Skip to main content

The Molecular Pharmacology of Osteoporosis

  • Chapter
Book cover Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

  • 348 Accesses

Abstract

Skeletal remodeling requires a balance between the resorption and formation of bone. Osteoclasts resorb bone, while osteoblasts are bone forming. These two processes are closely coupled but independently regulated by various hormones and cytokines. Osteoporosis is a disease characterized by excess osteoclastic activity compared to osteoblastic activity. Because of excess osteoclastic activity bones become fragile and may fracture, typically in the hip, spine, and wrist. Pharmacological therapy for osteoporosis should be aimed at preventing bone loss, whether the cause is involutional, postmenopausal, or secondary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsuji K, Noda M. Identification and expression of a novel 3’-exon of mouse Runxl/Pebp2alphaB/ Cbfa2/AML1 gene. Biochem Biophys Res Commun 2000; 274: 171–176.

    Article  PubMed  CAS  Google Scholar 

  2. Rosenburg A. Bones, joints, and soft tissue tumors: in Cotran R, Kumar V, Collins T, Robbins S, eds., Robbins Pathologic Basis of Disease, 6th ed., WB Saunders, New York, 1999.

    Google Scholar 

  3. Karsenty G. The genetic transformation of bone biology. Genes Dev 1999; 13: 3037–3051.

    Article  PubMed  CAS  Google Scholar 

  4. Gustafsson JA. An update on estrogen receptors. Semin Perinatol 2000; 24: 66–69.

    Article  PubMed  CAS  Google Scholar 

  5. Oursler MJ, Osdoby P, Pyfferoen, J, Riggs BL, Spelsberg JR. Avian osteoclasts as estrogen target cells. Proc Natl Acad Sci USA 1991; 88: 6613–6617.

    Article  PubMed  CAS  Google Scholar 

  6. Beato M, Herrlich P, Schutz G. Steroid hormone receptors: many actors in search of a plot. Cell 1995; 83: 851–857.

    Article  PubMed  CAS  Google Scholar 

  7. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83: 835–839.

    Article  PubMed  CAS  Google Scholar 

  8. Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000; 14: 121–141.

    PubMed  CAS  Google Scholar 

  9. Rickard DJ, Subramaniam M, Spelsberg TC. Molecular and cellular mechanisms of estrogen action on the skeleton. J Cell Biochem 1999; Suppl 32–33: 123–132.

    Article  Google Scholar 

  10. Oreffo RO, Kusec V, Romberg S, Triffitt JT. Human bone marrow osteoprogenitors express estrogen receptor-alpha and bone morphogenetic proteins 2 and 4 mRNA during osteoblastic differentiation. J Cell Biochem 71999; 5: 382–392.

    Google Scholar 

  11. van den Wijngaard A, Mulder WR, Dijkema R, Boersma CJ, Mosselman S, van Zoelen EJ. Antiestrogens specifically up-regulate bone morphogenetic protein-4 promoter activity in human osteoblastic cells. Mol Endocrinol 2000; 14: 623–633.

    Article  PubMed  Google Scholar 

  12. Gray TK, Flyn TC, Gray KM, Nabell LM. Estradiol acts directly on the clonal osteoblast line UMR 106. Proc Natl Acad Sci USA 84: 6267–6271.

    Google Scholar 

  13. Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC. Evidence of estrogen receptors in normal human osteoblasts-like cells. Science 1988; 241: 84–86.

    Article  PubMed  CAS  Google Scholar 

  14. Lin HY, Harris TL, Flannery NS, Aruffo A, Kajiehgorn A, Kolakowski LF. Expression cloning of an adenylate cyclase-coupled calcitonin receptor. Science 1991; 254: 1022–1024.

    Article  PubMed  CAS  Google Scholar 

  15. Ernst M, Heath JK, Rodan GA. Estradiol effects on proliferation, messenger ribonucleic acid for collagen and insulin-like growth factor-I, and parathyroid hormone-stimulated adenylate cyclase activity in osteoblastic cells from calvariae and long bones. Endocrinology 1989; 125: 825–833.

    Article  PubMed  CAS  Google Scholar 

  16. Zhao G, Monier-Faugere MC, Langub MC, Geng Z, Nakayama T, Pike JW. Targeted overexpression of insulin-like growth factor Ito osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology 2000; 141: 2674–2682.

    Article  PubMed  CAS  Google Scholar 

  17. Kanatani M, Sugimoto T, Nishiyama K, Chihara K. Stimulatory effect of insulin-like growth factor binding protein-5 on mouse osteoclast formation and osteoclastic bone-resorbing activity. J Bone Miner Res 2000; 15: 902–910.

    Article  PubMed  CAS  Google Scholar 

  18. Brinkman A, van der Flier S, Kok EM, Dorssers LC. BCAR1, a human homologue of the adapter protein p130Cas, and antiestrogen resistance in breast cancer cells. J Natl Cancer Inst 2000; 92: 112–120.

    Article  PubMed  CAS  Google Scholar 

  19. Tabibzadeh S, Santhanan U, May L, Sehgal P. Cytocine-induced production of IFN- a2/IL-6 by freshly explanted human endometrial stroma cells: modulation by oestradiol-17b. J Immunol 1989; 142: 3134–3139.

    PubMed  CAS  Google Scholar 

  20. Girasole G, Jilka RL, Passeri G, Boswell S, Boder G, Williams DC. 17b-Estradiol inhibits interleukin6 production by bone marrow stromal derived stromal cells and osteoblasts in vitro: a potential mechanism for the anti-osteoporotic effect of estrogen. J Clin Invest 1992; 89: 883–891.

    Article  PubMed  CAS  Google Scholar 

  21. Rickard D, Russell G, Gowen M. Oestradiol inhibits the release of tumour necrosis factor but not interleukin 6 from adult human osteoblasts in vitro. Osteoporos Int 1992; 2: 94–102.

    Article  PubMed  CAS  Google Scholar 

  22. Pacifici R, Rifas L, McCracken R, Vered I, McMurtry C, Avioli V. Ovarian steroid treatment blocks a postmenopausal increase in blood monocyte interleukin -1 release. Proc Natl Acad Sci USA 1989; 86: 2398–2402.

    Article  PubMed  CAS  Google Scholar 

  23. Valentine JE, Kalkhoven E, White R, Hoare S, Parker MG. Mutations in the estrogen receptor ligand binding domain discriminate between hormone-dependent transactivation and transrepression. J Biol Chem, in press.

    Google Scholar 

  24. Lieberherr M, Grosse B, Kachkache M, Balkan S. Cell signaling and estrogens in female rat osteoblasts: a possible involvement of unconventional nonnuclear receptors. J Bone Miner Res 1993; 8: 1365–1376.

    Article  PubMed  CAS  Google Scholar 

  25. Le Mellay V, Grosse B, Lieberherr M. Phospholipase C beta and membrane action of calcitriol and estradiol. J Biol Chem 1997; 272: 11902–11907.

    Article  PubMed  CAS  Google Scholar 

  26. Armour KE, Ralston SH. Estrogen upregulates endothelial constitutive nitric oxide synthase expression in human osteoblast-like cells. Endocrinology 1998; 139: 799–802.

    Article  PubMed  CAS  Google Scholar 

  27. Shevde NK, Bendixen AC, Dienger KM, Pike JW. Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proc Natl Acad Sci USA 2000; 97: 7829–7834.

    Article  PubMed  CAS  Google Scholar 

  28. Srivastava S, Toraldo G, Weitzmann MN, Cenci S, Ross FP, Pacifici R. Estrogen decreases osteoclast formation by down regulating RANKL induced JNK activation. J Biol Chem, Dec 19, 2000.

    Google Scholar 

  29. Cenci S, Weitzmann MN, Gentile MA, Aisa MC, Pacifici R. M-CSF neutralization and egr-1 deficiency prevent ovariectomy-induced bone loss. J Clin Invest 2000; 105: 1279–1287.

    Article  PubMed  CAS  Google Scholar 

  30. Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 2000b; 106: 1229–1237.

    Article  PubMed  CAS  Google Scholar 

  31. Fleisch H. Bisphosphonates. Pharmacology and use in the treatment of tumour-induced hypercalcaemic and metastatic bone disease. Drugs 1991; 42: 919–944.

    Article  PubMed  CAS  Google Scholar 

  32. Boonekamp PM, Lowik CW, van der Wee-Pals LJ, van Wijk-van Lennep ML, Bijvoet OL. Enhancement of the inhibitory action of APD on the transformation of osteoclast precursors into resorbing cells after dimethylation of the amino group. Bone Miner 1987; 2: 29–42.

    PubMed  CAS  Google Scholar 

  33. Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 1995; 10: 1478–1487

    Article  PubMed  CAS  Google Scholar 

  34. Jilka RL, Takahashi K, Munshi M, Williams DC, Roberson PK, Manolagas SC. Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption. J Clin Invest 1998; 101: 1942–1950.

    Article  PubMed  CAS  Google Scholar 

  35. van Beek E, Hoekstra M, van de Ruit M, Lowik C, Papapoulos S. Structural requirements for bisphosphonate actions in vitro. J Bone Miner Res 1994; 9: 1875–1882.

    Article  PubMed  CAS  Google Scholar 

  36. Rogers MJ, Xiong X, Brown RJ, Watts DJ, Russell RGG, Bayless AV. Structure-activity relationships of new heterocycle-containing bisphosphonates as inhibitors of bone resorption and as inhibitors of growth of Dictyostelium discoideum amoebae. Mol Pharmacol 1995; 47: 398–402.

    PubMed  CAS  Google Scholar 

  37. Benford HL, Frith JC, Auriola S, Monkkonen J, Rogers MJ. Farnesol and geranylgeraniol prevent activation of caspases by aminobisphosphonates: biochemical evidence for two distinct pharmacological classes of bisphosphonate drugs. Mol Pharmacol 1999; 56: 131–140.

    PubMed  CAS  Google Scholar 

  38. Gatti D, Adami S New bisphosphonates in the treatment of bone diseases. Drugs Aging 1999; 15: 285–296.

    Article  PubMed  CAS  Google Scholar 

  39. Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest 1999; 104: 1363–1374.

    Article  PubMed  CAS  Google Scholar 

  40. Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTPbinding proteins, including Ras. J Bone Miner Res 1998; 13: 581–589.

    Article  PubMed  CAS  Google Scholar 

  41. Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J. Cellular and molecular mechanisms of action of bisphosphonates. Cancer 2000; 88: 2961–2978.

    Article  PubMed  CAS  Google Scholar 

  42. Bergstrom JD, Bostedor RG, Masarachia PJ, Reszka AA, Rodan G. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch Biochem Biophys 2000; 373: 231–241.

    Article  PubMed  CAS  Google Scholar 

  43. Reszka AA, Halasy-Nagy JM, Masarachia PJ, Rodan GA. Bisphosphonates act directly on the osteoclast to induce caspase cleavage of mstl kinase during apoptosis. A link between inhibition of the mevalonate pathway and regulation of an apoptosis-promoting kinase. J Biol Chem 1999; 274: 34967–34973.

    Article  PubMed  CAS  Google Scholar 

  44. Rogers MJ, Russell RGG, Blackburn GM, Williamson MP, Watts DJ. Metabolism of halogenated bisphosphonates by the cellular slime mould Dictyostelium discoideum. Biochem Biophys Res Commun 1992; 189: 414–423.

    Article  PubMed  CAS  Google Scholar 

  45. Boissier S, Ferreras M, Peyruchaud O, Magnetto S, Ebetino FH, Colombel M. Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res 2000; 60: 2949–2954.

    PubMed  CAS  Google Scholar 

  46. Moonga BS, Moss DW, Patchell A, Zaidi M. Intracellular regulation of enzyme release from rat osteoclasts and evidence for a functional role in bone resorption. J Physiol 1990; 429: 29–45.

    PubMed  CAS  Google Scholar 

  47. Overgaard K, Hansen MA, Jensen SB, Christiansen C. Effect of salcatonin given intranasally on bone mass and fracture rates in established osteoporosis: a dose-response study. BMJ 1992; 305: 556–561.

    Article  PubMed  CAS  Google Scholar 

  48. Agus ZS, Wasserstein S, Goldfarb S. PTH, calcitonin cyclic nucleotides and the kidney. Ann Rev Physiol 1981; 43: 583–595.

    Article  CAS  Google Scholar 

  49. Maclntyre I, Parsons JA, Robinson CJ. The effect of thyrocalcitonin on blood bone calcium equilibrium in the perfused tibiae of the cat. J Physiol 1987; 191: 393–405.

    Google Scholar 

  50. Aliopoulios MA, Gildhaber P, Munson PL. Thyrocalcitonin inhibition of bone resorption induced by parathyroid hormone in tissue culture. Science 1965; 151: 330–331.

    Article  Google Scholar 

  51. Freidman J, Raisz LG. Thyrocalcitonin: inhibitor of bone resorption in tissue culture. Science 1965; 150: 1465–1467.

    Article  Google Scholar 

  52. Milhaud G, Perault AM, Moukhtar MS. Etude du mecanisme de l’action hypocalcemiante de la thyrocalcitonine. CR Acad Sci Paris 1965; D261: 813.

    CAS  Google Scholar 

  53. Robinson CJ, Martin TJ, Mathews EW, MacIntyre I. Mode of action of thyrocalcitonin. J Endocrinol 1967; 39: 71–79.

    Article  PubMed  CAS  Google Scholar 

  54. Reynolds JJ, Dingle JT, Gudmunsson TV, Maclntyre I. Bone resorption in vitro and its inhibition by calcitonin, in Taylor SF, ed., Calcitonin, Proc. Int. Symposium on Thyrocalcitonin and C-cells, Heinemann, London, 1968, pp. 223.

    Google Scholar 

  55. Holtrop NE, Raisz LJ, Simmons HA. The effects of parathyroid hormone, colchicine and calcitonin on the ultrastructure and the activity of osteoclasts in organ culture. J Cell Biol 1974; 60: 346–355.

    Article  PubMed  CAS  Google Scholar 

  56. Kallio DM, Garant PR, Minkin C. Ultrastructural effects of calcitonin on osteoclasts in tissue culture. J Ultrastruct Res 1972; 39: 205–216.

    Article  PubMed  CAS  Google Scholar 

  57. Chambers TJ, Magnus CJ. Calcitonin alters behavior of isolated osteoclasts. J Pathol 1982; 136: 27–39.

    Article  PubMed  CAS  Google Scholar 

  58. Zaidi M, Chambers TJ, Gaines Das RE, Morris HR, Maclntyre I. A direct effect of human calcitonin gene-related peptide on isolated osteoclasts. J Endocrinol 1987; 115: 511–518.

    Article  PubMed  CAS  Google Scholar 

  59. Chambers TJ, Fuller K, Darby JA. Hormonal regulation of acid phosphatase release by osteoclasts disaggregated from neonatal rat bone. J Cell Physiol 1987; 132: 92–96.

    Article  Google Scholar 

  60. Akisaka T, Gay CV. Ultracytochemical evidence for a proton-pump adenosine triphosphatase in chick osteoclasts. Cell Tissue Res 1986; 24: 507–512.

    Google Scholar 

  61. Yumita S, Nicholson GC, Rowe DJ, Kent GN, Martin Ti. Biphasic effect of calcitonin on tartrate-resistant acid phosphatase activity in isolated rat osteoclasts. J Bone Miner Res 1991; 6: 591–597.

    Article  PubMed  CAS  Google Scholar 

  62. Visentin L, Dodds RA, Valente M, Misiano P, Bradbeer JN, Oneta S. A selective inhibitor of the osteoclastic V-H(+)-ATPase prevents bone loss in both thyroparathyroidectomized and ovariectomized rats. J Clin Invest 2000; 106: 309–318.

    Article  PubMed  CAS  Google Scholar 

  63. Zaidi M. Calcium `receptors’ on eukaryotic cells with special reference to the osteoclast. Biosci Rep 1990; 10: 493–507.

    Article  PubMed  CAS  Google Scholar 

  64. Alam ASMT, Moonga BS, Bevis PJR, Huang CL, Zaidi M. Selective antagonism of calcitonininduced osteoclastic quiescence (Q effect) by human calcitonin gene-related peptide (Val8Phe37). Biochem Biophys Commun 1991; 179: 134–139.

    Article  CAS  Google Scholar 

  65. Moore EE, Kuestner RE, Stroop SD, Grant FJ, Matthewes SL, Brady CL. Functionally different isoforms of the human calcitonin receptor result from alternative splicing of the gene transcript. Mol Endocrino! 1995; 9: 959–968.

    Article  PubMed  CAS  Google Scholar 

  66. Su Y, Chakraborty M, Nathanson MH, Baron R. Differential effects of the 3’,5’-cyclic adenosine monophosphate and protein kinase C pathways on the response of isolated rat osteoclasts to calcitonin. Endocrinology 1992; 131: 1497–1502.

    Article  PubMed  CAS  Google Scholar 

  67. Nussenzveig DR, Thaw CN, Gershengorn MC. Inhibition of inositol phosphate second messenger formation by intracellular loop one of a human calcitonin receptor. Expression and mutational analysis of synthetic receptor genes. J Biol Chem 1994; 269: 28123–28129.

    PubMed  CAS  Google Scholar 

  68. Offermanns S, Iida-Klein A, Segre GV, Simon MI. G alpha q family members couple parathyroid hormone (PTH)/PTH-related peptide and calcitonin receptors to phospholipase C in COS-7 cells. Mol Endocrinol 1996; 10: 566–574.

    Article  PubMed  CAS  Google Scholar 

  69. Orcel P, Tajima H, Murayama Y, Fujita T, Krane SM, Ogata E. Multiple domains interacting with Gs in the porcine calcitonin receptor. Mol Endocrinol 2000; 14: 170–182.

    Article  PubMed  CAS  Google Scholar 

  70. Shyu JF, Zhang Z, Hernandez-Lagunas L, Camerino C, Chen Y, Inoue D. Protein kinase C antagonizes pertussis-toxin-sensitive coupling of the calcitonin receptor to adenylyl cyclase. Eur J Biochem 1999; 262: 95–101.

    Article  PubMed  CAS  Google Scholar 

  71. Duong LT, Lakkakorpi l P, Nakamura I, Rodan GA. Integrins and signaling in osteoclast function. Matrix Biol 2000; 19: 97–105.

    Article  PubMed  CAS  Google Scholar 

  72. Zhang Z, Hernandez-Lagunas L, Horne WC, Baron R. Cytoskeleton-dependent tyrosine phosphorylation of the p130(Cas) family member HEF1 downstream of the G protein-coupled calcitonin receptor. Calcitonin induces the association of HEF1, paxillin, and focal adhesion kinase. J Biol Chem 1999; 274: 25093–25098.

    Article  PubMed  CAS  Google Scholar 

  73. Yoshida N, Yoshida T, Nakamura A, Monkawa T, Hayashi M, Saruta T. Calcitonin induces 25hydroxyvitamin D3 lalpha-hydroxylase mRNA expression via protein kinase C pathway in LLCPK1 cells. J Am Soc Nephrol 1999; 10: 2474–2479.

    PubMed  CAS  Google Scholar 

  74. Liu BY, Wang JT, Leu JS, Chiang CP, Hsieh CC, Kwan HW. Effects of continuous calcitonin treatment on osteoclasts derived from cocultures of mouse marrow stromal and spleen cells. J Formos Med Assoc 2000; 99: 140–150.

    PubMed  CAS  Google Scholar 

  75. Shyu JF, Inoue D, Baron R, Home WC. The deletion of 14 amino acids in the seventh transmembrane domain of a naturally occurring calcitonin receptor isoform alters ligand binding and selectively abolishes coupling to phospholipase C. J Biol Chem 1996; 271: 31127–31134.

    Article  PubMed  CAS  Google Scholar 

  76. Beaudreuil J, Taboulet J, Orcel P, Graulet AM, Denne MA, Baudoin C. Calcitonin receptor mRNA in mononuclear leucocytes from postmenopausal women: decrease during osteoporosis and link to bone markers with specific isoform involvement. Bone 2000; 27: 161–168.

    Article  PubMed  CAS  Google Scholar 

  77. Uy HL, Dallas M, Calland JW, Boyce BF, Mundy GR, Roodman GD. Use of an in vivo model to determine the effects of interleukin-1 on cells at different stages in the osteoclast lineage. J Bone Miner Res 1995; 10: 295.

    Article  PubMed  CAS  Google Scholar 

  78. Murakami T, Yamamoto M, Ono K, Nishikawa M, Nagata N, Motoyoshi K. Transforming growth factor-betal increases mRNA levels of osteoclastogenesis inhibitory factor in osteoblastic/stromal cells and inhibits the survival of murine osteoclast-like cells. Biochem Biophys Res Commun 1998; 252: 747–752.

    Article  PubMed  CAS  Google Scholar 

  79. Sanz L, Diaz-Meco MT, Nakano H, Moscat J. The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-I-TRAF6 pathway. EMBO J 2000; 19: 1576–1586.

    Article  PubMed  CAS  Google Scholar 

  80. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K. The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 1999; 398: 252–256.

    Article  PubMed  CAS  Google Scholar 

  81. Harrison JR, Kelly PL, Pilbeam CC. Involvement of CCAAT enhancer binding protein transcription factors in the regulation of prostaglandin G/H synthase 2 expression by interleukin-1 in osteoblastic MC3T3–E1 cells. J Bone Miner Res 2000; 15: 1138–1146.

    Article  PubMed  CAS  Google Scholar 

  82. Mano M, Arakawa T, Mano H, Nakagawa M, Kaneda T, Kaneko H. Prostaglandin E(2) Directly Inhibits Bone-Resorbing Activity of Isolated Mature Osteoclasts Mainly Through the EP4 Receptor. Calcif Tissue Int 2000; 67: 85–92.

    Article  PubMed  CAS  Google Scholar 

  83. Mano H, Kimura C, Fujisawa Y, Kameda T, Watanabe-Mano M, Kaneko H. Cloning and function of rabbit peroxisome proliferator-activated receptor delta/beta in mature osteoclasts. J Biol Chem 2000; 275: 8126–8132.

    Article  PubMed  CAS  Google Scholar 

  84. Inoue H, Tsujisawa T, Fukuizumi T, Kawagishi S, Uchiyama C. SC-19220, a prostaglandin E2 antagonist, inhibits osteoclast formation by 1,25-dihydroxyvitamin D3 in cell cultures. J Endocrinol 1999; 161: 231–236.

    Article  PubMed  CAS  Google Scholar 

  85. Gruber R, Nothegger G, Ho GM, Willheim M, Peterlik M. Differential stimulation by PGE(2) and calcemic hormones of IL-6 in stromal/osteoblastic cells. Biochem Biophys Res Commun 2000; 270: 1080–1085.

    Article  PubMed  CAS  Google Scholar 

  86. Okada Y, Lorenzo JA, Freeman AM, Tomita M, Morham SG, Raisz LG. Prostaglandin G/H synthase-2 is required for maximal formation of osteoclast-like cells in culture. J Clin Invest 2000; 105: 823–832.

    Article  PubMed  CAS  Google Scholar 

  87. Kodama H, Yamasaki A, Nose M, Niida S, Ohgame Y, Abe M. Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor. J Exp Med 1991; 173: 269–272.

    Article  PubMed  CAS  Google Scholar 

  88. Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990; 345: 442–444.

    Article  PubMed  CAS  Google Scholar 

  89. Fuller K, Owens JM, Jagger CJ, Wilson A, Moss R, Chambers TJ. Macrophage colony-stimulating factor release and receptor expression in bone cells. J Bone Miner Res 1993; 8: 1507.

    Google Scholar 

  90. Lacey DL, Tan HL, Lu J, Kaufman S, Van G, Qiu W. Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol 2000; 157: 435–448.

    Article  PubMed  CAS  Google Scholar 

  91. Rubin J, Fan D, Wade A, Murphy TC, Gewant H, Nanes MS. Transcriptional regulation of the expression of macrophage colony stimulating factor. Mol Cell Endocrinol 2000; 160: 193–202.

    Article  PubMed  CAS  Google Scholar 

  92. Yoneda T, Alsina MA, Chavez JB, Bonewald L, Nishimura R, Mundy GR. Evidence that tumor necrosis factor plays a pathogenic role in the paraneoplastic syndromes of cachexia, hypercalcemia, and leukocytosis. J Clin Invest 1991; 87: 977.

    Article  PubMed  CAS  Google Scholar 

  93. Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem 2000; 275: 4858–4864.

    Article  PubMed  CAS  Google Scholar 

  94. Abu-Amer Y, Erdmann J, Kollias G, Alexopoulou L, Ross FP, Teitelbaum SL. Tumor necrosis factor receptors types 1 and 2 differentially regulate osteoclastogenesis. J Biol Chem 2000;in press.

    Google Scholar 

  95. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 2000; 191: 275–286.

    Article  PubMed  CAS  Google Scholar 

  96. Lowik CW, van der Pluijm G, Bloys H, Hoekman K, Bijvoet OL, Aarden LA. Parathyroid hormone (PTH) and PTH-like protein (PLP) stimulate interleukin-6 production by osteogenic cells: a possible role of interleukin-6 in osteoclastogenesis. Biochem Biophys Res Commun 1989; 162: 1546–1552.

    Article  PubMed  CAS  Google Scholar 

  97. Manolagas SC, Jilka RL. Bone marrow, cytokines and bone remodelling. N Engl J Med 1995; 332: 305–311.

    Article  PubMed  CAS  Google Scholar 

  98. Schiller C, Gruber R, Redlich K, Ho GM, Katzgraber F, Willheim M. 17Beta-estradiol antagonizes effects of lalpha,25-dihydroxyvitamin D3 on interleukin-6 production and osteoclast-like cell formation in mouse bone marrow primary cultures. Endocrinology 1997; 138: 4567–4571.

    Article  PubMed  CAS  Google Scholar 

  99. Kozawa O, Suzuki A, Tokuda H, Kaida T, Uematsu T. Interleukin-6 synthesis induced by prostaglandin E2: cross-talk regulation by protein kinase C. Bone 1998; 22: 355–360.

    Article  PubMed  CAS  Google Scholar 

  100. Adebanjo OA, Moonga BS, Yamate T, Sun L, Minkin C, Abe E. Mode of action of interleukin-6 on mature osteoclasts. Novel interactions with extracellular Cat+-sensing in the regulation of osteoclastic bone resorption. J Cell Biol 1998; 142: 1347–1356.

    Article  PubMed  CAS  Google Scholar 

  101. Greenfield EM, Shaw SM, Gornik SA, Banks MA. Adenyl cyclase and interleukin 6 are downstream effectors of parathyroid hormone resulting in stimulation of bone resorption. J Clin Invest 1995; 96: 1238–1244.

    Article  PubMed  CAS  Google Scholar 

  102. Masiukiewicz US, Mitnick M, Grey AB, Inogna KL. Estrogen modulates parathyroid hormone-induced interleukin-6 production in vivo and in vitro. Endocrinology 2000; 141: 2526–2531.

    Article  PubMed  CAS  Google Scholar 

  103. Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 1992; 257: 88–91.

    Article  PubMed  CAS  Google Scholar 

  104. Burgess TL, Qian Y, Kaufman S, Ring BD, Van, C Capparelli G, Kelley M. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol 1999; 145: 527–538.

    Article  PubMed  CAS  Google Scholar 

  105. Horwood NJ, Kartsogiannis V, Quinn JM, Romas E, Martin TJ, Gillespie MT. Activated T lymphocytes support osteoclast formation in vitro. Biochem Biophys Res Commun 1999; 265: 144–150.

    Article  PubMed  CAS  Google Scholar 

  106. Lean JM, Matsuo K, Fox SW, Fuller K, Gibson FM, Draycott G. Osteoclast lineage commitment of bone marrow precursors through expression of membrane-bound TRANCE. Bone 2000; 27: 29–40.

    Article  PubMed  CAS  Google Scholar 

  107. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998; 95: 3597–3602.

    Article  PubMed  CAS  Google Scholar 

  108. Mbalaviele G, Abu-Amer Y, Meng A, Jaiswal R, Beck S, Pittenger MF. Activation of peroxisome proliferator-activated receptor-gamma pathway inhibits osteoclast differentiation. J Biol Chem 2000; 275: 14388–14393.

    Article  PubMed  CAS  Google Scholar 

  109. Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 1997; 11: 3482–3496.

    Article  PubMed  CAS  Google Scholar 

  110. Darnay BG, Ni J, Moore PA, Aggarwal BB. Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J Biol Chem 1999; 274: 7724–7731.

    Article  PubMed  CAS  Google Scholar 

  111. Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M. Involvement of p38 Mitogen-activated Protein Kinase Signaling Pathway in Osteoclastogenesis Mediated by Receptor Activator of NFkappaB Ligand (RANKL). J Biol Chem 2000; 275: 31155–31161.

    Article  PubMed  CAS  Google Scholar 

  112. Mercurio F, Manning AM. Multiple signals converging on NF-kappaB. Curr Opin Cell Biol 1999; 11: 226–232.

    Article  PubMed  CAS  Google Scholar 

  113. Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R. Osteopetrosis in mice lacking NFkappaBl and NF-kappaB2. Nat Med 1997; 3: 1285–1289.

    Article  PubMed  CAS  Google Scholar 

  114. Boyce BF, Yoneda T, Lowe C, Soriano P, Mundy GR. Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest 1992; 90: 1622–1627.

    Article  PubMed  CAS  Google Scholar 

  115. Goi T, Shipitsin M, Lu Z, Foster DA, Klinz SG, Feig LA. An EGF receptor/Ral-GTPase signaling cascade regulates c-Src activity and substrate specificity. EMBO J 2000; 19: 623–630.

    Article  PubMed  CAS  Google Scholar 

  116. Lakkakorpi PT, Nakamura I, Young M, Lipfert L, Rodan GA, Duong LT. Abnormal localisation and hyperclustering of avb3 integrins and associated proteins in Src-deficient or tyrphostin A9-treated osteoclasts. J Cell Sci 2001; 114: 149–160.

    PubMed  CAS  Google Scholar 

  117. Grey A, Chen Y, Paliwal I, Carlberg K, Insogna K. Evidence for a functional association between phosphatidylinositol 3-kinase and c-src in the spreading response of osteoclasts to colony-stimulating factor-1. Endocrinology 2000; 141: 2129–2138.

    Article  PubMed  CAS  Google Scholar 

  118. Missbach M, Altmann E, Widler L, Susa M, Buchdunger E, Mett H. Substituted 5,7-diphenylpyrrolo[2,3dlpyrimidines: potent inhibitors of the tyrosine kinase c-Src. Bioorg Med Chem Lett 2000; 10: 945–949.

    Article  PubMed  CAS  Google Scholar 

  119. Byzova VT, Goldman KC, Pampori N, Thomas AK, Bett A, Shattil JS. A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol Cell 2000; 6: 851–860.

    PubMed  CAS  Google Scholar 

  120. Niida S, Kaku M, Amano H, Yoshida H, Kataoka H, Nishikawa S. Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J Exp Med 2000; 190: 293–298.

    Article  Google Scholar 

  121. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 1999; 5: 623–628.

    Article  PubMed  CAS  Google Scholar 

  122. Lewis DB, Liggitt HD, Effmann EL, Motley ST, Teitelbaum SL, Jepsen KJ. Osteoporosis induced in mice by overproduction of interleukin 4. Proc Natl Acad Sci USA 1993; 90: 11618–11622.

    Article  PubMed  CAS  Google Scholar 

  123. Lubberts E, Joosten LA, Chabaud M, van Den Bersselaar L, Oppers B, Coenen-De Roo CJ. IL-4 gene therapy for collagen arthritis suppresses synovial IL-17 and osteoprotegerin ligand and prevents bone erosion. J Clin Invest 2000; 105: 1697–1710.

    Article  PubMed  CAS  Google Scholar 

  124. Horwood NJ, Udagawa N, Elliott J, Grail D, Okamura H, Kurimoto M. Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor. J Clin Invest 1998; 101: 595–603.

    Article  PubMed  CAS  Google Scholar 

  125. Wu Y, Kumar R. Parathyroid hormone regulates transforming growth factor betal and beta2 synthesis in osteoblasts via divergent signaling pathways. J Bone Miner Res 2000; 15: 879–884.

    Article  PubMed  CAS  Google Scholar 

  126. Sanders JL, Stern PH. Protein kinase C involvement in interleukin-6 production by parathyroid hormone and tumor necrosis factor-alpha in UMR-106 osteoblastic cells. J Bone Miner Res 2000; 15: 885–893.

    Article  PubMed  CAS  Google Scholar 

  127. McClelland P, Onyia JE, Miles RR, Tu Y, Liang J, Harvey AK. Intermittent administration of parathyroid hormone (1–34) stimulates matrix metalloproteinase-9 (MMP-9) expression in rat long bone. J Cell Biochem 1998; 70: 391–401.

    Article  PubMed  CAS  Google Scholar 

  128. Takai H, Kanematsu M, Yano K, Tsuda E, Higashio K, Ikeda K. Transforming growth factor-beta stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells. J Biol Chem 1998; 273: 27091–27096.

    Article  PubMed  CAS  Google Scholar 

  129. Wrana JL, Overall CM, Sodek J. Regulation of the expression of a secreted acidic protein rich in cysteine (SPARC) in human fibroblasts by transforming growth factor beta. Comparison of transcriptional and post-transcriptional control with fibronectin and type I collagen. Eur J Biochem 1991a; 197: 519–528.

    Article  PubMed  CAS  Google Scholar 

  130. Wrana JL, Kubota T, Zhang Q, Overall CM, Aubin JE, Butler WT. Regulation of transformation-sensitive secreted phosphoprotein (SPPI/osteopontin) expression by transforming growth factor-beta. Comparisons with expression of SPARC (secreted acidic cysteine-rich protein). Biochem J 1991b; 273: 523–531.

    PubMed  CAS  Google Scholar 

  131. Gowen M, Stroup GB, Dodds RA, James IE, Votta BJ, Smith BR. Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats. J Clin Invest 2000; 105: 1595–1604.

    Article  PubMed  CAS  Google Scholar 

  132. Ernst M, Rodan GA. Estradiol regulation of insulin-like growth factor-I expression in osteoblastic cells: evidence for transcriptional control. Mol Endocrinol 1991; 5: 1081–1089.

    Article  PubMed  CAS  Google Scholar 

  133. Ishii H, Wada M, Furuya Y, Nagano N, Nemeth EF, Fox J. Daily intermittent decreases in serum levels of parathyroid hormone have an anabolic-like action on the bones of uremic rats with low-turnover bone and osteomalacia. Bone 2000; 26: 175–182.

    Article  PubMed  CAS  Google Scholar 

  134. Kassem M, Kveiborg M, Eriksen EF. Production and action of transforming growth factor-beta in human osteoblast cultures: dependence on cell differentiation and modulation by calcitriol. Eur J Clin Invest 2000; 30: 429–437.

    Article  PubMed  CAS  Google Scholar 

  135. Fuller K, Lean JM, Bayley KE, Wani MR, Chambers TJ. A role for TGFb-1 in osteoclast differentiation and survival. J Cell Sci 2000; 113: 2445–2453.

    PubMed  CAS  Google Scholar 

  136. Chandrasekhar S, Harvey AK, Johnson MG, Becker GW. Osteonectin/SPARC is a product of articular chondrocytes/cartilage and is regulated by cytokines and growth factors. Biochim Biophys Acta 1994; 1221: 7–14.

    Article  PubMed  CAS  Google Scholar 

  137. Hong L, Tabata Y, Miyamoto S, Yamada K, Aoyama I, Tamura M. Promoted bone healing at a rabbit skull gap between autologous bone fragment and the surrounding intact bone with biodegradable microspheres containing transforming growth factor-beta l. Tissue Eng 2000; 6: 331–340.

    Article  PubMed  CAS  Google Scholar 

  138. Ledbetter S, Kurtzberg L, Doyle S, Pratt PM. Renal fibrosis in mice treated with human recombinant transforming growth factor-beta2. Kidney Int 2000; 58: 2367–2376.

    Article  PubMed  CAS  Google Scholar 

  139. Nuti R, Bonucci E, Brancaccio D, Gallagher JC, Gennari C, Mazzuoli G. The role of calcitriol in the treatment of osteoporosis. Calcif Tissue Int 2000; 66: 239–240.

    Article  PubMed  CAS  Google Scholar 

  140. Lichtler A, Stover ML, Angilly J, Kream B, Rowe DW. Isolation and characterization of the rat alpha 1(I) collagen promoter. Regulation by 1,25-dihydroxyvitamin D. J Biol Chem 1989; 264: 3072–3077.

    PubMed  CAS  Google Scholar 

  141. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997; 89: 47–754.

    Article  Google Scholar 

  142. Zhang R, Ducy P, Karsenty G. 1,25-dihydroxyvitamin D3 inhibits Osteocalcin expression in mouse through an indirect mechanism. J Biol Chem 1997; 272: 110–116.

    Article  PubMed  CAS  Google Scholar 

  143. Yanaka N, Akatsuka H, Kawai E, Omori K. 1,25-Dihydroxyvitamin D3 upregulates natriuretic peptide receptor-C expression in mouse osteoblasts. Am J Physiol 1998; 275: 965–973.

    Google Scholar 

  144. Liu R, Li W, Karin NJ, Bergh JJ, Adler-Storthz K, Farach-Carson MC. Ribozyme ablation demonstrates that the cardiac subtype of the voltage-sensitive calcium channel is the molecular transducer of 1, 25-dihydroxyvitamin D(3)-stimulated calcium influx in osteoblastic cells. J Biol Chem 2000; 275: 8711–8718.

    Article  PubMed  CAS  Google Scholar 

  145. Jurutka PW, Remus LS, Whitfield GK, Galligan MA, Haussler CA, Haussler MR. Biochemical evidence for a 170-kilodalton, AF-2-dependent vitamin D receptor/retinoid X receptor coactivator that is highly expressed in osteoblasts. Biochem Biophys Res Commun 2000; 267: 813–819.

    Article  PubMed  CAS  Google Scholar 

  146. Kawata T, Zernik JH, Fujita T, Tokimasa C, Tanne K. Mechanism in inhibitory effects of vitamin K2 on osteoclastic bone resorption: in vivo study in osteopetrotic (op/op) mice. J Nutr Sci Vitaminol 1999; 45: 501–507.

    Article  PubMed  CAS  Google Scholar 

  147. Koshihara Y, Hoshi K, Ishibashi H, Shiraki M. Vitamin K2 promotes 1 alpha,25(OH)2 vitamin D3-induced mineralization in human periosteal osteoblasts. Calcif Tissue Int 1996; 59: 466–473.

    PubMed  CAS  Google Scholar 

  148. Koshihara Y, Hoshi K. Vitamin K2 enhances osteocalcin accumulation in the extracellular matrix of human osteoblasts in vitro. J Bone Miner Res 1997; 12: 431–438.

    Article  PubMed  CAS  Google Scholar 

  149. Hoshi K, Nomura K, Sano Y, Koshihara Y. Nuclear vitamin K2 binding protein in human osteoblasts: homologue to glyceraldehyde-3-phosphate dehydrogenase. BiochemPharmacol 1999; 58: 1631–1638.

    Article  PubMed  CAS  Google Scholar 

  150. McAllister TN, Du T, Frangos JA. Fluid shear stress stimulates prostaglandin and nitric oxide release in bone marrow-derived preosteoclast-like cells. Biochem Biophys Res Commun 2000; 270: 643–648.

    Article  PubMed  CAS  Google Scholar 

  151. Dong SS, Williams JP, Jordan SE, Cornwell T, Blair HC. Nitric oxide regulation of cGMP production in osteoclasts. J Cell Biochem 1999; 73: 478–487.

    Article  PubMed  CAS  Google Scholar 

  152. van’t Hof RJ, Armour KJ, Smith LM, Armour KE, Wei XQ, Liew FY. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption. Proc Natl Acad Sci USA 2000; 97: 7993–7998.

    Article  Google Scholar 

  153. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89: 309–319.

    Article  PubMed  CAS  Google Scholar 

  154. Gao YH, Shinki T, Yuasa T, Enomoto HK, Komori T, Suda T. Biochem. Biophys. Res. Commun 1998; 252: 697–702.

    CAS  Google Scholar 

  155. Thirunavukkarasu K, Halladay DL, Miles RR, Yang X, Galvin RJ, Chandrasekhar S. The osteoblastspecific transcription factor Cbfal regulates the expression of osteoprotegerin (OPG), a potent inhibitor of osteoclast differentiation and function. J Biol Chem 2000; 275: 25163–25172.

    Article  PubMed  CAS  Google Scholar 

  156. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 2000; 15: 2–12.

    Article  PubMed  CAS  Google Scholar 

  157. Selvamurugan N, Pulumati MR, Tyson DR, Partridge NC. Parathyroid hormone regulation of the rat collagenase-3 promoter by protein kinase A-dependent transactivation of core binding factor alphal. J Biol Chem 2000; 275: 5037–5042.

    Article  PubMed  CAS  Google Scholar 

  158. Miyauchi A, Hruska KA, Greenfield EM, Duncan R, Alvarez J, Barattolo R. Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption. J Cell Biol 1990; 111: 2543–2552.

    Article  PubMed  CAS  Google Scholar 

  159. Zaidi M, Moonga BS, Adebanjo OA. Novel mechanisms of calcium handling by the osteoclast: a review-hypothesis. Proc Assoc Am Physicians 1999; 111: 319–327.

    Article  PubMed  CAS  Google Scholar 

  160. Kameda T, Mano H, Yamada Y, Takai H, Amizuka N, Kobori M. Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells. Biochem Biophys Res Commun 1998; 245: 419–422.

    Article  PubMed  CAS  Google Scholar 

  161. Malgaroli A, Meldolesi J, Zallone AZ, Teti A. Control of cytosolic free calcium in rat and chicken osteoclasts. The role of extracellular calcium and calcitonin. J Biol Chem 1989; 264: 14342–14347.

    PubMed  CAS  Google Scholar 

  162. Kajiya H, Okabe K, Okamoto F, Tsuzuki T, Soeda H. Protein tyrosine kinase inhibitors increase cytosolic calcium and inhibit actin organization as resorbing activity in rat osteoclasts. J Cell Physiol 2000; 183: 83–90.

    Article  PubMed  CAS  Google Scholar 

  163. Moonga BS, Davidson R, Iqbal J, Li S, Shankar VS, Rifkin BR. Ca“ influx through the osteoclast plasma membrane ryanodine receptor. In press.

    Google Scholar 

  164. Lorget F, Kamel S, Mentaverri R, Wattel A, Naassila M, Maamer M. High extracellular calcium concentrations directly stimulate osteoclast apoptosis. Biochem Biophys Res Commun 2000; 268: 899–903.

    Article  PubMed  CAS  Google Scholar 

  165. Adebanjo OA, Biswas G, Moonga BS, Anandatheerthavarada HK, Sun L, Bevis PJ. Novel biochemical and functional insights into nuclear Ca’ transport through IP3Rs and RyRs in osteoblasts. Am J Physiol Renal Physiol 2000; 278: 784–791.

    Google Scholar 

  166. Zaidi M, Shankar VS, Tunwell R, Adebanjo OA, Mackrill J, Pazianas M. A ryanodine receptor-like molecule expressed in the osteoclast plasma membrane functions in extracellular Ca“ sensing. J Clin Invest 1995; 96: 1582–1590.

    Article  PubMed  CAS  Google Scholar 

  167. Sun L, Adebanjo OA, Moonga BS, Corisdeo A, Anandatheerthavarada HK, Biswas G. CD38/ADPribosyl cyclase: a new role in the regulation of osteoclastic bone resorption. J Cell Biol 1999; 146: 1161–1172.

    Article  PubMed  CAS  Google Scholar 

  168. O’Neill CA, Galasko CS. Calcium mobilization is required for spreading in human osteoblasts. Calcif Tissue Int 2000; 67: 53–59.

    Article  PubMed  Google Scholar 

  169. Tsushima N, Yabuki M, Harada H, Katsumata T, Kanamaru H, Nakatsuka I. Tissue distribution and pharmacological potential of SM-16896, a novel oestrogen-bisphosphonate hybrid compound. J Pharm Pharmacol 2000; 52: 27–37.

    Article  PubMed  CAS  Google Scholar 

  170. Kasugai S, Fujisawa R, Waki Y, Miyamoto K, Ohya K. Selective drug delivery system to bone: small peptide (Asp)6 conjugation. J Bone Miner Res 2000; 15: 936–943.

    Article  PubMed  CAS  Google Scholar 

  171. Schwarze SR, Hruska KA, Dowdy SF. Protein transduction: unrestricted delivery into all cells? Trends Cell Biol 2000; 10: 290–295.

    Article  PubMed  CAS  Google Scholar 

  172. Chellaiah MA, Soga N, Swanson S, McAllister S, Alvarez U, Wang D. Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. J Biol Chem 2000; 275: 11993–12002.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Iqbal, J., Inzerillo, A.M., Moonga, B.S., Zaidi, M. (2003). The Molecular Pharmacology of Osteoporosis. In: Orwoll, E.S., Bliziotes, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-278-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-278-4_28

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-260-5

  • Online ISBN: 978-1-59259-278-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics