CAS  Google Scholar 

  79. Sato, M. and Gitlin, J. D. (1991) Mechanisms of copper incorporation during the biosynthesis of human ceruloplasmin. J. Biol. Chem. 266, 5128–5134.

    PubMed  CAS  Google Scholar 

  80. Holmberg. C. G. and Laurell, C. B. (1948) Investigations in serum copper. H. Isolation of the copper containing protein and a description of some of its properties. Acta Chem. Scand. 2, 550–556.

    Article  Google Scholar 

  81. Winzerling, J. J. and Law, J. H. (1997) Comparative nutrition of iron and copper. Annu. Rev. Nutr. 17, 501–526.

    Article  PubMed  CAS  Google Scholar 

  82. Linder, M.C. (1991) Biochemistry of Copper, Plenum, New York.

    Google Scholar 

  83. Evans. G. W. (1973) Copper homeostasis in the mammalian system. Physiol. Rev. 53, 535–569.

    PubMed  Google Scholar 

  84. Dameron, C. T. and Harrison, M. D. (1998) Mechanisms for protection against copper toxicity. Am. J. Clin. Nutr. 67 (Suppl.), 10915–1097S.

    Google Scholar 

  85. Miles, A. T., Hawksworth, G. M., Beattie, J. H., et al. (2000) Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit. Rev. Biochem. Mol. Biol. 35, 35–70.

    Article  PubMed  CAS  Google Scholar 

  86. Vasak, M. and Hasler, D. W. (2000) Metallothioneins: new functional and structural insights. Curr. Opin. Chem. Biol. 4, 177–183.

    Google Scholar 

  87. Labbe, S., Simard, C., and Seguin, C. (1997) Metallothionein gene regulation in mouse cells, in Metal Ions in Gene Regulation ( Silver, S. and Walden, W., eds.), Chapman and Hall, New York, pp. 231–249.

    Google Scholar 

  88. Remondelli, P., Moltedo, O., Pascale, M. C., et al. (1999) Metal regulation of metallothionein gene transcription in mammals. Adv. Exp. Med. Biol. 448, 223–236.

    Article  PubMed  CAS  Google Scholar 

  89. Andrews, N. C. (1999) The iron transporter DMT1. Int. J. Biochem. Cell Biol. 31, 991–994.

    Article  PubMed  CAS  Google Scholar 

  90. Aisen, P., Wessling-Resnick, M., and Leibold, E. A. (1999) Iron metabolism. Curr. Opin. Chem. Biol. 3, 200–206.

    Article  PubMed  CAS  Google Scholar 

  91. Schneider, B. D. and Leibold, E. A. (2000) Regulation of mammalian iron homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 3, 267–273.

    Article  PubMed  CAS  Google Scholar 

  92. Tandy, S., Williams, M., Leggett, A., et al. (2000) Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells. J. Biol. Chem. 275, 1023–1029.

    Article  PubMed  CAS  Google Scholar 

  93. Bennett, M. J., Lebron, J. A., and Bjorkman, P. J. (2000) Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor. Nature 403, 46–53.

    Article  PubMed  CAS  Google Scholar 

  94. Riedel, H. D., Muckenthaler, M. U., Gehrke, S. G., et al. (1999) HFE downregulates iron uptake from transferrin and induces iron-regulatory protein activity in stably transfected cells. Blood 94, 3915–3921.

    PubMed  CAS  Google Scholar 

  95. Han, O., Fleet, J. C., and Wood, R. J. (1999) Reciprocal regulation of HFE and Nramp2 gene expression by iron in human intestinal cells. J. Nutr. 129, 98–104.

    PubMed  CAS  Google Scholar 

  96. Nelson, N. (1999) Metal ion transporters and homeostasis. EMBO J. 18, 4361–4371.

    Article  CAS  Google Scholar 

  97. Haile, D. J. (1999) Regulation of genes of iron metabolism by the iron-response proteins. Am. J. Med. Sci. 318, 230–240.

    Article  PubMed  CAS  Google Scholar 

  98. Conrad, M. E., Umbreit, J. N., and Moore, E. G. (1999) Iron absorption and transport. Am. J. Med. Sci. 8, 213–229.

    Article  Google Scholar 

  99. Donovan, A., Brownlie, A., Zhou, Y., et al. (2000) Positional cloning of zebrafish ferroportin 1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781.

    Article  PubMed  CAS  Google Scholar 

  100. McKie, A. T., Marciani, P., Rolfs, A., et al. (2000) A novel duodenal iron-regulated membrane protein (Iregl) implicated in basolateral transfer of iron to the circulation. Mol. Cell, 5, 299–309.

    Google Scholar 

  101. Abboud, S. and Haile, D. J. (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 275, 19,906–19, 912.

    Google Scholar 

  102. Kaplan, J. and Kushner, J. P. (2000) Mining the genome for iron. Nature 403, 712–713.

    Google Scholar 

  103. Andrews, N. C., Fleming, M. D., and Gunshin, H. (1999) Iron transport across biologic membranes. Nutr. Rev. 57, 745–748.

    Google Scholar 

  104. Tabuchi, M., Yoshimori, T., Yamaguchi, K., et al. (2000) Human NRAMP2/DMT1, which mediates iron transport across endosomal membranes, is localized to late endosomes and lysosomes in HEp-2 cells. J. Biol. Chem. 275, 22,22022, 228.

    Google Scholar 

  105. Rolfs, A. and Hediger, M. A. (2001) Intestinal metal ion absorption: an update. Curr. Opin. Gastroenterol. 17, 177–183.

    Article  PubMed  CAS  Google Scholar 

  106. Eisenstein, R. S. and Blemmings, K. P. (1998) Iron regulatory proteins, iron responsive elements and iron homeostasis. J. Nutr. 128, 2295–2298.

    PubMed  CAS  Google Scholar 

  107. Kühn, L. C. (1998) Iron and gene expression: molecular mechanisms regulating cellular iron homeostasis. Nutr. Rev. 56, S11 — S19.

    Article  PubMed  Google Scholar 

  108. Thomson, A. M., Rogers, J. T., and Leedman, P. J. (1999) Iron-regulatory proteins, iron-responsive elements and ferritin mRNA translation. Int. J. Biochem. Cell Biol. 31, 1139–1152.

    Article  PubMed  CAS  Google Scholar 

  109. Fox, T. C. and Guerinot, M. L. (1998) Molecular biology of cation transport in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 669–696.

    Article  PubMed  CAS  Google Scholar 

  110. Hirayama, T., Kieber, J. J., Hirayama, N., et al. (1999) RESPONSE TO ANTAGONIST], a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell, 97, 383–393.

    CAS  Google Scholar 

  111. Tabata, K., Kashiwagi, S., Mori, H., et al. (1997) Cloning of a cDNA encoding a putative metal-transporting P-type ATPase from Arabidopsis thaliana. Biochim. Biophys. Acta 1326, 1–6.

    Google Scholar 

  112. Pilon, M., Burkhead, J., and Pilon-Smits, E. A. H. (2001) Metal homeostasis in Arabidopsis chloroplasts: the roles of the copper binding protein AtCutAp and the P-type ATPase Paalp. J. Exp. Bot. 52(Suppl.) 65.

    Google Scholar 

  113. Kaneko, T., Kato, T., Sato, S., et al. (2000) Structural analysis of Arabidopsis thaliana chromosome 3. II. Sequence features of the regions of 4,251,695 bp covered by ninety P1, TAC and BAC clones. DNA Res. 7, 217–221.

    Article  PubMed  CAS  Google Scholar 

  114. Zhu, H., Shipp, E., Sanchez, R. J., et al. (2000) Cobalt(2+) binding to human and tomato copper chaperone for superoxide dismutase: Implications for metal ion transfer mechanism. Biochemistry 39, 5413–5421.

    Article  PubMed  CAS  Google Scholar 

  115. Himelblau, E., Mira, H., Lin, S. J., et al. (1998) Identification of a functional homolog of the yeast and human homeostasis gene ATX1 from Ardabidopsis. Plant Physiol. 117, 1227–1234.

    Article  CAS  Google Scholar 

  116. Lin, X., Kaul, S., Rounsley, S. D., et al. (1999) Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402, 761–768.

    CAS  Google Scholar 

  117. Bleecker, A. B. and Kende, H. (2000) Ethylene: a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 16, 1–18.

    Article  PubMed  CAS  Google Scholar 

  118. Hirayama, T. and Alonso, J. M. (2000) Ethylene captures a metal! Metal ions are involved in ethylene perception and signal transduction. Plant Cell Physiol. 41, 548–555.

    Article  PubMed  CAS  Google Scholar 

  119. Woeste, K. E. and Kieber, J. J. (2000) A strong loss-of-function mutation in RANI results in constitutive activation of the ethylene repsonse pathway as well as a rosette-lethal phenotype. Plant Cell 12, 443–455.

    PubMed  CAS  Google Scholar 

  120. Williams, L. E., Pittman, J. K., and Hall, J. L. (2000) Emerging mechanisms for heavy metal transport in plants. Biochim. Biophys. Acta 1465 104–126.

    Google Scholar 

  121. Kanamaru, K., Kashiwagi, S., and Mizuno, T. (1994) A copper-transporting P-type ATPase found in the thylakoid membrane of the cyanobacterium Synechococcus sp. PCC7942. Mol. Microbiol. 13, 369–377.

    Article  PubMed  CAS  Google Scholar 

  122. Phung, L. T., Ajlani, G. and Haselkorn, R. (1994) P-type ATPase from the cyanobacterium Synechococcus 7942 related to the human Menkes and Wilson disease gene products. Proc. Natl. Acad. Sci. USA 91, 9651–9654.

    Article  PubMed  CAS  Google Scholar 

  123. Rutherford, J. C., Cavet, J. S., and Robinson, N. J. (1999) Cobalt-dependent transcriptional switching by a dual-effector MerR-like protein regulates a cobalt-exporting variant CPx-type ATPase. J. Biol. Chem. 274, 25,827–25, 832.

    Google Scholar 

  124. Thelwell, C., Robinson, N. J., and Turner-Cavet, J. S. (1998) An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. Proc. Natl. Acad. Sci. USA 95, 10,728–10, 733.

    Google Scholar 

  125. Tottey, S., Rich, P. R., Rondet, S. A. M., et al. (2001) Two Menkes-type ATPases supply copper for photosynthesis in Synechocystis PCC6803. J. Biol. Chem. 276, 19,999–20, 004.

    Google Scholar 

  126. Tottey, S., Rondet, S. A., Borrelly, G. P., Robinson, P. J., Rich, P. R. and Robinson, N. J. (2002) A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer, and alternative sites for copper acquisition. J. Biol. Chem. 277, 5490–5497.

    Google Scholar 

  127. Mira, H. Martinez-Garcia, F., and Penarrubia, L. (2001) Evidence for the plant-specific intercellular transport of the Arabidopsis copper chaperone CCH. Plant J. 25 521–528.

    Google Scholar 

  128. Himelblau, E. and Amasino, R. M. (2000) Delivering copper within plant cells. Curr. Opin. Plant Biol. 3, 205–210.

    PubMed  CAS  Google Scholar 

  129. Zhou, J. and Goldsbrough, P. B. (1994) Functional homologues of fungal metallothionein genes from Arabidopsis. Plant Cell 6, 875–884.

    CAS  Google Scholar 

  130. Dykema, P. E., Sipes, P. R., Marie, A., et al. (1999) A new class of proteins capable of binding transition metals. Plant Mol. Biol. 41, 139–150.

    Article  PubMed  CAS  Google Scholar 

  131. Robinson, N. J., Procter, C. M., Connolly, E. L., et al. (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397, 694–697.

    Google Scholar 

  132. Yi, Y. and Guerinot, M. L. (1996) Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J. 10, 835–844.

    Article  PubMed  CAS  Google Scholar 

  133. Guerinot, M. L., Grotz, N., Hibbard, S., et al. (2001) Molecular characterization of the uptake of iron and other divalent cations in Arabidopsis. J. Exp. Bot. 52 (Suppl.), 62.

    Google Scholar 

  134. Eide, D., Broderius, M., Fett, J., et al. (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc. Natl. Acad. Sci. USA 93, 5624–5628.

    Article  PubMed  CAS  Google Scholar 

  135. Korshunova, Y., Eide, D., Clark, W. G., et al. (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol. Biol. 40, 37–44.

    Article  PubMed  CAS  Google Scholar 

  136. Guerinot, M. L. (2000) The ZIP family of metal transporters. Biochim. Biophys. Acta 1465, 190–198.

    Article  PubMed  CAS  Google Scholar 

  137. Curie, C., Alonso, J. M., Jean, M. L., et al. (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem. J. 347, 749–755.

    Article  PubMed  CAS  Google Scholar 

  138. Thomine, S., Wang, R., Ward, J. M., et al. (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc. Natl. Acad. Sci. USA 97, 4991–4996.

    Article  PubMed  CAS  Google Scholar 

  139. Bagnaresi, P., Thoiron, S., Mansion, M., et al. (1999) Cloning and characterization of a maize cytochrome-b5 reductase with Fe3+-chelate reduction capability. Biochem. J. 338 (Pt. 2), 499–505.

    Article  PubMed  CAS  Google Scholar 

  140. Curie, C., Panaviene, Z., Loulergue, C., et al. (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409, 346–349.

    Article  PubMed  CAS  Google Scholar 

  141. Bagnaresi, P., Mazars-Marty, D., Pupillo, P., et al. (2000) Tonoplast subcellular localization of maize cytochrome b5 reductases. Plant J. 24, 645–654.

    Article  PubMed  CAS  Google Scholar 

  142. Briat, J.-F. and Lobreaux, S. (1997) Iron transport and storage in plants. Trends Plant Sci. 2, 187–193.

    Article  Google Scholar 

  143. Bell, W. D., Bogorad, L., and Mcllrath, W. J. (1958) Response of the yellow-stripe maize mutant (ysl) to ferrous and ferric iron. Bot. Gaz. 120, 36–39.

    Google Scholar 

  144. Theil, E. C. (1987) Ferritin: structure, gene regulation, and cellular function in animals, plants and microorganisms. Annu. Rev. Biochem. 56, 289–315.

    Article  PubMed  CAS  Google Scholar 

  145. Briat, J. F., Lobreaux, S., Grignon, N., et al. (1999) Regulation of plant ferritin synthesis: how and why. Cell. Mol. Life Sci. 56, 155–166.

    Article  PubMed  CAS  Google Scholar 

  146. Van Wuytswinkel, O., Vansuyt, G., Grignon, N., et al. (1999) Iron homeostasis alteration in transgenic tobacco overexpressing ferritin. Plant J. 17, 93–97.

    Article  PubMed  Google Scholar 

  147. Briat, J. F. and Lobreaux, S. (1998) Iron storage and ferritin in plants. Metal Ions Biol. Syst. 35, 563–584.

    CAS  Google Scholar 

  148. Wei, J. and Theil, E. C. (2000) Identification and characterization of the iron regulatory element in the ferritin gene of a plant (soybean). J. Biol. Chem. 275, 17,488–17, 493.

    Google Scholar 

  149. Petit, J.-M., Wuytswinkel, O. V., Briat, J.-F., et al. (2001) Characterization of an iron dependent regulatory sequence (IDRS) involved in the transcriptional control of AtFerl and ZmFerl plant ferritin genes by iron. J. Biol. Chem. 276, 5584–5590.

    Article  PubMed  CAS  Google Scholar 

  150. Cohen, C. K., Norvell, W. A., and Kochian, L. V. (1997) Induction of root cell plasma membrane ferric reductase. Plant Physiol. 114, 1061–1069.

    PubMed  CAS  Google Scholar 

  151. Welch, R. M., Norvell, W. A., Schaefer, S. C., et al. (1993) Induction of iron (III) and copper (II) reduction in pea (Pisum sativum L.) roots by Fe and Cu status: does the root-cell plasmalemma Fe(III)-chelate reductase perform a general role in regulating uptake? Planta 190, 555–561.

    Article  CAS  Google Scholar 

  152. Harris, E. H. (1989) The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use, Academic, San Diego, CA.

    Google Scholar 

  153. Wood, P. M. (1978) Interchangeable copper and iron proteins in algal photosynthesis. Studies on plastocyanin and cytochrome c-552 in Chlarnydomonas. Eur. J. Biochem. 87, 8–19.

    Google Scholar 

  154. Li, H. H. and Merchant, S. (1995) Degradation of plastocyanin in copper-deficient Chlamydomonas reinhardtii. J. Biol. Chen. 270, 23,504–23, 510.

    Google Scholar 

  155. Quinn, J. M. and Merchant, S. (1995) Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. Plant Cell 7, 623–638.

    PubMed  CAS  Google Scholar 

  156. Hill, K. L. and Merchant, S. (1992) In vivo competition between plastocyanin and a copper-dependent regulator of the Chlamydomonas reinhardtii cytochrome eb gene. Plant Physiol. 100, 319–326.

    Article  PubMed  CAS  Google Scholar 

  157. Li, H. H., Quinn, J., Culler, D., et al. (1996) Molecular genetic analysis of plastocyanin biosynthesis in Chlamydomonas reinhardtii. J. Biol. Chem. 271, 31,283–31, 289.

    Google Scholar 

  158. Merchant, S. and Bogorad, L. (1987) Metal ion regulated gene expression: use of a plastocyanin-less mutant of Chlamydomonas reinhardtii to study the Cu(II)-dependent expression of cytochrome c-552. EMBO J. 6, 2531–2535.

    CAS  Google Scholar 

  159. Hill, K. L., Hassett, R., Kosman, D., et al. (1996) Regulated copper uptake in Chlamydomonas reinhardtii in response to copper availability. Plant Physiol. 112, 697–704.

    Article  PubMed  CAS  Google Scholar 

  160. Howe, G. and Merchant, S. (1992) Heavy metal-activated synthesis of peptides in Chlarnydomonas reinhardtii. Plant Physiol. 98, 127–136.

    Article  CAS  Google Scholar 

  161. Cobbett, C. S. (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr. Opin. Plant Biol. 3, 211–216.

    PubMed  CAS  Google Scholar 

  162. Hill, K. L. and Merchant, S. (1995) Coordinate expression of coproporphyrinogen oxidase and cytochrome c6 in the green alga Chlamydomonas reinhardtii in response to changes in copper availability. EMBO J. 14, 857–865.

    CAS  Google Scholar 

  163. Moseley, J., Quinn, J., Eriksson, M., et al. (2000) The Crdl gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii. EMBO J. 19, 2139–2151.

    Article  CAS  Google Scholar 

  164. Quinn, J. M., Nakamoto, S. S., and Merchant, S. (1999) Induction of coproporphyrinogen oxidase in Chlamydomonas chloroplasts occurs via transcriptional regulation of Cpxl mediated by copper-response elements and increased translation from a copper-deficiency-specific form of the transcript. J. Biol. Chem. 274, 14,444–14, 454.

    Google Scholar 

  165. Quinn, J. M., Barraco, P., Eriksson, M., et al. (2000) Coordinate copper-and oxygen-responsive Cyc6 and Cpxl expression in Chlamydomonas is mediated by the same element. J. Biol. Chem. 275, 6080–6089.

    Article  PubMed  CAS  Google Scholar 

  166. Quinn, J. M., Eriksson, M., Moseley, J. L., and Merchant, S. (2002) Oxygen deficiency responsive gene expression in Chlamydomonas reinhardtii through a copper-sensing signal transduction pathway. Plant Physiol. 128, 463–471.

    Article  PubMed  CAS  Google Scholar 

  167. Eckhardt, U. and Buckout, T. J. (1998) Iron assimilation in Chlamydomonas reinhardtii involves ferric reduction and is similar to Strategy I higher plants. J. Exp. Bot. 49, 1219–1226.

    CAS  Google Scholar 

  168. Lynnes, J. A., Derzaph, T. L. M., and Weger, H. G. (1998) Iron limitation results in induction of ferricyanide reductase and ferric chelate reductase activities in Chlamydomonas reinhardtii. Planta 204, 360–365.

    CAS  Google Scholar 

  169. Weger, H. G. (1999) Ferric and cupric reductase activities in the green alga Chlamydomonas reinhardtii: experiments using iron-limited chemostats. Planta 207, 377–384.

    Article  CAS  Google Scholar 

  170. Quinn, J. M., LaFontaine, S., Gohre, V., et al. (2000) Copper-dependent and copper-independent iron metabolism in Chlamydomonas reinhardtii. Plant Physiol. S961.

    Google Scholar 

  171. Herbik, A. and Buckhout, T. J. (2001) Is a ferroxidase involved in the high-affinity iron uptake in Chlamydomonas? J. Exp. Bot. 52 (Suppl.), 80.

    Google Scholar 

  172. Hortensteiner, S., Chinner, J., Matile, P., et al. (2000) Chlorophyll breakdown in Chlorella protothecoides: characterization of degreening and cloning of degreening-related genes. Plant Mol. Biol. 42, 439–450.

    Article  PubMed  CAS  Google Scholar 

  173. Osterberg, R. (1974) Origins of metal ions in biology. Nature 249, 382–383.

    Article  PubMed  CAS  Google Scholar 

  174. Nguyen, H. H., Shiemke, A. K., Jacobs, S. J., et al. (1994) The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 269, 14,995–15, 005.

    Google Scholar 

  175. Lipscombe, J. D. (1994) Biochemistry of the soluble methane monooxygenase. Annu. Rev. Micobiol. 48, 371–399.

    Article  Google Scholar 

  176. Neilsen, A. K., Gerdes, K., and Murrell, J. C. (1997) Copper-dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium. Mol. Microbiol. 25, 399–409.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fontaine, S.L., Quinn, J., Merchant, S. (2002). Comparative Analysis of Copper and Iron Metabolism in Photosynthetic Eukaryotes vs Yeast and Mammals. In: Massaro, E.J. (eds) Handbook of Copper Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-288-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-288-3_30

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-266-7

  • Online ISBN: 978-1-59259-288-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics