Skip to main content

Biochemistry and Molecular Biology of Copper in Mammals

  • Chapter
Book cover Handbook of Copper Pharmacology and Toxicology
  • 345 Accesses

Abstract

In this chapter, we review what we know about the availability of copper in foodstuffs, its intestinal absorption, transport to cells and tissues, uptake by and distribution within cells, and its metabolism, release, and excretion from the body. The emphasis is on the adult human being. More detailed information may be found in books edited by Linder (1,2), Sarkar (3), and Leone and Mercer (4), 1996 reviews by Linder (5) and Linder and Hazegh-Azam (6), and more specialized reviews by Harris (7), Pena et al. (8), Linder et al. (9,10), and others (11,12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Linder, M. C. (ed.) (1991) Biochemistry of Copper. Plenum, New York.

    Google Scholar 

  2. Linder, M. C. (ed.) (1991) Nutritional Biochemistry and Metabolism, 2nd ed. Appleton amp; Lange, Norwalk, CT.

    Google Scholar 

  3. Sarkar, B. (ed.) (1999) Metals and Genetics. Kluwer Academic/Plenum, New York.

    Google Scholar 

  4. Leone, A. and Mercer, J. F. B. (eds.) (1999) Copper Transport and its Disorders, Advances in Experimental Medicine and Biology, Vol. 448. Kluwer Academic/Plenum, New York.

    Google Scholar 

  5. Linder, M. C. and Hazegh-Azam, M. (1996) Copper biochemistry and molecular biology. Am. J. Clin. Nutr. 63, 797S - 811S.

    PubMed  CAS  Google Scholar 

  6. Linder, M. C. (1996) Copper, in Present Knowledge in Nutrition, 7th ed. ( Ziegler, E. E. and Filer, L. J., Jr., eds.), ILSl, Washington, DC, pp. 307–319.

    Google Scholar 

  7. Harris, E. D. (2000) Cellular copper transport and metabolism. Annu. Rev. Nutr. 20, 291–310.

    Article  PubMed  CAS  Google Scholar 

  8. Pena, M. M. O., Lee, J., and Thiele, D. J. (1999) A delicate balance: homeostatic control of copper uptake and distribution. J. Nutr. 129, 1251–1260.

    PubMed  CAS  Google Scholar 

  9. Linder, M. C., Wooten, L., Cerveza, P., Cotton, S., Shulze, R., and Lomeli, N. (1998) Copper transport. Am. J. Clin. Nutr. 67 (Suppl.), 965S - 971S.

    PubMed  CAS  Google Scholar 

  10. Linder, M. C., Lomeli, N. A., Donley, S., Mehrbod, F., Cerveza, P., Cotton, S., et al. (1999) Copper transport in mammals, in Copper Transport and its Disorders ( Leone, A. and Mercer, J. F. B., eds.), Kluwer Academic/Plenum, New York, pp. 1–16.

    Chapter  Google Scholar 

  11. Vulpe, C. and Packman, S. (1995) Cellular copper transport, Annu. Rev. Nutr. 15, 293–322.

    Article  PubMed  CAS  Google Scholar 

  12. Eide, D. J. (1998) Molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu. Rev. Nutr. 18, 441–469.

    Article  PubMed  CAS  Google Scholar 

  13. Dunham, R. and Smith, H. E. (1992) Lead and copper-a model home approach. Proceedings of the Water Quality Technology Conference, pp. 341–352.

    Google Scholar 

  14. Walker, W. R. (1982) The results of a copper bracelet clinical trial and subsequent studies, in Inflammatory Diseases and Copper ( Sorenson, J. R. J., ed.), Humana, Totowa, NJ, pp. 469–478.

    Chapter  Google Scholar 

  15. Goode, C. A. (1991) Copper and disease, in Biochemistry of Copper ( Linder, M. C., ed.), Plenum, New York, pp. 331–366.

    Google Scholar 

  16. Scott, K. C. and Turnlund, J. R. (1994) Compartment model of copper metablism in adult men. J. Nutr. Biochem. 5, 342–350.

    Article  CAS  Google Scholar 

  17. Turnlund, J. R., Keyes, W. R., Anderson, H. L., and Acord, L. L. (1989) Copper absorption and retention in young men at three levels of dietary copper using the stable isotope 65Cu. Am. J. Clin. Nutr. 49, 870–878.

    PubMed  CAS  Google Scholar 

  18. Trumbo, P., Yates, A. A., Schlicker, S., and Poos, M. (2001) Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. J. Am. Diet. Assoc. 101, 294–301.

    Article  PubMed  CAS  Google Scholar 

  19. Turnlund, J. R., Keyes, W. R., Peiffer, G. L., and Scott, K. C. (1998) Copper absorption, excretion, and retention by young men consuming low dietary copper determined by using the stable isotope 65Cu. Am. J. Clin. Nutr. 67 (Suppl.), 1219–1225.

    PubMed  CAS  Google Scholar 

  20. Wapnir, R. A. and Lee, S. Y. (1993) Dietary regulation of copper absorption and storage in rats: effects of sodium, zinc and histidine-zinc. J. Am. Coll. Nutr. 12, 714–719.

    PubMed  CAS  Google Scholar 

  21. Yu, S., West, C. E., and Beynen, A.C. (1994) Increasing intakes of iron reduce status, absorption and biliary excretion of copper in rats. Br. J. Nutr. 71, 887–895.

    Article  PubMed  CAS  Google Scholar 

  22. Cohen, N. L., Illowsky, B. and Linder, M. C. (1979) Altered copper absorption in tumor bearing and estrogen treated rats. Am. J. Physiol. 236, E309 - E315.

    PubMed  CAS  Google Scholar 

  23. Arredondo, M., Uauy, R., and Gonzalez, M. (2000) Regulation of copper uptake and transport in intestinal cell mono-layers by acute and chronic copper exposure. Biochim. Biophys. Acta 1474, 169–176.

    Article  PubMed  CAS  Google Scholar 

  24. Zerounian, N., Mohammadi, G., and Linder, M. C. (2001) Effects of copper and iron availability on copper absorption in the Caco2 cell intestinal model. J. Trace Elents Exp. Biol. 14, 322 [Abstract].

    Google Scholar 

  25. Lee, J., Prohaska, J. R., Dagenais, S. L., Glover, T. W., and Thiele, D. J. (2000) Isolation of a murine copper transporter gene, tissue specific expression and functional complementation of a yeast copper transport mutant. Gene 254, 87–96.

    Google Scholar 

  26. Dancis, A., Yuan, D. S., Haile, D. Askwith, D., Eide, D., Moehle, C., et al. (1994) Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76, 393–402.

    Article  PubMed  CAS  Google Scholar 

  27. Dancis, A., Haile, D., Yuan, D. S., and Klausner, R. D. (1994) The Saccharomyces cerevisiae transport protein (ctrlp). Biochemical characterization, regulation by copper, and physiological role in copper uptake. J. Biol. Chem. 269, 25,66025, 667.

    Google Scholar 

  28. Labbe, S. and Thiele, D. J. (1999) Pipes and wiring: the regulation of copper uptake and distribution in yeast. Trends Microbiol. 7, 500–505.

    Article  PubMed  CAS  Google Scholar 

  29. Zhou, B. and Gitschier, J. (1997) hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc. Natl. Acad. Sci. USA 94, 7481–7486.

    Google Scholar 

  30. Kuo, Y.-M., Zhou, B., Cosco D., and Gitschier, J. (2001) The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc. Natl. Acad. Sci. USA 98, 6836–6841.

    Article  PubMed  CAS  Google Scholar 

  31. Moller, L. B., Petersen, C., Lund, C., and Horn, N. (2000) Characterization of the hCTR1 gene: genomic organization, function, expression and identification of a highly homologous processed gene. Gene 257, 13–22.

    Article  PubMed  CAS  Google Scholar 

  32. Lee, J., Prohaska, J. R. and Thiele, D. J. (2001) Essential role for mammalian copper transporter Ctrl in copper homeostasis and embryonic development. Proc. Natl. Acad. Sci. USA 98, 6842–6847.

    Article  PubMed  CAS  Google Scholar 

  33. DeRome, L. and Gadd, G. M. (1987) Measurement of copper uptake in Saccharomyces cerevisiae using a Cue+-selective electrode. FEMS Microbiol. Lett. 43, 283–287.

    Article  CAS  Google Scholar 

  34. Gunshin, H., Mackenzie, B., Berger, U. V., Gunshin, Y., Romero, M. F., Boron, W. F., et al. (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488.

    Article  PubMed  CAS  Google Scholar 

  35. Fleming, M. D., Trenor, C. C. III, Su, M. A., Foernsler, D., Beier, D. R., Dietrick, W. F. et al. (1997) Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nature Genet. 16, 383–386.

    PubMed  CAS  Google Scholar 

  36. Fleming, M. D., Romano, M. A., Su, M. A., Garrick, L. M., Garrick, M. D., and Andrews, N. C. (1998) Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc. Natl. Acad. Sci. USA 95, 1148–1153.

    Article  PubMed  CAS  Google Scholar 

  37. Roy, C. N. and Enns, C. A. (2000) Iron homeostasis: new tales from the crypt. Blood 96, 4020–4027.

    PubMed  CAS  Google Scholar 

  38. Andrews, N. C. (2000) Intestinal iron absorption: current concepts circa 2000. Dig. Liver Dis. 32, 56–61.

    Article  PubMed  CAS  Google Scholar 

  39. Hentze, M. W., Muckenthaler, M., Brennan, K., Galy, B., Hubert, N., and Hentze, S. (2001) Genome-wide analysis of iron metabolism. Biolron 2001.

    Google Scholar 

  40. Zoller, H., Theurl, I., Vogel, W., and Weiss, G. (2001) Pathways for iron dependent regulation of divalent metal transporter1 and ferroportin 1. Biolron 2001.

    Google Scholar 

  41. Zerounian, N.R. and Linder, M.C. (2001) Effects of copper and ceruloplasmin on iron transport in the Caco2 cell intestinal model..1. Nutr. Biochem. 13, 138–148.

    Article  Google Scholar 

  42. Arredondo, M., Mazariegos, D., and Nunez, M. T. (2001) The activity of the iron transporter DMT1 is inhibited by the hereditary hemochromatosis gene product. Biolron 2001.

    Google Scholar 

  43. Klomp, L. W., Lin, S. J., Yuan, D. S., Klausner, R. D., Culotta, V. C., and Gitlin, J. D. (1997) Identification and functional expression of HAH1: a novel human gene involved in copper homeostasis. J. Biol. Chem. 272, 9221–9226.

    Article  PubMed  CAS  Google Scholar 

  44. Larin, D., Mekios, C., Das, K., Ross, B., Yang, A. S., and Gilliam, T. C. (1999) Characterization of the interaction between the Wilson and Menkes disease proteins and the cytoplasmic chaperone, HAH1. J. Biol. Chem. 274, 28,49728, 504.

    Google Scholar 

  45. Culotta, V. C., Klomp, L. W., Strain, J., Casareno, R. L., Krems, B., and Gitlin, J. D. (1997) The copper chaperone for superoxide dismutase. J. Biol. Chem. 272, 23,469–23, 472.

    Google Scholar 

  46. Casareno, R. L., Waggoner, D., and Gitlin, J. D. (1998) The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase. J. Biol. Chem. 273, 23,625–23, 628.

    Google Scholar 

  47. Glerum, D.M., Shtanko, A. and Tzagoloff, A. (1996) Characterization of COX17: a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J. Biol. Chem. 271, 14,504–14, 509.

    Google Scholar 

  48. Amaravadi, R., Glerum, D. M., and Tzagoloff, A. (1997) Isolation of a eDNA encoding the human homolog of COX17, a yeast gene essential for mitochondrial copper recruitment. Hum. Genet. 99, 329–333.

    Article  PubMed  CAS  Google Scholar 

  49. Sonsma, T. Hixon, P., McWilliams, K., and Linder, M. C. (1981) Mechanism and regulation of intestinal copper absorption, in Trace Element Metabolism in Man and Animals ( Howell, J. M., Gawthorne, J. M., and White, C. L., eds.), Australian Academy of Science, Canberra, pp. 145–147.

    Google Scholar 

  50. Fischer, P. W. F., Giroux, A., and Labbe, M. R. (1983) Effects of zinc on mucosal copper binding and on the kinetics of copper absorption. J. Nutr. 113, 462–469.

    PubMed  CAS  Google Scholar 

  51. Bremner, I. (1980) Absorption, transport and distribution of copper. Ciba Found. Symp. (1979) Exerpta Med. 79, 23–48.

    CAS  Google Scholar 

  52. Ogiso, T., Ogawa, N., and Miura, T. (1979) Inhibitory effect of high dietary zinc on copper absorption in rats. II. Binding of copper and zinc to cytosol proteins in the intestinal mucosa. Chem. Pharm. Bull. 27, 515–521.

    Article  PubMed  CAS  Google Scholar 

  53. Freedman, J. H. and Peisach, J. (1989) Intracellular copper transport in cultured hepatoma cells. Biochem. Biophys. Res. Commun. 164, 134–140.

    Article  PubMed  CAS  Google Scholar 

  54. Freedman, J. H., Ciriolo, M. R., and Peisach, J. (1989) The role of glutathione in copper metabolism and toxicity. J. Biol. Chem. 264, 5598–5605.

    PubMed  CAS  Google Scholar 

  55. Portnoy, M. E., Schmidt, P. J., Rogers, R. S., and Culotta, V. C. (2001) Metal transporters that contribute copper to metallochaperones in Saccharomyces cerevisiae. Mol. Genet. Genom. 265, 873–882.

    Article  CAS  Google Scholar 

  56. Hamsa, I., Faisst, A., Prohaska, J., Chen, J., Gruss, P. and Gitlin, J. D. (2001) The metallochaperone Atoxl plays a critical role in perinatal copper homeostasis. Proc. Natl. Acad. Sci. USA 98, 6848–6852.

    Article  Google Scholar 

  57. Kaler, S. G. (1998) Metabolic and molecular bases of Menkes disease and occipital horn syndrome. Pediatr. Dev. Pathol. 1, 85–99.

    Article  PubMed  CAS  Google Scholar 

  58. Masuoka, J., Hegenauer, J., Van Dyke, B. R., and Saltman, P. (1993) Intrinsic stoichiometric equilibrium constants for the binding of zinc(II) and copper(II) to the high affinity site of serum albumin. J. Biol. Chem. 268, 21,533–21, 537.

    Google Scholar 

  59. Lau, S. and Sarkar, B. (1971) Ternary coordination complex between human serum albumin, copper(II) and L-histidine. J. Biol. Chem. 246, 5938–5943.

    PubMed  CAS  Google Scholar 

  60. Masuoka, J. and Saltman, P. (1994) Zinc(II) and copper (II) binding to serum albumin. A comparative study of dog, bovine, and human albumin. J. Biol. Chem. 269, 25,557–25, 561.

    Google Scholar 

  61. Wirth, P. L. and Linder, M. C. (1985) Distribution of copper among multiple components of human serum. J. Natl. Cancer Inst. 75, 277–284.

    PubMed  CAS  Google Scholar 

  62. Barrow, L. and Tanner, M. S. (1988) Copper distribution among serum proteins in paediatric liver disorder and malignancies. Eur. J. Clin. Invest. 18, 555–560.

    Article  PubMed  CAS  Google Scholar 

  63. Weiss, K. C. and Linder, M. C. (1985) Copper transport in rats involving a new plasma protein. Am. J. Physiol. 249, E77 - E88.

    PubMed  CAS  Google Scholar 

  64. Liu, N. M., Lo, L. S. L., Askary, S. H.,Goforth, J., Vivas, E., Tsai, M., et al. (2002) Transcuprein is a macroglobulin regulated by copper and iron, in press.

    Google Scholar 

  65. Linder, M. C. (2001) Copper and genomic stability in mammals. Mutat. Res. 475, 151–152.

    Google Scholar 

  66. Huffman, D. L. and O’Halloran, T. V. (2001) Function, structure, and mechanism of intracellular copper trafficking proteins. Annu. Rev. Biochem. 70, 677–701.

    Article  PubMed  CAS  Google Scholar 

  67. Wernimont, A. K., Huffman, D. L., Lamb, A. L., O’Halloran, T. V., and Rosenzweig, A. C. (2000) Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nat. Struct. Biol. 7, 766–771.

    Article  PubMed  CAS  Google Scholar 

  68. Goforth, J., Vivas, E., Liu, N., Askary, H. S., Lo, L. S. L., and Linder, M. C. (2001) Correspondence between rat transcuprein and human alpha-2-macoglobulin in copper binding. FASEB J. 15 [Abstract A271. 1.

    Google Scholar 

  69. Campbell, C. H., Brown, R., and Linder, M. C. (1981) Circulating ceruloplasmin is an important source of copper for normal and malignant cells. Biochim. Biophys. Acta 678, 27–38.

    Article  PubMed  CAS  Google Scholar 

  70. Lee, S. H., Lancey, R., Montaser, A., Madani, N. and Linder, M. C. (1993) Ceruloplasmin and copper transport during the latter part of gestation in the rat. Proc. Soc. Exp. Biol. Med. 203, 428–439.

    PubMed  CAS  Google Scholar 

  71. Vargas, E. J., Shoho, A. R., and Linder, M. C. (1994) Copper transport in the Nagase analbuminemic rat. Am. J. Physiol. 267, G259 - G269.

    PubMed  CAS  Google Scholar 

  72. Orena, S. J., Goode, C. A., and Linder, M. C. (1986) Binding and uptake of copper from ceruloplasmin. Biochem. Biophys. Res. Commun. 139, 822–825.

    Article  PubMed  CAS  Google Scholar 

  73. Harris, Z. L., Takahashi, Y. Miyajima, H., Serizawa, M., MacGillivray, R. T. A., and Gitlin, J. D. (1995) Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc. Natl. Acad. Sci USA 92, 2539–2543.

    CAS  Google Scholar 

  74. Meyer, L. A., Durley, A. P., Prohaska, J. R., and Harris, Z. L. (2001) Copper transport and metabolism are normal in Aceruloplasminemic mice. J. Biol. Chem., 276, 36,857–36, 861.

    Google Scholar 

  75. Hilton, M., Spenser, D. C., Ross, P. Ramsey, A., and McArdle, H. J. (1995) Characterisation of the copper uptake mechanism and isolation of the ceruloplasmin receptor/copper transporter in human placental vesicles. Biochim. Biophys. Acta 1245, 153–160.

    Google Scholar 

  76. Mas, A. and Sarkar, B. (1992) Uptake by 67Cu by isolated human trophoblast cells. Biochim. Biophys. Acta 1135, 123–128.

    Article  PubMed  CAS  Google Scholar 

  77. Percival, S. S. and Harris, E. D. (1990) Copper transport from ceruloplasmin: characterization of the cellular uptake mechanism. Am. J. Physiol. 258, C140 — C146.

    PubMed  CAS  Google Scholar 

  78. Stevens, M. D., DiSilvestro, R. A., and Harris, E. D. (1984) Specific receptors for ceruloplasmin in membrane fragments from aortic and heart tissues. Biochemistry 23, 261–266.

    Article  PubMed  CAS  Google Scholar 

  79. Kataoka, M. and Tavassoli, M. (1985) Identification of ceruloplasmin receptors on the surface of human blood monocytes, granulocytes, and lymphocytes. Exp. Hematol. 13, 806–810.

    PubMed  CAS  Google Scholar 

  80. Tavassoli, M., Kishimoto, T., and Kataoka, M. (1986) Liver endothelium mediates the hepatocyte’s uptake of ceruloplasmin. J. Cell Biol. 102, 1298–1303.

    Article  PubMed  CAS  Google Scholar 

  81. Ettinger, M. J., Darwish, H. M., and Schmitt, R. C. (1986) Mechanisms of copper transport from plasma to hepatocytes. Fed. Proc. 45, 2800–2804.

    PubMed  CAS  Google Scholar 

  82. McArdle, H. J., Guthrie, J. R., Ackland, M. L., and Danks, D. M. (1987) Albumin has no role in the uptake of copper by human fibroblasts. J. Inorg. Biochem. 31, 123–131.

    Article  PubMed  CAS  Google Scholar 

  83. Schmitt, R. C., Darwish, H. M., Cheney, J. C., and Ettinger, M. J. (1983) Copper transport kinetics by isolated rat hepatocytes. Am. J. Physiol. 244, G183 - G191.

    PubMed  CAS  Google Scholar 

  84. Zhou, H. and Thiele, D. J. (2001) Identification of a novel high affinity copper transport complex in the fission yeast Schizosaccharomyces pombe. J. Biol. Chem. 276, 20,529–20, 535.

    Google Scholar 

  85. Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., and O’Halloran, T. V. (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284, 805–808.

    Article  PubMed  CAS  Google Scholar 

  86. Petris, M. J., Mercer, J. F. B., Culvenor, J. G., Lockhart, P., Gleeson, P. A. and Camakaris, J. (1996) Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J. 15, 6084–6095.

    PubMed  Google Scholar 

  87. Camakaris, J., Petris, M. J., Bailey, L., Shen, P., Lockhart, P., Glover, T. W., et al. (1995) Gene amplification of the Menkes (MNK; ATP7A) P-type ATPase gene of CHO cells is associated with copper resistance and enhanced copper efflux. Hum. Mol. Genet. 4, 2117–2123.

    Article  PubMed  CAS  Google Scholar 

  88. Petris, M. J. and Mercer, J. F. B. (1999) The Menkes protein (ATP7A; MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal. Hum. Mol. Genet. 8, 2107–2115.

    Article  PubMed  CAS  Google Scholar 

  89. Camakaris, J., Voskoboinik, I., and Mercer, J. F. B. (1999) Molecular mechanisms of copper homeostasis. Biochem. Biophys. Res. Comm. 261, 225–232.

    Article  PubMed  CAS  Google Scholar 

  90. Schaefer, M., Roelofsen, J., Wolters, H., Hofmann, W. J., Muller, M., Kuipers, F., et al. (1999) Localization of the Wilson’s disease protein in human liver. Gastroenterology 117, 1380–1385.

    Article  PubMed  CAS  Google Scholar 

  91. Roelofsen, J., Wolters, H., Van Luyn, J. A., Miura, N., Kuipers, F., and Vonk, R. J. (2000) Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion. Gastroenterology 119, 782–793.

    Article  PubMed  CAS  Google Scholar 

  92. Kressner, M. S., Stockert, R. J., Morell, A. G., and Sternlieb, I. (1984) Origins of biliary copper. Hepatology 4, 867–870.

    Article  PubMed  CAS  Google Scholar 

  93. Chowrimootoo, G. F. E. and Seymour, C. A. (1994) The role of ceruloplasmin in copper excretion. Biochem. Soc. Trans. 22, 190S [Abstract].

    PubMed  CAS  Google Scholar 

  94. Iyengar, V., Brewer, G. J., Dick, R. D., and Owyang, C. (1988) Studies of cholecystokinin-stimulated biliary secretions reveal a high molecular weight copper binding substance in normal subjects that is absent in patients with Wilson’s disease. J. Lab. Clin. Med. 111, 267–274.

    PubMed  CAS  Google Scholar 

  95. Linder, M. C. and Roboz, M. (1986) Turnover and excretion of copper in rats as measured with 67Cu. Am. J. Physiol. 251, E551 - E555.

    PubMed  CAS  Google Scholar 

  96. Bethin, K. E., Cimato, T. R., and Ettinger, M. J. (1995) Copper binding to mouse liver S-adenosyl homocysteine hydrolase and the effects of copper on its levels. J. Biol. Chem. 270, 20,702–20, 711.

    Google Scholar 

  97. Flood, D. G., Reaume, A. G., Gruner, J. A., Hoffmann, E. K., Hirsch, J. D., Lin, Y.-G., et al. (1999) Hindlimb motor neurons require Cu/Zn superoxide dismutase for maintenance of neuromuscular junctions. Am. J. Pathol. 155, 663–672.

    Article  PubMed  CAS  Google Scholar 

  98. Valentine, J. S., Hart, P. J., and Gralla, E. B. (1999) Copper-zinc superoxide dismutase and ALS, in Copper Transport and its Disorders ( Leone, A. and Mercer, J. F. B., eds.), Kluwer Academic/Plenum, New York, pp. 193–203.

    Chapter  Google Scholar 

  99. Cam, M. T., Battistoni, A., Ferri, A., Gabbianelli, R. and Rotilio, G. (1999) A study of the dual role of copper in superoxide dismutase as antioxidant and pro-oxidant in cellular models of amyotropic lateral sclerosis, in Copper Transport and its Disorders ( Leone, A. and Mercer, J. F. B., eds.), Kluwer Academic/Plenum, New York, pp. 205–213.

    Google Scholar 

  100. Johnson, M. A., Macdonald, T. L., Mannick, J. B., Conaway, M. R., and Gaston, B. (2001) Accelarated S-nitrosothiol breakdown by amyotropic lateral sclerosis mutant copper, zinc-superoxide dismutase. J. Biol. Chem., 276, 39,87239, 878.

    Google Scholar 

  101. Levy, M. A., Tsai, Y. H., Reaume, A., and Bray, T. M. (2001) Cellular response of antioxidant metalloproteins in Cu/ Zn SOD transgenic mice exposed to hyperoxia. Am. J. Physiol. 281, L172 — L182.

    CAS  Google Scholar 

  102. Kang, Y. J. (1999) The antioxidant function of metallothionein in the heart. Proc. Soc. Exp. Biol. Med. 222, 263–273.

    Article  PubMed  CAS  Google Scholar 

  103. Ghoshal, K., Majumder, S., Li, Z., Bray, T. M., and Jacob, S. T. (1999) Transcriptional induction of MT-I and II genes in the livers of Cu/Zn-SOD knockout mice. Biochem. Biophys. Res. Commun. 264, 735–742.

    Article  PubMed  CAS  Google Scholar 

  104. Ragan, H. A., Nacht, S., Lee, G. R., Bishop, C. R., and Cartwright, G. E. (1969) Effect of ceruloplasmin on plasma iron in copper deficient swine. Am. J. Physiol. 217, 1320–1323.

    PubMed  CAS  Google Scholar 

  105. Osaki, S. and Johnson, D. A. (1969) Mobilization of liver iron by ferroxidase (ceruloplasmin). J. Biol. Chem. 244, 5757–5761.

    PubMed  CAS  Google Scholar 

  106. Tran, T., Ashraf, M., Jones, L. T., Westbrook, T., Hazegh-Azam, M., and Linder, M. C. (2001) Dietary iron status has little effect on expression of ceruloplasmin but alters that of ferritin in rats. J. Nutr. 132, 351–356.

    Google Scholar 

  107. Harris, Z. L., Durley, A. P., Man, T. M., and Gitlin, J. D. (1999) Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc. Natl. Acad. Sci. USA 96, 10,812–10, 817.

    Google Scholar 

  108. Yoshida, K., Furihata, K., Takeda, S., Nakamura, A., Yamamoto, K., Hiyamuta, S., et al. (1995) A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nature Genet. 9, 267–272.

    Article  PubMed  CAS  Google Scholar 

  109. Roeser, H. P., Lee, G. R., Nacht, S., and Cartwright, G. E. (1980) A role of ceruloplasmin in iron metabolism. J. Clin. Invest. 49, 2408–2417.

    Article  Google Scholar 

  110. Patel, B. N. and David, S. (1997) A novel glcosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes. J. Biol. Chem. 272, 20,185–20, 190.

    Google Scholar 

  111. Salzer, J. L., Lovejoy, L., Linder, M. C., and Rosen, C. (1998) Ran-2, a glial lineage marker, is a GPI-anchored form of ceruloplasmin. J. Neurosci. 54, 147–157.

    Article  CAS  Google Scholar 

  112. Patel, B. N., Dunn, R. J., and David, S. (2000) Alternative RNA splicing generates a glycosylphosphatidylinositolanchored form of ceruloplasmin in mammalian brain. J. Biol. Chem. 275, 4305–4310.

    Article  PubMed  CAS  Google Scholar 

  113. Harris, Z. L., Klomp, L. W., and Gitlin, J. D. (1998) Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Am. J. Clin, Nutr. 67 (Suppl.), 972S - 977S.

    CAS  Google Scholar 

  114. Mukhopadhyay, C. K., Mazumder, B., and Fox, P. L. (1999) Role of hypoxia inducible factor-1 in transcription activation of ceruloplasmin by iron deficiency. J. Biol. Chem. 275, 21,048–21, 054.

    Google Scholar 

  115. Mukhopadhyay, C. K. and Fox, P. L. (2001) Dual regulation of ceruloplasmin transcription by insulin in HepG2 cells. Bioiron 2001.

    Google Scholar 

  116. Vulpe, C. D., Kuo, Y.-M., Murphy, T. L., Cowley, L., Askwith, C., Libina, N., et al. (1999) Hephaestin, a ceruloplasmin homolog implicated in intestinal iron transport, is defective in the sla mouse. Nature Genet. 21, 195–199.

    Article  PubMed  CAS  Google Scholar 

  117. Vulpe, C. D., Attieh, Z. K., Allaeddine, R. M., and Su, T. (2001) Identification of a ferroxidase activity for hephaestin. FASEB J. 15 [Abstract] A800.

    Google Scholar 

  118. Fife, R. S. Moody, S., Houser, D., and Proctor, C. (1994) Studies of copper transport in cultured bovine chondrocytes. Biochim. Biophys. Acta 1201, 19–22.

    Google Scholar 

  119. Fife, R. S. Palmoski, M. J., and Brandt, K. D. (1986) Metabolism of cartilage matrix glycoprotein in normal and osteoarthritic canine articular cartilage. Arthritis Rheum. 29, 1256–1262.

    Article  PubMed  CAS  Google Scholar 

  120. Haddad, A. De Almedia, J. C., Laicine, E. M., Fife, R. S., and Pelletier, G. (1990) The origin of the intrinsic glycoproteins of the rabbit vitreous body: an immunohistochemical and autoradiographic study. Exp. Eye Res. 50, 555–561.

    Article  PubMed  CAS  Google Scholar 

  121. Trackman, P. C., Pratt, A. M., Wolanski, A., Tang, S. S., Offner, G. D., Troxler, R. F., et al. (1990) Cloning of rat aorta lysyl oxidase cDNA: complete codons and predicted amino acid sequence. Biochemistry 29, 4863–4870.

    Article  PubMed  CAS  Google Scholar 

  122. Hamalainen, E. R., Jones, T. A., Sheer, D., Taskinen, K., Pihlajaniemi, T., and Kivirikko, K. I. (1991) Molecular cloning of human lysyl oxidase and assignment of the gene to chromosome 5q23.2–31.2. Genomics 11, 508–516.

    Google Scholar 

  123. Tang, C. and Klinman, J. P. (2001) The catalytic function of bovine lysyl oxidase in the absence of copper. J. Biol. Chem. 276, 30,575–30, 578.

    Google Scholar 

  124. Wang, S. X., Mure, M., Medzihradszky, K. F., Burlingame, A. L., Brown, D. E., Dooley, D. M., et al. (1996) A crosslinked cofactor in lysyl oxidase: redox function for amino acid side chains. Science 273, 1078–1084.

    Article  PubMed  CAS  Google Scholar 

  125. Rucker, R. B., Kosonen, T., Clegg, M. S., Mitchell, A. E., Rucker, B. R., Uriu-Hare, J. Y., et al. (1998) Copper, lysyl oxidase, and extracellular matrix protein cross-linking. Am. J. Clin. Nutr. 67 (Suppl.), 996S - 1002S.

    PubMed  CAS  Google Scholar 

  126. Jourdan-Le Saux, C., Tronecker, H., Bogic, L., Bryant-Greenwood, G. D., Boyd, C. D., and Csiszar, K. (1999) The LOXL2 gene encodes a new lysyl oxidase-like protein and is expressed at high levels in reproductive tissues. J. Biol. Chem. 274, 12,939–12, 944.

    Google Scholar 

  127. Maki, J. M. and Kivirikko, K. I. (2001) Cloning and characterization of a fourth human lysyl oxidase isoenzyme. Biochem. J. 355, 381–387.

    Article  PubMed  CAS  Google Scholar 

  128. Brown, D. R. (2001) Prion or prejudice: normal protein and the synapse. Trends Neurosci. 24, 85–90.

    Article  PubMed  CAS  Google Scholar 

  129. Aronoff-Spencer, E., Burns, C. S., Avdievich, N. I., Gerfen, G. J., Peisach, J., Antholine, W. E., et al. (2000) Identification of the Cu2+/— binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochemistry 39, 12, 760–13, 771.

    Google Scholar 

  130. Miura, T., Hori-I, A., and Takeuchi, H. (1996) Raman spectroscopy study on the copper(II) binding mode of prion octapeptide and its pH dependence. FEBS Lett. 396, 248–252.

    CAS  Google Scholar 

  131. McMahon, H. E. M., Mange, A., Nishida, N., Cerminon, C., Casanova, D., and Lehmann, S. (2001) Cleavage of the amino terminus of the prion protein by reactive oxygen species. J. Biol. Chem. 276, 2286–2291.

    Article  PubMed  CAS  Google Scholar 

  132. Brown, D. R., Clive, C., and Haswell, S. J. (2001) Antioxidant activity related to copper binding of native prion protein. J. Neurochem. 76, 69–76.

    Article  PubMed  CAS  Google Scholar 

  133. Brown, D. R., Wong, B.-S., Hafiz, F., Clive, C., Haswell, S. J., and Jones, I. M. (1999) Normal prion protein has an activity like that of superoxide dismutase. Biochem. J. 344, 1–5.

    Article  PubMed  CAS  Google Scholar 

  134. Brown, D. R., Hafiz, F., Glasssmith, L. L., Wong, B.-S., Jones, I. M., Clive, C., et al. (2000) Consequences of manganese replacement of copper for prion protein function and proteinase resistance. EMBO J. 19, 1180–1186.

    Google Scholar 

  135. Milhavet, O., McMahon, H. E. M., Rachidi, W., Nishida, N., Katamine, S., Mange, A., et al. (2000) Prion infection impairs the cellular response to oxidative stress. Proc. Natl. Acad. Sci. USA 97, 13,937–13, 942.

    Google Scholar 

  136. Klamt, F., Dal-Pizzol, F., Conte da Frota M. L., Jr., Walz, R., Andrades, M. E., Gomes da Silva, E., et al. (2001) Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radical Biol. Med. 30, 1137–1144.

    Article  CAS  Google Scholar 

  137. Brown, D. R. (1999) Prion protein expression aids cellular uptake and veratidine-induced release of copper. J. Neurosci. Res. 58, 717–725.

    Article  PubMed  CAS  Google Scholar 

  138. Brown, D. R., Schmidt, B., and Kretzschmar, H. A. (1997) Expression of prion protein in PC12 is enhanced by exposure to oxidative stress. Int. J. Del). Neurosci. 15, 961–972.

    Article  CAS  Google Scholar 

  139. Sumudhu, W., Perera, S., and Hooper, N. M. (2001) Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat. Curr. Biol. 11, 519–523.

    Article  CAS  Google Scholar 

  140. Brockes, J. P. (1999) Topics in prion cell biology. Curr. Opin. Neurobiol. 9, 571–577.

    Article  PubMed  CAS  Google Scholar 

  141. Linder, M. C., Donley, S., Dominguez, D., Wooten, L., Mehrbod, F., Cerveza, P., et al. (1999) Copper transport and ceruloplasmin during lactation and pregnancy, in Metals and Genetics ( Sarkar, B., ed.), Kluwer Academic/ Plenum, New York, pp. 117–129.

    Chapter  Google Scholar 

  142. Kuo, Y.-M., Gitschier, J., and Packman, S. (1997) Developmental expression of the mouse mottled and toxic milk genes suggests distinct functions for the Menkes and Wilson disease copper transporters. Hum. Mol. Genet. 6, 1043–1049.

    Article  PubMed  CAS  Google Scholar 

  143. McArdle, H. J. and Erlich, R. (1989) Copper uptake and transfer to the mouse fetus during pregnancy. J. Nutr. 121, 208–214.

    Google Scholar 

  144. McArdle, H. J. and van den Berg, G. J. (1992) The accumulation of copper by microvilli isolated from human term placenta. J. Nutr. 122, 1260–1265.

    PubMed  CAS  Google Scholar 

  145. Tong, K. K. and McArdle, H. J. (1995) Copper uptake by cultured trophoblast cells isolated from human term placenta. Biochim. Biophys. Acta 1269, 233–246.

    Article  PubMed  Google Scholar 

  146. Meyer, L. A., Durley, A. P., Prohaska, J. R., and Harris, Z. L. (2001) Copper transport and metabolism are normal in aceruloplasminemia. J. Biol. Chem. 276, 36,857–36, 861.

    Google Scholar 

  147. Muramatsu, Y., Tamada, T., Moralejo, D. H., Suzuki, Y., and Matsumoto, K. (1998) Fetal copper uptake and a homolog (Atp7b) of the Wilson’s disease gene in rats. Res. Commun. Mol. Pathol. Pharmacol. 101, 225–231.

    Google Scholar 

  148. Oga, M., Matsui, N., Anai, T., Yoshimatsu, J., Inoue, I., and Miyakawa, I. (1993) Copper disposition of the fetus and placenta in a patient with untreated Wilson’s disease. Am. J. Obstet. Gynecol. 169, 196–198.

    PubMed  CAS  Google Scholar 

  149. Mann, J., Camakaris, J., and Danks, D. M. (1980) Copper metabolism in mottled mouse mutants. Defective placental transfer of 64Cu to foetal brindled (Mohr) mice. Biochem. J. 186, 629–631.

    PubMed  CAS  Google Scholar 

  150. Coni, E., Bocca, B., Galoppi, B., Alimonti, A., and Caroli, S. (2000) Identification of chemical species of some trace and mnor elements in mature breast milk. Microchem. J. 67, 187–194.

    Article  CAS  Google Scholar 

  151. Wooten, L., Shulze, R. A., Lancey, R. W., Lietzow, M., and Linder, M. C. (1996) Ceruloplasmin is found in milk and amniotic fluid and may have a nutritional role. J. Nutr. Biochem. 7, 632–639.

    Article  CAS  Google Scholar 

  152. Cerveza, P. J., Mehrbod, F., Cotton, S. J., Lomeli, N., Linder, M. C., Fonda, E. G., et al. (2000) Milk ceruloplasmin and its expression by mammary gland and liver in pigs. Arch. Bioch. Biophys. 373, 451–461.

    Article  CAS  Google Scholar 

  153. Donley, S. A., Ilagan, B. J., Rim, H., and Linder, M. C. (2002) Copper transport to mammary gland and milk during lactation in rats, submitted.

    Google Scholar 

  154. Michalczyk, A. Rieger, J., Allen, K., Mercer, J., and Ackland, M. (2000) Defective trafficking of the Wilson disease protein ATP7B in the mammary gland of the toxic milk mouse. Biochem. J. 352, 565–571.

    CAS  Google Scholar 

  155. Rauch, H. (1983) Toxic mik, a new mutation affecting copper metabolism in the mouse. J. Heredity 74, 141–144.

    CAS  Google Scholar 

  156. Dorea, J. G. (2000) Iron and copper in human milk. Nutrition 16, 209–220.

    Article  PubMed  CAS  Google Scholar 

  157. Olivares, M., Pizarro, F., Speisky, H., Lonnerdal, B., and Uauy, R. (1998) Copper in infant nutrition: safety of World Health Organization provisional guideline value for copper content of drinking water. J. Pediat. Gastroenterol. Nutr. 26, 251–257.

    Article  CAS  Google Scholar 

  158. Olivares, M., Araya, M., and Uauy, R. (2000) Copper homeostasis in infant nutrition: deficit and excess. J. Pediatr. Gastroenterol. 31, 102–111.

    Article  CAS  Google Scholar 

  159. Chierici, R., Saccomandi, D., and Vigi, V. (1999) Dietary supplements for the lactating mother: influence on the trace element content of milk. Acta Paediatr. 88 (Suppl.), 7–13.

    Article  CAS  Google Scholar 

  160. Hopkins, R. G. and Failla, M. L. (1999) Transcriptional regulation of interleukin-2 gene expression is impaired by copper deficiency in Jurkat human T lymphocytes. J. Nutr. 129, 596–601.

    PubMed  CAS  Google Scholar 

  161. Percival, S. S. (1998) Copper and immunity. Am. J. Clin, Nutr. 67 (Suppl.), 1064S - 1068S.

    CAS  Google Scholar 

  162. Huang, Z. L. and Failla, M. L. (2000) Copper deficiency suppresses effector activities of differentiated U937 cells. J. Nutr. 130, 1536–1542.

    PubMed  CAS  Google Scholar 

  163. Gengelbach, G. P. and Spears, J. W. (1998) Effects of dietary copper and molybdenum on copper status, cytokine production, and humoral immune response of calves. J. Dairy Sci. 81, 3286–3292.

    Article  PubMed  CAS  Google Scholar 

  164. Linder, M. C., Morris, H. P., and Criss, W. (1977) Iron and copper metabolism in cancer as exemplified by ferritin and ceruloplasmin in rats with transplantable tumors, in Morris Hepatomas: Mechanisms of Regulation ( Criss, W. ed.), Plenum, New York, pp. 643–664.

    Google Scholar 

  165. Linder, M. C., Moor, J. R., and Wright, K. (1981) Ceruloplasmin assays in diagnosis and treatment of human lung, breast and gastrointestinal cancer. J. Natl. Cancer Inst. 67, 263–275.

    PubMed  CAS  Google Scholar 

  166. Gullino, P. M., Ziche, M., and Alessandri, G. (1990) Ganglioside, copper ions and angiogenic capacity of adult tissues. Cancer Metastasis Rev. 8, 239–251.

    Article  Google Scholar 

  167. Hu, G. F. (1998) Copper stimulates proliferation of human endothelial cells under culture. J. Cell Biochem. 69, 326–335.

    Article  PubMed  CAS  Google Scholar 

  168. Soncin, F., Guitton, J. D., Cartwright, T., and Badet, J. (1997) Interaction of human angiogenin with copper modulates angiogenin binding to endothelial cells. Biochem. Biophys. Res. Commun. 236, 604–610.

    Article  PubMed  CAS  Google Scholar 

  169. Lane, T. F., Iruela-Arispe, M. L., Johnson, R. S., and Sage, E. H. (1994) SPARC is a source of copper-binding peptides that stimulate angiogenesis. J. Cell Biol. 125, 929–943.

    Article  PubMed  CAS  Google Scholar 

  170. Yoshida, D., Ikeda, Y. and Nakazawa, S. (1995) Copper chelation inhibits tumor angiogenesis in the experimental 9L gliosarcoma model. Neurosurgery 37, 287–292.

    Article  PubMed  CAS  Google Scholar 

  171. Brewer, G. J. (2001) Copper control as an antiangiogenic anticancer therapy: lessons from treating Wilson’s disease. Exp. Biol. Med. 226, 665–673.

    CAS  Google Scholar 

  172. Goode, C. A. (1991) Copper and disease, in Biochemistry of Copper ( Linder, M. C., ed.), Plenum, New York, pp. 331–366.

    Google Scholar 

  173. Mercer, J.F.B., Livingston, J., Hall, B., Paynter, J.A., Begy, C., Chandrasekharappa, S., et al. (1993) Isolation of a partial candidate gene for Menkes disease by positional cloning. Nature Genet. 3, 20–25.

    Article  PubMed  CAS  Google Scholar 

  174. Vulpe, C., Levinson, B., Whitney, S., Packman, S., and Gitschier, J. (1993) Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nature Genet. 3, 7–13.

    Article  PubMed  CAS  Google Scholar 

  175. Chelly, J., Tumer, Z., Tonnesen, T., Petterson, A., Ishikawa-Brush, Y., Tommerup, N., et al. (1993) Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nature Genet. 3, 14–9.

    Article  PubMed  CAS  Google Scholar 

  176. Bull, P. C., Thomas, G. R., Rommens, J. M., Forbes, J. R., and Cox, D. W. (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature Genet. 5, 327–337.

    Article  PubMed  CAS  Google Scholar 

  177. Tanzi, R. E., Petrukhin, K., Chernov, I., Pellequer, J. L., Wasco, W., Toss, B., et al. (1993) The Wilson disease gene is a copper-transporting ATPase with homology to the Menkes disease gene. Nature Genet. 5, 344–350.

    Article  PubMed  CAS  Google Scholar 

  178. Harris, E. D., Reddy, M. C., Qian, Y., Tiffany-Castingliano, E., Majumdar, S., and Nelson, J. (1999) Multiple forms of the Menkes CuATPase. Adv. Exp. Med. Biol. 448, 39–51.

    Article  PubMed  CAS  Google Scholar 

  179. Harris, E. D., Reddy, M. C., and Majumdar, S. (2001) Evidence for two promoters in the Menkes disease gene. FASEB J. 15 [Abstract A271].

    Google Scholar 

  180. Majumdar, S., Reddy, M. C., and Harris, E. D. (2001) Indication of a nuclear copper transporter in human cells. FASEB J. 15 [Abstract A775].

    Google Scholar 

  181. Wu, J., Forbes, J. R., Chen, H. S., and Cox, D. W. (1994) The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene. Nature Genet. 7, 6541–6545.

    Google Scholar 

  182. Theophilos, M. B., Cox, D., and Mercer, J. F. B. (1996) The toxic milk mouse is a murine model of Wilson disease. Hum. Mol. Genet. 5, 1619–1624.

    Article  PubMed  CAS  Google Scholar 

  183. Okayasu, T., Tochimaru, H., Takahashi, T., Takekoshi, Y., Li, Y., Togashi, Y., et al. (1992) Inherited copper toxicity in Long-Evans Cinnamon rats exhibiting spontaneous hepatitis: a model of Wilson’s disease. Pediatr. Res. 31, 253–257.

    Article  PubMed  CAS  Google Scholar 

  184. Buiakova, O. I., Xu, J., Lutsenko, S., Zeitlin, S., Das, K., Das, S., et al. (1999) Null mutation of the murine ATP7B (Wilson disease) gene results in intracellular copper accumulation and late-onset hepatic nodular transformation. Hum. Mol. Genet. 9, 1665–1671.

    Article  Google Scholar 

  185. Strausak, D., Mercer, J. F., Dieter, H. H., Stremmel, W., and Multhaup, G. (2001) Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Res. Bull. 55, 175–185.

    Article  PubMed  CAS  Google Scholar 

  186. Mercer, J. F. (2001) The molecular basis of copper-transport diseases. Trends Mol. Med. 7, 64–69.

    Article  PubMed  CAS  Google Scholar 

  187. Cox, D. W. (1999) Disorders of copper transport. Br. Med. Bull. 55, 544–555.

    Article  PubMed  CAS  Google Scholar 

  188. Menkes, J. H. (1999) Menkes disease and Wilson disease: two sides of the same copper coin. Part I. Menkes disease. Eur. J. Paediatr. Neurol. 3, 147–158.

    Article  PubMed  CAS  Google Scholar 

  189. Menkes, J. H. (1999) Menkes disease and Wilson disease: two sides of the same copper coin. Part II. Wilson disease. Eur. J. Paediatr. Neurol. 3, 245–253.

    Article  PubMed  CAS  Google Scholar 

  190. Gitlin, J. D. (1998) Aceruloplasminemia. Pediatr. Res. 44, 271–276.

    Article  PubMed  CAS  Google Scholar 

  191. Cherry, R. A., Atwood, C. S. A., Xilinas, M. E., Gray, D. N., Jones, W. D., McLean, C. A., et al. (2001) Treatment with a copper-zinc chelator inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30, 665–676.

    Article  Google Scholar 

  192. Suzuki, K., Miura, T. and Takeuchi, H. (2001) Inhibitory effect of copper(II) on zinc(II)-induced aggregation of amyloid beta-peptide. Biochem. Biophys. Res. Commun. 285, 991–996.

    Article  PubMed  CAS  Google Scholar 

  193. Tanner, M. S. (1999) Indian childhood cirrhosis and Tyrolean childhood cirrhosis, in Copper Transport and Its Disorders ( Leone, A. and Mercer, J. F. B., eds.), Kluwer Academic/Plenum, New York, pp. 127–137.

    Chapter  Google Scholar 

  194. Lockhart, P. J. (1999) Molecular analysis of copper transport in sheep, doctoral thesis, University of Melbourne, Melbourne, Victoria, Australia.

    Google Scholar 

  195. Montaser, A., Tetreault, C., and Linder, M. C. (1992) Comparison of copper binding proteins in dog serum with those in other species. Proc. Soc. Exp. Biol. Med. 200, 321–329.

    PubMed  CAS  Google Scholar 

  196. Dagenais, S. L., Guevara-Fujita, M., Loechel, R., Burgess, A. C., Miller, D. E., Yusbasiyan-Gurkan, V., et al. (1999) The canine copper toxicosis locus is not syntenic with ATP7B or ATX1 and maps to a region showing homology to human 2p21. Mamm. Genome 10, 753–756.

    Article  PubMed  CAS  Google Scholar 

  197. van der Sluis, B. J. A., Breen, M., Nanji, M., van Wolferen, M., de Jong, P., Binns, M. M., et al. (1999) Genetic mapping of the copper toxicosis locus in Bedlington terriers to dog chromosome 10, in a region syntenic to human chromosome region 2p13-p16. Hum. Mol. Genet. 8, 501–507.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Linder, M.C. (2002). Biochemistry and Molecular Biology of Copper in Mammals. In: Massaro, E.J. (eds) Handbook of Copper Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-288-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-288-3_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-266-7

  • Online ISBN: 978-1-59259-288-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics