Skip to main content

Practical Aspects in Anatomically Accurate Simulations of Neuronal Electrophysiology

  • Chapter
Computational Neuroanatomy

Abstract

When computer simulations are employed to investigate mathematical models of electrophysiology, the details of the implementation can heavily affect the numerical solutions and, thus, the outcome of the simulations. In computational studies based on detailed dendritic morphology, relevant implementation details include, among others, the discretization of time and space. In particular, the anatomical representation of complex dendrites into isopotential compartments presents challenging issues (often overlooked in published reports) in the numerical approximation of the cable equation and its derivatives. Here, we discuss these issues using examples taken from variations of a model of CA3 pyramidal cell electrophysiology based on realistic anatomy and biophysics. In addition, we describe existing and novel procedures to produce model compartmentalizations that ensure stable numerical solutions, with references to popular simulation environments such as NEURON. Finally, we provide an overview of existing computational tools aiding the representation, conversion, and simplification of dendritic morphology for electrophysiological simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Schutter E, Cannon RC. (eds.) Computational Neuroscience: Realistic Modeling for Experimentalists. CRC Press, Boca Raton, FL, 2000.

    Google Scholar 

  2. Koch C. Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, New York, 1999.

    Google Scholar 

  3. Bower JM., Beeman D. (eds.) The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System, 2nd ed. Springer-Verlag, New York, 1998.

    Google Scholar 

  4. (http://www.neuron.yale.edu).

  5. (http://www.bbb.caltech.edu/GENESIS/genesis.html).

  6. (http://www.cnrs-gif.fr/iaf/iaf9/surf-hippo.html).

  7. (http://www.neosim.org).

  8. (http://www.compneuro.org/CDROM/catacomb/).

  9. (http://www.mathworks.com).

  10. (http://www.strout.net/conical/).

  11. Murthy DNP, Page NW, Rodin EY. Mathematical Modelling. A Tool for Problem Solving in Engineering, Physical, Biological and Social Sciences. Pergamon Press, Oxford, UK, 1990.

    Google Scholar 

  12. Gershenfeld NA. The Nature of Mathematical Modeling. Cambridge Univ. Press, Cambridge, UK, 1999.

    Google Scholar 

  13. De Schutter E. Using realistic models to study synaptic integration in cerebellar Purkinje cells. Rev Neurosci 1999; 10: 233–245.

    PubMed  Google Scholar 

  14. Protopapas AD, Vanier M, Bower JM. Simulating large networks of neurons. In: Methods in Neural Modeling (Koch C, Segev I, eds.), 2nd ed. MIT Press, Cambridge, MA, 1998, pp. 461–498.

    Google Scholar 

  15. Rall W. Membrane time constant of motoneurons. Science 1957; 126: 454.

    Article  PubMed  CAS  Google Scholar 

  16. Norman RS. Cable theory for finite length dendritic cylinders with initial and boundary conditions. Biophys J 1972; 12: 25–45.

    Article  PubMed  CAS  Google Scholar 

  17. Langtangen HP. Computational Partial Differential Equations, Numerical Methods and Diffpack Programming, Lecture Notes in Computational Science and Engineering, Vol. 2. Springer-Verlag, New York, 1999.

    Google Scholar 

  18. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 1952; 117: 500–544.

    PubMed  CAS  Google Scholar 

  19. Hodgkin AL, Huxley AF. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 1952; 116: 449–472.

    PubMed  CAS  Google Scholar 

  20. Wong RK, Prince DA. Afterpotential generation in hippocampal pyramidal cells. J Neurophysiol 1981; 45: 86–97.

    PubMed  CAS  Google Scholar 

  21. Ranck JB Jr. Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Exp Neurol 1973; 41: 461–531.

    Article  PubMed  Google Scholar 

  22. Migliore M, Cook EP, Jaffe DB, Turner DA, Johnston D. Computer simulations of morpho-metrically reconstructed CA3 hippocampal neurons. J Neurophysiol 1995; 73: 1157–1168.

    PubMed  CAS  Google Scholar 

  23. Menschik ED, Finkel LH. Cholinergic neuromodulation of an anatomically reconstructed hippocampal CA3 pyramidal cell. Neurocomputing 2000; 32–33: 197–205.

    Article  Google Scholar 

  24. Cohen SD., Hindmarsh AC. CVODE User Guide. Lawrence Livermore National Laboratory technical report UCRL-MA-118618, 1994.

    Google Scholar 

  25. Hines ML, Carnevale NT. Expanding NEURON’ s repertoire of mechanisms with NMODL. Neural Comput 2000; 12: 995–1007.

    Article  PubMed  CAS  Google Scholar 

  26. Mitchell AR. Computational Methods in Partial Differential Equations. John Wiley & Sons, London, UK, 1969.

    Google Scholar 

  27. Rall W. Distributions of potential in cylindrical coordinates and time constants for a membrane cylinder. Biophys J 1969; 1509–1541.

    Google Scholar 

  28. Hines ML, Carnevale NT. NEURON: a tool for neuroscientists. Neuroscientist 2001; 7: 123–135.

    Article  PubMed  CAS  Google Scholar 

  29. Mainen ZF, Sejnowski TJ. Influence of dendritic structure on firing pattern in model neo-cortical neurons. Nature 1996; 382: 363–366.

    Article  PubMed  CAS  Google Scholar 

  30. Lazarewicz MT, Migliore M, Ascoli GA. A new bursting model of CA3 pyramidal cell physiology suggests multiple locations for spike initiation. 4th International Neural Coding Workshop-NCWS’2001. Plymouth, UK, 2001. To appear in Biosystems.

    Google Scholar 

  31. Segev I, Rinzel J, Shepherd GM (eds.) The Theoretical Foundation of Dendritic Function: Selected Papers of Wilfrid Rall with Commentaries. MIT Press, Cambridge, MA, 1994.

    Google Scholar 

  32. Eichler-West RM. On the development and interpretation of parameter manifolds for biophysically robust compartmental models of CA3 hippocampal neurons. University of Minnesota Doctoral Dissertation, 1996.

    Google Scholar 

  33. Destexhe A, Neubig M, Ulrich D, Huguenard J. Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 1998; 18: 3574–3588.

    PubMed  CAS  Google Scholar 

  34. Manor Y, Gonczarowski Y, Segev I. Propagation of action potentials along complex axonal tree: model and implimentation. Biophys. J. 1991; 60: 1411–1423.

    Article  PubMed  CAS  Google Scholar 

  35. Manor Y, Koch C, Segev I. Effect of geometrical irregularities on propagation delay in axonal trees. Biophys J 1991; 60: 1424–1437.

    Article  PubMed  CAS  Google Scholar 

  36. Migliore M, Hoffman DA, Magee JC, Johnston D. Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J Comput Neurosci 1999; 7: 5–15.

    Article  PubMed  CAS  Google Scholar 

  37. Ascoli GA, Nasuto SD, Krichmar JL, Senft SL. Generation, description, and storage of dendritic morphology. Philos Trans R Soc Lond B Biol Sci 2001; 356: 1131–1145.

    Article  PubMed  CAS  Google Scholar 

  38. (http://www.cns.soton.ac.uk/-jchad/cellArchive/cellArchive.html).

  39. (http://cascade.utsa.edu/bjclab/).

  40. (http://www.koki.hu/.gulyas/calcells/cellfiles.htm).

  41. (http://www.microbrightfield.com/prod-nl.htm).

  42. (http://rsb.info.nih.gov/ij/).

  43. (http://www.maths.soton.ac.uk/staff/D’Alessandro/morpho/).

  44. Ascoli GA, Scorcioni R, Krichmar JL, Nasuto SD., Senft SL. Computer generation and quantitative morphological analysis of virtual neurons. Anat Embryol 2001; 204: 283–301.

    Article  PubMed  CAS  Google Scholar 

  45. (http://www.krasnow.gmu.edu/ascoli/CNG/1-neuron/).

  46. Borg-Graham L. Interpretations of data and mechanisms for hippocampal pyramidal cell models. In: Cerebral Cortex: Cortical Models, Vol. 13 ( Ulinsky, ed.) Plenum Publishing Corporation, New York, NY, 1999, pp. 19–138.

    Google Scholar 

  47. Hines ML, Carnevale NT. The NEURON simulation environment. Neural Comput 1997; 9: 1179–1209.

    Article  PubMed  CAS  Google Scholar 

  48. (http://www.compneuro.org/CDROM/docs/cvapp.html).

  49. (http://www.science-renaissance.org/rogene/Software/index.html).

  50. (http://www.cns.fmed.ulaval.ca/alain_demos.html).

  51. (http://www.cns.unibe.ch/—buchs/diplomas.html)

  52. (http://dendrite.physiol.ucl.ac.uk/software.html).

  53. Vetter P, Roth A, Hausser M. Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 2001; 85: 926–937.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lazarewicz, M.T., Boer-Iwema, S., Ascoli, G.A. (2002). Practical Aspects in Anatomically Accurate Simulations of Neuronal Electrophysiology. In: Ascoli, G.A. (eds) Computational Neuroanatomy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-275-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-275-3_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-297-1

  • Online ISBN: 978-1-59259-275-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics