Skip to main content

Technical Aspects of Skeletal Assessment Using Quantitative Ultrasound

  • Chapter
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

  • 341 Accesses

Abstract

Ultrasound was used to evaluate the acoustic properties of bone as early as the 1950s (1–3). However, enthusiasm for the application of ultrasound measurements as a clinical tool to assess skeletal status developed only after the pioneering work of Langton and colleagues in 1984 (4), who reported that broadband ultrasound attenuation (BUA) measurements in the calcaneus discriminated between elderly women who had sustained a hip fracture and those with no history of fracture. In the nearly two decades since this initial report, there have been major advances in the use of ultrasound for determining skeletal status. Quantitative ultrasound (QUS) devices are now approved by the FDA and equivalent regulatory agencies throughout the world for clinical use in the evaluation of osteoporosis and prediction of fracture risk. As a result of data from large, prospective trials (5–8), there is now widespread consensus that QUS measurements are useful for assessing fracture risk in both elderly and peri-menopausal women (see Chapter 7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siegel I, Anast G, Fields T. The determination of fracture healing by measurement of sound velocity across the fracture site. Surg Gynecol Obstet 1958; 107: 327–333.

    PubMed  CAS  Google Scholar 

  2. Goldman D, Hueter T. Tabular data of the velocity and absorption of high frequency sound in mammalian tissues. J Acoust Soc Am 1956; 28: 35–37.

    Article  Google Scholar 

  3. Rich C, Klinik E, Smith R, Graham B. Measurement of bone mass from ultrasonic transmission time. Proc Soc Eng Biol Med 1966; 123: 282–285.

    CAS  Google Scholar 

  4. Langton CM, Palmer SB, Porter RW. The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med 1984; 13: 89–91.

    Article  PubMed  CAS  Google Scholar 

  5. Hans D, Dargent-Molina P, Schott A, Sebert J, Cormier C, Kotski P, et al. Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 1996; 348: 511–514.

    Article  PubMed  CAS  Google Scholar 

  6. Bauer D, Gluer C, Cauley J, Vogt T, Ensrud K, Genant H, Black D. Bone ultrasound predicts fractures strongly and independently of densitometry in older women: a prospective study. Arch Int Med 1997; 157: 629–634.

    Article  CAS  Google Scholar 

  7. Thompson P, Taylor J, Oliver R, Fisher A. Quantitative ultrasound (QUS) of the heel predicts wrist and osteoporosis-related fractures in women age 45–75 years. J Clin Densitometry 1998; 1 (3): 219–225.

    Article  CAS  Google Scholar 

  8. Pluijm SM, Graafmans WC, Bouter LM, Lips P. Ultrasound measurements for the prediction of osteoporotic fractures in elderly people. Osteoporos Int 1999; 9 (6): 550–556.

    Article  PubMed  CAS  Google Scholar 

  9. Njeh C, Boivin C, Langton C. The role of ultrasound in the assessment of osteoporosis: a review. Osteoporosis Int 1997; 7: 7–22.

    Article  CAS  Google Scholar 

  10. Gregg E, Kriska A. The epidemiology of quantitative ultrasound: a review of the relationships with bone mass, osteoporosis and fracture risk. Osteoporosis Int 1997; 7: 89–99.

    Article  CAS  Google Scholar 

  11. Gluer C. Quantitative ultrasound techniques for the assessment of osteoporosis-expert agreement on current status. J Bone Min Res 1997; 12 (8): 1280–1288.

    Article  CAS  Google Scholar 

  12. Prins S, Jorgensen H, Jorgensen L, Hassager C. The role of quantitative ultrasound in the assessment of bone: a review. Clin Physiol 1998; 18: 3–17.

    Article  PubMed  CAS  Google Scholar 

  13. Njeh C, Blake G. Calcaneal quantitative ultrasound devices: water-coupled. In: Njeh C, Hans D, Fuerst T, Gluer C, Genant H, eds. Quantitative Ultrasound. Martin Dunitz, London, 1999, pp. 109–124.

    Google Scholar 

  14. Phillipov G, Holsman M, Phillips PJ. The clinical role of quantitative ultrasound in assessing fracture risk and bone status. Med J Aust 2000; 173 (4): 208–211.

    PubMed  CAS  Google Scholar 

  15. Pocock NA, Culton NL, Gilbert GR, Hoy ML, Babicheva R, Chu JM, Lee KS, Freund J. Potential roles for quantitative ultrasound in the management of osteoporosis. Med J Aust 2000; 173 (7): 355–358.

    PubMed  CAS  Google Scholar 

  16. Laugier P. The basic physics of ultrasound. In: Njeh C, Hans D, Fuerst T, Gluer C, Genant H, eds. Quantitative Ultrasound. Martin Dunitz, London, 1999, pp. 47–66.

    Google Scholar 

  17. Cheng S, Hans D, Genant H. Calcaneal quantitative ultrasound devices: gel-coupled. In: Njeh C, Hans D, Fuerst T, Gluer C, Genant H, eds. Quantitative Ultrasound. Martin Dunitz, London, 1999, pp. 125–144.

    Google Scholar 

  18. Hans D, Fan B, Fuerst T. Non-heel quantitative ultrasound devices. In: Njeh C, Hans D, Fuerst T, Gluer C, Genant H, eds. Quantitative Ultrasound. Martin Dunitz, London, 1999, pp. 145–162.

    Google Scholar 

  19. Nicholson P, Bouxsein M. Ultrasonic studies of cortical bone in vitro. In: Njeh C, Hans D, Fuerst T, Gluer C, Genant H, eds. Quantitative Ultrasound. Martin Dunitz, London, 1999, pp. 177–193.

    Google Scholar 

  20. Nicholson P, Njeh C. Ultrasonic studies of cancellous bone in vitro. In: Njeh C, Hans D, Fuerst T, Gluer C, Genant H, eds. Quantitative Ultrasound. Martin Dunitz, London, 1999, pp. 195–219.

    Google Scholar 

  21. Njeh CF, Fuerst T, Diessel E, Genant HK. Is quantitative ultrasound dependent on bone structure? A reflection. Osteoporos Int 2001; 12 (1): 1–15.

    PubMed  CAS  Google Scholar 

  22. Breazeale M, Cantrell J, Heyman J. Ultrasonic wave velocity and attenuation measurements. Meth Exp Physics 1981; 19: 67–135.

    Article  Google Scholar 

  23. Hans D, Schott A, Arlot ME, Sornay E, Delmas P, Meunier P.J. Influence of anthropometric parameters on ultrasound measurements of os calcis. Osteoporosis Int 1995; 5: 371–376.

    Article  CAS  Google Scholar 

  24. Kotzki PO, Buyck D, Hans D, Thomas E, Bonnel F, Favier F, Meunier PJ, Rossi M. Influence of fat on ultrasound measurements of the os calcis. Calcif Tissue Int 1994; 54: 91–95.

    Article  PubMed  CAS  Google Scholar 

  25. Miller CG, Herd RJM, Ramalingam T, Fogelman I, Blake GM. Ultrasonic velocity measurements through the calcaneus: which velocity should be measured? Osteoporosis Int 1993; 3: 31–35.

    Article  CAS  Google Scholar 

  26. Duboeuf F, Hans D, Schott A, Giraud S, Delmas P, Meunier P. Ultrasound velocity measured at the proximal phalanges: Precision and age-related changes in normal females. Revue Rhumatisme 1996; 6: 427–434.

    Google Scholar 

  27. Sili Scavalli A, Marini M, Spadaro A, Messineo D, Cremona A, Sensi F, Riccieri V, Taccari E. Ultrasound transmission velocity of the proximal phalanxes of the non-dominant hand in the study of osteoporosis. Clin Rheumatol 1997; 16: 396–403.

    Article  PubMed  CAS  Google Scholar 

  28. Waud CE, Lew R, Baran DT. The relationship between ultrasound and densitometric measurements of bone mass at the calcaneus in women. Calcif Tissue Int 1992; 51: 415–418.

    Article  PubMed  CAS  Google Scholar 

  29. Lees B, Stevenson JC. Preliminary evaluation of a new ultrasound bone densitometer. Calcif Tissue Int 1993; 53: 149–152.

    Article  PubMed  CAS  Google Scholar 

  30. Herd RJM, Blake GM, Ramalingam T, Miller CG, Ryan Pi, Fogelman I Measurements of postmenopausal bone loss with a new contact ultrasound system. Calcif Tissue Int 1993; 53: 153–157.

    Article  PubMed  CAS  Google Scholar 

  31. Ventura V, Mauloni M, Mura M, Paltrinieri F, de Aloysio D. Ultrasound velocity changes at the proximal phalanxes of the hand in pre-, peri-and postmenopausal women. Osteoporos Int 1996; 6 (5): 368–375.

    Article  PubMed  CAS  Google Scholar 

  32. Foldes A, Rimon A, Keinan DD, Popovtzer MM. Quantitative ultrasound of the tibia: a novel approach for assessment of bone status. Bone 1995; 17: 363–367.

    Article  PubMed  CAS  Google Scholar 

  33. Rosenthal L, Caminis J, Tenenhouse A. Correlation of ultrasound velocity in the tibial cortex, calcaneal ultrasonography, and bone mineral densitometry of the spine and femur. Calcif Tissue Int 1996; 58: 415–418.

    Google Scholar 

  34. Hans D, Srivastav SK, Singal C, Barkmann R, Njeh CF, Kantorovich E, Gluer CC, Genant HK. Does combining the results from multiple bone sites measured by a new quantitative ultrasound device improve discrimination of hip fracture? J Bone Miner Res 1999; 14 (4): 644–651.

    Article  PubMed  CAS  Google Scholar 

  35. Weiss M, Ben-Shlomo AB, Hagag P, Rapoport M. Reference database for bone speed of sound measurement by a novel quantitative multi-site ultrasound device. Osteoporos Int 2000; 11 (8): 688–696.

    Article  PubMed  CAS  Google Scholar 

  36. Blake G, Wahner H, Fogelman I. The Evaluation of Osteoporosis: Dual Energy X-ray Absorptiometry and Ultrasound in Clinical Practice. Martin Dunitz, London, 1999.

    Google Scholar 

  37. Laugier P, Giat P, Berger G. Broadband ultrasonic attenuation imaging: a new imaging technique of the os calcis. Calcif Tissue Int 1994; 54: 83–86.

    Article  PubMed  CAS  Google Scholar 

  38. Laugier P, Droin P, Laval-Jeantet AM, Berger G. In vitro assessment of the relationship between acoustic properties and bone mass density of the calcaneus by comparison of ultrasound parametric imaging and quantitative computed tomography. Bone 1997; 20 (2): 157–165.

    Article  PubMed  CAS  Google Scholar 

  39. Cheng S, Hans D, Genant H. Calcaneal quantitative ultrasound systems: gel-coupled. In: Njeh C, Hans D, Fuerst T, Glüer C, Genant H, eds. Quantitative Ultrasound. Martin Dunitz, London, 1999, pp. 125–144.

    Google Scholar 

  40. Glüer CC, Wu CY, Genant HK. Broadband ultrasound attenuation signals depend on trabecular orientation: An in vitro study. Osteoporosis Int 1993; 3: 185–191.

    Article  Google Scholar 

  41. Nicholson P, Haddaway MJ, Davie M. The dependence of ultrasonic properties on orientation in human vertebral bone. Phys Med Biol 1994; 39: 1013–1024.

    Article  PubMed  CAS  Google Scholar 

  42. Strelitzki R, Evans JA, Clarke AJ. The influence of porosity and pore size on the ultrasonic properties of bone investigated using a phantom material. Osteoporos Int 1997; 7 (4): 370–375.

    Article  PubMed  CAS  Google Scholar 

  43. Hans D, Arlot M, Schott A, Roux J, Kotzki P, Meunier P. Do ultrasound measurements on the os calcis reflect more the bone microarchitecture than the bone mass?: a two-dimensional histomorphometric study. Bone 1995; 16: 295–300.

    Article  PubMed  CAS  Google Scholar 

  44. Langton C, Njeh C, Hodgskinson R, Currey J. Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation. Bone 1996; 18: 495–503.

    Article  PubMed  CAS  Google Scholar 

  45. Hausler KD, Rich PA, Smith PC, Barry EB. Relationships between static histomorphometry and ultrasound in the human calcaneus. Calcif Tissue Int 1999; 64 (6): 477–480.

    Article  PubMed  CAS  Google Scholar 

  46. Nicholson P, Müller R, Cheng X, Rüegsegger P, Van der Perre P, Dequeker J, Boonen S. Quantitative ultrasound and trabecular architecture in the human calcaneus. J Bone Min Res, in press.

    Google Scholar 

  47. Hodgskinson R, Njeh C, Whitehead M, Langton C. The non-linear relationship between BUA and porosity in cancellous bone. Phys Med Biol 1996; 41: 2411–2420.

    Article  PubMed  CAS  Google Scholar 

  48. Serpe L, Rho J-Y. The nonlinear transition period of broadband ultrasound attenuation as bone density varies. J Biomech 1996; 29: 963–966.

    Article  PubMed  CAS  Google Scholar 

  49. Han S, Rho J, Medige J, Ziv I. Ultrasound velocity and broadband attenuation over a wide range of bone mineral density. Osteoporos Int 1996; 6 (4): 291–296.

    Article  PubMed  CAS  Google Scholar 

  50. McKelvie ML, Fordham J, Clifford C, Palmer SB. In vitro comparison of quantitative computed tomography and broadband ultrasonic attenuation of trabecular bone. Bone 1989; 10: 101–104.

    Article  PubMed  CAS  Google Scholar 

  51. Bouxsein M, Radloff S, Quantitative ultrasound of the calcaneus reflects the material properties of calcaneal trabecular bone. J Bone Min Res 1997; 12: 839–846.

    Article  CAS  Google Scholar 

  52. Evans JA, Tavakoli MB. Ultrasonic attenuation and velocity in bone. Phys Med Biol 1990; 35: 1387–1396.

    Article  PubMed  CAS  Google Scholar 

  53. Glüer C, Wu C, Jergas M, Goldstein S, Genant H. Three quantitative ultrasound parameters reflect bone structure. Calcif Tissue Int 1994; 55: 46–52.

    Article  PubMed  Google Scholar 

  54. Alves JM, Xu W, Lin D, Siffert R, Ryaby JT, Kaufman JJ. Ultrasonic assessment of human and bovine trabecular bone: a comparison study. IEEE Trans Biomed Eng 1996; 43: 249–258.

    Article  PubMed  CAS  Google Scholar 

  55. McKelvie M, Palmer S. The interaction of ultrasound with cancellous bone. In: Palmer S, Langton C, eds. Ultrasonic Studies of Bone. Institute of Physics, London, 1987, pp. 1–13.

    Google Scholar 

  56. Langton C. Critical analysis of the ultrasonic interrogation of boen and future developments. In: Palmer S, Langton C, eds. Ultrasonic studies of bone. Institute of Physics, London, 1987, pp. 73–89.

    Google Scholar 

  57. Jones P, Langton C, Can H, Broadband ultrasonic attenuation studies in sedentary and active young male adults and in bovie cancellous and cortical bone. In: Palmer S, Langton C, eds. Ultrasonic Studies of Bone. Institute of Physics, London, 1987, pp. 37–45.

    Google Scholar 

  58. Njeh CF, Kuo CW, Langton CM, Atrah HI, Boivin CM. Prediction of human femoral bone strength using ultrasound velocity and BMD: an in vitro study. Osteoporos Int 1997; 7 (5): 471–477.

    Article  PubMed  CAS  Google Scholar 

  59. Njeh CF, Hodgskinson R, Currey JD, Langton CM. Orthogonal relationships between ultrasonic velocity and material properties of bovine cancellous bone. Med Eng Phys 1996; 18 (5): 373–381.

    Article  PubMed  CAS  Google Scholar 

  60. Tavakoli MB, Evans JA. The effect of bone structure on ultrasonic attenuation and velocity. Ultrasonics 1992; 30: 389–395.

    Article  PubMed  CAS  Google Scholar 

  61. Nicholson PH, Muller R, Lowet G, Cheng XG, Hildebrand T, Ruegsegger P, van der Pene G, Dequeker J, Boonen S. Do quantitative ultrasound measurements reflect structure independently of density in human vertebral cancellous bone? Bone 1998; 23 (5): 425–431.

    Article  PubMed  CAS  Google Scholar 

  62. Hans D, Wu C, Njeh CF, Zhao S, Augat P, Newitt D, Link T, Lu Y, Majumdar S, Genant HK. Ultrasound velocity of trabecular cubes reflects mainly bone density and elasticity. Calcif Tissue Int 1999; 64 (1): 18–23.

    Article  PubMed  CAS  Google Scholar 

  63. Trebacz H, Natali A. Ultrasound velocity and attenuation in cancellous bone samples from lumbar vertebra and calcaneus. Osteoporos Int 1999; 9 (2): 99–105.

    Article  PubMed  CAS  Google Scholar 

  64. Nicholson P, Müller R, Bouxsein M. Interrelationship among the acoustic, microarchitectural and elastic properties of human cancellous bone. J Bone Min Res 2000; 15 (Suppl 1): S287.

    Article  Google Scholar 

  65. Abendschein W, Hyatt GW. Ultrasonics and selected physical properties of bone. Clin Orthop Rel Res 1970; 69: 294–301.

    CAS  Google Scholar 

  66. Rho JY, Ashman RB, Turner CH. Young’ s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech 1993; 26 (2): 111–119.

    Article  PubMed  CAS  Google Scholar 

  67. Ashman RB, Corin JD, Turner CH. Elastic properties of cancellous bone: measurement by an ultrasonic technique. J Biomechanics 1987; 20: 979–986.

    Article  CAS  Google Scholar 

  68. Ashman RB, Rho JY. Elastic modulus of trabecular bone material. J Biomechanics 1988; 3: 177–181.

    Article  Google Scholar 

  69. Ashman RB, Rho JY, Turner CH. Anatomical variation of orthotropic elastic moduli of the proximal human tibia. J Biomechanics 1989; 22: 895–900.

    Article  CAS  Google Scholar 

  70. Rho JY. An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone. Ultrasonics 1996; 34 (8): 777–783.

    Article  PubMed  CAS  Google Scholar 

  71. Strelitzki R, Nicholson PH, Evans JA. Low-frequency ultrasonic velocity measurements in human calcaneal trabecular bone. Physiol Meas 1997; 18 (2): 119–127.

    Article  PubMed  CAS  Google Scholar 

  72. Fry FJ, Barger JE. Acoustical properties of the human skull. J Acoust Soc Am 1978; 63 (5): 1576–1590.

    Article  PubMed  CAS  Google Scholar 

  73. Laugier P, Giat P, Berger G. Bone characterization with ultrasound: state of the art and new proposal. Clin Rheumatol 1994; 13 (suppl 1): 22–32.

    PubMed  Google Scholar 

  74. Yoon HW, Katz JL. Ultrasonic wave propagation in human cortical bone-II. Measurements of elastic properties and microhardness. J Biomechanics 1976; 9: 459–464.

    Article  CAS  Google Scholar 

  75. Van Buskirk WC, Cowin SC, Ward RN. Ultrasonic measurement of orthotropic elastic constants of bovine femoral bone. J Biomech Eng 1981; 103: 67–72.

    Article  PubMed  Google Scholar 

  76. Ashman RB, Cowin SC, Van Buskirk WC, Rice JC. A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomechanics 1984; 17: 349–361.

    Article  CAS  Google Scholar 

  77. Turner CH, Eich M. Ultrasonic velocity as a predictor of strength in bovine cancellous bone. Calcif Tissue Int 1991; 49: 116–119.

    Article  PubMed  CAS  Google Scholar 

  78. Han S, Medige J, Ziv I. Combined models of ultrasound velocity and attenuation for predicting trabecular bone strength and mineral density. Clin Biomech 1996; 11: 348–53.

    Article  Google Scholar 

  79. Hodgskinson R, Njeh CF, Currey JD, Langton CM. The ability of ultrasound velocity to predict the stiffness of cancellous bone in vitro. Bone 1997; 21 (2): 183–190.

    Article  PubMed  CAS  Google Scholar 

  80. Grimm M, Williams J. Assessment of bone quantity and `quality’ by ultrasound attenuation and velocity in the heel. Clin Biomech 1997; 12: 281–285.

    Article  Google Scholar 

  81. Rho JY. Ultrasonic characterisation in determining elastic modulus of trabecular bone material. Med Biol Eng Comput 1998; 36 (1): 57–59.

    Article  PubMed  CAS  Google Scholar 

  82. Nicholson PH, Strelitzki R. On the prediction of Young’s modulus in calcaneal cancellous bone by ultrasonic bulk and bar velocity measurements. Clin Rheumatol 1999; 18 (1): 10–16.

    Article  PubMed  CAS  Google Scholar 

  83. Han S, Medige J, Davis J, Fishkin Z, Mihalko W, Ziv I. Ultrasound velocity and broadband attenuation as predictors of load-bearing capacities of human calcanei. Calcif Tissue Int 1997; 60 (1): 21–25.

    Article  PubMed  CAS  Google Scholar 

  84. Bouxsein M, Courtney A, Hayes W. Ultrasound and densitometry of the calcaneus correlate with the failure loads of cadaveric femurs. Calcif Tissue Int 1995; 56: 99–103.

    Article  PubMed  CAS  Google Scholar 

  85. Nicholson PH, Lowet G, Cheng XG, Boonen S, van der Perre G, Dequeker J. Assessment of the strength of the proximal femur in vitro: relationship with ultrasonic measurements of the calcaneus. Bone 1997; 20 (3): 219–224.

    Article  PubMed  CAS  Google Scholar 

  86. Bouxsein ML, Coan BS, Lee SC. Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia. Bone 1999; 25 (1): 49–54.

    Article  PubMed  CAS  Google Scholar 

  87. Lochmuller EM, Eckstein F, Zeller JB, Steldinger R, Putz R. Comparison of quantitative ultrasound in the human calcaneus with mechanical failure loads of the hip and spine. Ultrasound Obstet Gynecol 1999; 14 (2): 125–133.

    Article  PubMed  CAS  Google Scholar 

  88. Cheng XG, Nicholson PH, Boonen S, Lowet G, Brys P, Aerssens J, Van der Perre G, Dequeker J. Prediction of vertebral strength in vitro by spinal bone densitometry and calcaneal ultrasound. J Bone Miner Res 1997; 12 (10): 1721–1728.

    Article  PubMed  CAS  Google Scholar 

  89. Bauer D, Gluer C, Genant H, Stone K. Quantitative ultrasound and vertebral fracture in postmenopausal women. J Bone Min Res 1995; 10: 353–358.

    Article  CAS  Google Scholar 

  90. Heaney R, Avioli L, Chestnut C, Lappe J, Recker R, Brandenburger G. Ultrasound velocity through bone predicts incident vertebral deformity. J Bone Min Res 1995; 10: 341–345.

    Article  CAS  Google Scholar 

  91. Stewart A, Torgerson DJ, Reid DM. Prediction of fractures in perimenopausal women: a comparison of dual energy x ray absorptiometry and broadband ultrasound attenuation. Ann Rheum Dis 1996; 55 (2): 140–142.

    Article  PubMed  CAS  Google Scholar 

  92. Glüer CC, Hans D. How to use ultrasound for risk assessment: a need for defining strategies. Osteoporos Int 1999; 9 (3): 193–195.

    Article  PubMed  Google Scholar 

  93. Faulkner KG, von Stetten E, Miller P. Discordance in patient classification using T-scores. J Clin Densitom 1999; 2 (3): 343–350.

    Article  PubMed  CAS  Google Scholar 

  94. Frost ML, Blake GM, Fogelman I. Can the WHO criteria for diagnosing osteoporosis be applied to calcaneal quantitative ultrasound? Osteoporos Int 2000; 11 (4): 321–330.

    Article  PubMed  CAS  Google Scholar 

  95. Badman R, Glüer C-C. Error sources in quantitative ultrasound measurement. In: Njeh C, Hans D, Fuerst T, Glüer C, Genant H, eds. Quantitative Ultrasound. Martin Dunitz, London, 1999, pp. 101–107.

    Google Scholar 

  96. Strelitzki R, Clarke AJ, Truscott JG, Evans JA. Ultrasonic measurement: an evaluation of three heel bone scanners compared with a bench-top system. Osteoporos Int 1996; 6 (6): 471–479.

    Article  PubMed  CAS  Google Scholar 

  97. Strelitzki R, Truscott JG. An evaluation of the reproducibility and responsiveness of four `state-of-the-art’ ultrasonic heel bone measurement systems using phantoms. Osteoporos Int 1998; 8 (2): 104–109.

    Article  PubMed  CAS  Google Scholar 

  98. Fuerst T, Njeh C, Hans D. Quality assurance and quality control in quantitative ultrasound. In: Njeh C, Hans D, Fuerst T, Glüer C, Genant H, eds. Quantitative Ultrasound. Martin Dunitz, London, 1999, pp. 163–175.

    Google Scholar 

  99. Genant HK, Grampp S, Gluer CC, Faulkner KG, Jergas M, Engelke K, Hagiwara S, Van Kuijk C. Universal standardization for dual x-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 1994; 9 (10): 1503–1514.

    Article  PubMed  CAS  Google Scholar 

  100. Faulkner KG, McClung MR. Quality control of DXA instruments in multicenter trials. Osteoporos Int 1995;5(4):2l8–227.

    Google Scholar 

  101. Lees B, Garland SW, Walton C, Stevenson JC. Evaluation of the European Spine Phantom in a multi-centre clinical trial. Osteoporos Int 1997; 7 (6): 570–574.

    Article  PubMed  CAS  Google Scholar 

  102. Njeh CF, Hans D, Li J, Fan B, Fuerst T, He YQ, Tsuda-Futami E, Lu Y, Wu CY, Genant HK. Comparison of six calcaneal quantitative ultrasound devices: precision and hip fracture discrimination. Osteoporos Int 2000; 11 (12): 1051–1062.

    Article  PubMed  CAS  Google Scholar 

  103. Hausler KD, Rich PA, Barry EB. Water bath and contact methods in ultrasonic evaluation of bone. Calcif Tissue Int 1997; 61 (1): 26–29.

    Article  PubMed  CAS  Google Scholar 

  104. Prevrhal S, Fuerst T, Fan B, Njeh C, Hans D, Uffmann M, Srivastav S, Genant HK. Quantitative ultrasound of the tibia depends on both cortical density and thickness. Osteoporos hit 2001; 12 (1): 28–34.

    Article  CAS  Google Scholar 

  105. Wu CY, Gluer CC, Jergas M, Bendavid E, Genant HK. The impact of bone size on broadband ultrasound attenuation. Bone 1995; 16 (1): 137–141.

    PubMed  CAS  Google Scholar 

  106. Njeh CF, Hans D, Wu C, Kantorovich E, Sister M, Fuerst T, Genant HK. An in vitro investigation of the dependence on sample thickness of the speed of sound along the specimen. Med Eng Phys 1999; 21 (9): 651–659.

    Article  PubMed  CAS  Google Scholar 

  107. Johansen A, Stone MD. The effect of ankle oedema on bone ultrasound assessment at the heel. Osteoporos Int 1997; 7 (1): 44–47.

    Article  PubMed  CAS  Google Scholar 

  108. Aggarwal ND, Singh GD, Aggarwal R, Kaur RP, Thapar SP. A survey of osteoporosis using the calcaneum as an index. Int Orthop 1986; 10 (2): 147–153.

    Article  PubMed  CAS  Google Scholar 

  109. Shukla SS, Leu MY, Tighe T, Krutoff B, Craven JD, Greenfield MA. A study of the homogeneity of the trabecular bone mineral density in the calcaneus. Med Phys 1987; 14 (4): 687–690.

    Article  PubMed  CAS  Google Scholar 

  110. Lin JC, Amling M, Newitt DC, Selby K, Srivastav SK, Delling G, Genant HK, Majumdar S. Heterogeneity of trabecular bone structure in the calcaneus using magnetic resonance imaging. Osteoporos Int 1998; 8 (1): 16–24.

    Article  PubMed  CAS  Google Scholar 

  111. Zagzebski JA, Rossman PA, Mesina C, Mazess RB, Madsen EL. Ultrasound transmission measurements through the os calcis. Calcif Tissue Int 1991; 49: 107–111.

    Article  PubMed  CAS  Google Scholar 

  112. Glüer CC, Vahlensieck M, Faulkner KG, Engelke K, Black D, Genant HK. Site-matched calcaneal measurements of broad-band ultrasound attenuation and single x-ray absorptiometry: do they measure different skeletal properties? J Bone Min Res 1992; 7: 1071–1079.

    Article  Google Scholar 

  113. Chappard C, Laugier P, Fournier B, Roux C, Berger G. Assessment of the relationship between broadband ultrasound attenuation and bone mineral density at the calcaneus using BUA imaging and DXA. Osteoporos Int 1997; 7 (4): 316–322.

    Article  PubMed  CAS  Google Scholar 

  114. Evans WD, Jones EA, Owen GM. Factors affecting the in vivo precision of broad-band ultrasonic attenuation. Phys Med Biol 1995; 40 (1): 137–151.

    Article  PubMed  CAS  Google Scholar 

  115. Chappard C, Berger G, Roux C, Laugier P. Ultrasound measurement on the calcaneus: influence of immersion time and rotation of the foot. Osteoporos Int 1999; 9 (4): 318–326.

    Article  PubMed  CAS  Google Scholar 

  116. Laugier P, Fournier B, Berger G. Ultrasound parametric imaging of the calcaneus: in vivo results with a new device. Calcif Tissue Int 1996; 58 (5): 326–331.

    PubMed  CAS  Google Scholar 

  117. Fournier B, Chappard C, Roux C, Berger G, Laugier P. Quantitative ultrasound imaging at the calcaneus using an automatic region of interest. Osteoporos Int 1997; 7 (4): 363–39.

    Article  PubMed  CAS  Google Scholar 

  118. Jorgensen HL, Hassager C. Improved reproducibility of broadband ultrasound attenuation of the os calcis by using a specific region of interest. Bone 1997; 21 (1): 109–112.

    Article  PubMed  CAS  Google Scholar 

  119. Frost ML, Blake GM, Fogelman I. Does quantitative ultrasound imaging enhance precision and discrimination? Osteoporos Int 2000; 11 (5): 425–433.

    Article  PubMed  CAS  Google Scholar 

  120. Barkmann R, Glüer C-C. Factors influencing QUS parameters of the calcaneum: suggestions for an improved measurement procedure. J Clin Densitometry 1998; 1: 93–94.

    Article  Google Scholar 

  121. Haney M, O’Brien W. Temperature dependency of ultrasonic propagation properties in biological materials. In: Greenleaf J, ed. Tissue Characterization with Ultrasound. CRC Press, Inc, Boca Raton, FL, 1986, pp. 15–55.

    Google Scholar 

  122. Bonfield W, Tully AE. Ultrasonic analysis of the Youngs modulus of cortical bone. J Biomed Eng 1982; 4 (1): 23–27.

    Article  PubMed  CAS  Google Scholar 

  123. Barkmann R, Heller M, Glüer C-C. The influence of soft tissue-and waterbath temperature on quantitative ultrasound transmission parameters: an in vivo study. Osteop Int 1996; 6: 181.

    Article  Google Scholar 

  124. Nicholson P, Bouxsein M. Influence of temperature on ultrasonic properties of the calcaneus in situ. J Bone Min Res 1999; 14: S498.

    Google Scholar 

  125. Iki M, Kajita E, Mitamura S, Nishino H, Yamagami T, Nagahama N. Precision of quantitative ultrasound measurement of the heel bone and effects of ambient temperature on the parameters. Osteoporos Int 1999; 10 (6): 462–467.

    Article  PubMed  CAS  Google Scholar 

  126. Pocock NA, Babichev A, Culton N, Graney K, Rooney J, Bell D, Chu J. Temperature dependency of quantitative ultrasound. Osteoporos Int 2000; 11 (4): 316–320.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bouxsein, M.L. (2003). Technical Aspects of Skeletal Assessment Using Quantitative Ultrasound. In: Orwoll, E.S., Bliziotes, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-278-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-278-4_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-260-5

  • Online ISBN: 978-1-59259-278-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics