Skip to main content

Towards Virtual Brains

  • Chapter
Computational Neuroanatomy

Abstract

In this chapter, we argue that computers are potentially capable of human-level cognition, including experiences involving emotions, creativity, fantasy, humor, etc. In addition, we maintain that computational neuroanatomy will play a key role towards the computer generation of minds by investigating the roots of the structure—activity—function relationships in the nervous system. Using the hippocampus as a working example, we outline a long-term strategy to (i) implement an anatomically and biophysically accurate “bottom-up” model reproducing the known neurobiological activity; (ii) use the model to investigate and implement simple functional properties such as spatial mapping and path-finding; and (iii) insert a higher level “top-down” cognitive capacity to instantiate the concept of agency in the context of a generalized memory indexing theory. Finally, we briefly discuss the potential consequences of the computer generation of functionally complete virtual brains for neuroscience research, information technology, and human society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shannon CE, Weaver W. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL, 1949.

    Google Scholar 

  2. Boole G. The Mathematical Analysis of Logic: Being an Essay Towards a Calculus of Deductive Reasoning. Macmillian, Barclay, and Macmillian, Cambridge, 1847.

    Google Scholar 

  3. Turing AM. On computable numbers, with an application to the Entscheidungs problem. Proc Lond Math Soc 2nd Series, 1936; 42: 230–265.

    Article  Google Scholar 

  4. Poisson K. Chronology of Events in the History of Microcomputers from 1947 to 2000. Published online at (http://www.islandnet.com/-kpolsson/comphist/) © 1995–2000 Ken Polsson.

  5. Kurzweil R. The Law of Accelerating Returns. Published online at (http://www.kurzweilai.net/articles/art0134.html) © 2001 Raymond Kurzweil.

  6. McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the Dartmouth summer research project on artificial intelligence. 1955. Published online in 1996 by John McCarthy at (http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html).

  7. Engel AK, Singer W. Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 2001; 5: 16–25.

    Article  PubMed  Google Scholar 

  8. Klimesch W. Memory processes, brain oscillations and EEG synchronization. Int J Psychophysiol 1996; 24: 61–100.

    Article  PubMed  CAS  Google Scholar 

  9. Rolls ET. Spatial view cells and the representation of place in the primate hippocampus. Hippocampus 1999; 9: 467–480.

    Article  PubMed  CAS  Google Scholar 

  10. Ono T, Nishijo H. Active spatial information processing in the septohippocampal system. Hippocampus 1999; 9: 458–466.

    Article  PubMed  CAS  Google Scholar 

  11. Maguire EA, Burgess N, O’Keefe J. Human spatial navigation: cognitive maps, sexual dimorphism, and neural substrates. Curr Opin Neurobiol 1999; 9: 171–177.

    Article  PubMed  CAS  Google Scholar 

  12. Bures J, Fenton AA, Kaminsky Y, Zinyuk L. Place cells and place navigation. Proc Natl Acad Sci USA 1997; 94: 343–350.

    Article  PubMed  CAS  Google Scholar 

  13. Wylie DR, Glover RG, Aitchison JD. Optic flow input to the hippocampal formation from the accessory optic system. J Neurosci 1999; 19: 5514–5527.

    PubMed  CAS  Google Scholar 

  14. Taube JS. Head direction cells and the neurophysiological basis for a sense of direction. Prog Neurobiol 1998; 55: 225–256.

    Article  PubMed  CAS  Google Scholar 

  15. O’Mara SM, Commins S, Anderson M, Gigg J. The subiculum: a review of form, physiology and function. Prog Neurobiol 2001; 64: 129–155.

    Article  PubMed  Google Scholar 

  16. Brandner C, Schenk F. Septal lesions impair the acquisition of a cued place navigation task: attentional or memory deficit? Neurobiol Learn Mem 1998; 69: 106–125.

    Article  PubMed  CAS  Google Scholar 

  17. Maguire EA. The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand J Psychol 2001; 42: 225–238.

    Article  PubMed  CAS  Google Scholar 

  18. Berthoz A. Parietal and hippocampal contribution to topokinetic and topographic memory. Philos Trans R Soc Lond B Biol Sci 1997; 352: 1437–1448.

    Article  PubMed  CAS  Google Scholar 

  19. Arbib MA. From visual affordances in monkey parietal cortex to hippocampoparietal interactions underlying rat navigation. Philos Trans R Soc Lond B Biol Sci 1997; 352: 1429–1436.

    Article  PubMed  CAS  Google Scholar 

  20. Almassy N, Edelman GM, Sporns O. Behavioral constraints in the development of neuronal properties: a cortical model embedded in a real-world device. Cereb Cortex 1998; 8: 346–361.

    Article  PubMed  CAS  Google Scholar 

  21. Weng J, McClelland J, Pentland A, et al. Artificial intelligence. Autonomous mental development by robots and animals. Science 2001; 291: 599–600.

    Article  PubMed  CAS  Google Scholar 

  22. Lechner HA, Byrne JH. New perspectives on classical conditioning: a synthesis of Hebbian and non-Hebbian mechanisms. Neuron 1998; 20: 355–358.

    Article  PubMed  CAS  Google Scholar 

  23. Atkins PW. What happens when we relearn part of what we previously knew? Predictions and constraints for models of long-term memory. Psychol Res 2001; 65: 202–215.

    Article  PubMed  CAS  Google Scholar 

  24. Ciompi L. Affects as central organising and integrating factors. A new psychosocial/biological model of the psyche. Br J Psychiatry 1991; 159: 97–105.

    Article  PubMed  CAS  Google Scholar 

  25. Patton PE, McNaughton B. Connection matrix of the hippocampal formation: I. The dentate gyrus. Hippocampus 1994; 5: 245–286.

    Article  Google Scholar 

  26. Dennett DC. The Fantasy of First-Person Science (a written version of a debate with David Chalmers, held at Northwestern University, Evanston, IL, February 15, 2001, supplemented by an email debate with Alvin Goldman). Published online at (http://ase.tufts.edu/cogstud/papers/chalmersdeb3dft.htm), March 2001.

  27. Baron-Cohen S. Mindblindness: An Essay on Autism and Theory of Mind. MIT Press, Cambridge, MA, 1995.

    Google Scholar 

  28. Markus EJ, Qin YL, Leonard B, Skaggs WE, McNaughton BL, Barnes CA. Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J Neurosci 1995; 15: 7079–7094.

    PubMed  CAS  Google Scholar 

  29. Nadel L, Samsonovich A, Ryan L, Moscovitch M. Multiple trace theory of human memory: computational, neuroimaging, and neuropsychological results. Hippocampus 2000; 10: 352–368.

    Article  PubMed  CAS  Google Scholar 

  30. Wheeler MA, Stuss DT, Tulving E. Toward a theory of episodic memory: the frontal lobes and autonoetic consciousness. Psychol Bull 1997; 121: 331–354.

    Article  PubMed  CAS  Google Scholar 

  31. Samsonovich AV, Nadel L, Moscovitch M. A theory-of-mind connectionist model of episodic memory consolidation. 2000; J Neurosci Suppl 26: 1498.

    Google Scholar 

  32. Ascoli GA. Association, abstraction, and the emergence of the Self. Noetic J 1999; 2: 9–20.

    Google Scholar 

  33. Pallas SL. Intrinsic and extrinsic factors that shape neocortical specification. Trends Neurosci 2001; 24: 417–423.

    Article  PubMed  CAS  Google Scholar 

  34. Siegel DJ. Memory: an overview, with emphasis on developmental, interpersonal, and neurobiological aspects. J Am Acad Child Adolesc Psychiatry 2001; 40: 997–1011.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Samsonovich, A., Ascoli, G.A. (2002). Towards Virtual Brains. In: Ascoli, G.A. (eds) Computational Neuroanatomy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-275-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-275-3_19

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-297-1

  • Online ISBN: 978-1-59259-275-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics