Advertisement

Retinoblastoma Protein in Growth Control and Differentiation

  • Lilia Stepanova
  • J. Wade Harper
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Proper development of multicellular organisms from a single cell requires precise control of cellular proliferation, differentiation, and apoptosis. This multistep control involves a complex interplay between numerous genes regulating spatial and temporal aspects of development and proliferation. Defects in these control mechanisms can lead to developmental defects or tumor formation. Research performed over the past decade has brought us closer to an understanding of how a family of critical growth regulators, typified by the retinoblastoma (RB) tumor suppressor gene (Rb), function to control cell proliferation and differentiation.

Keywords

Retinoblastoma Protein Tumor Suppressor Pathway Muscle Cell Differentiation Pocket Protein Retinoblastoma Gene Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Friend SH, Horowitz JM, Gerber MR, Wang X-F, Bogenmann E, Li FP, Weinberg RA. Deletions of a DNA sequence in retinoblastomas and mesenchymal tumors: organization of the sequence and its encoded protein. Proc Natl Acad Sci USA 1987; 84:9059–9063.PubMedCrossRefGoogle Scholar
  2. 2.
    Lee EY-HP, To H, Shew J-Y, Bookstein R, Scully P, Lee W- H. Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science 1988; 241:218–221.PubMedCrossRefGoogle Scholar
  3. 3.
    Harbour JW, Lai S-H, Whang-Peng J, Gazdar AF, Minna JD, Kaye FJ. Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science 1988; 241:353–357.PubMedCrossRefGoogle Scholar
  4. 4.
    Toguchida J, Ishizaki K, Sasaki MS, Ikenaga M, J, Ishizaki K, Sasaki MS, et al. Chromosomal reorganization for the expression of recessive mutation of retinoblastoma susceptibility gene in the development of osteosarcoma. Cancer Res 1988; 48:3939–3943.PubMedGoogle Scholar
  5. 5.
    Shew J-Y, Ling N, Yang X, Fodstad O, Lee W-H. Antibodies detecting abnormalities of the retinoblastoma susceptibility gene product (pp100RB) in osteosarcomas and synovial sarcomas. Oncogene Res 1989; 1:205–214.Google Scholar
  6. 6.
    Shew J-Y, Lin B, Chen P-L, Tseng BY, Yang-Feng TL, Lee W-H. C-terminal truncation of the RB protein leads to functional inactivation. Proc Natl Acad Sci USA 1990; 87:6–10.PubMedCrossRefGoogle Scholar
  7. 7.
    Bookstein R, Lee EY, Peccei A, Lee WH. Human retinoblastoma gene: long-range mapping and analysis of its deletion in a breast cancer cell line. Mol Cell Biol 1989; 9:1628–1634.PubMedGoogle Scholar
  8. 8.
    Cheng J, Scully P, Shew J-Y, Lee W-H, Vila V, Haas M. Homozygous deletion of the retinoblastoma gene in an acute lymphoblastic leukemia (T) cell line. Blood 1990; 75:730–735.PubMedGoogle Scholar
  9. 9.
    Hensel CH, Hsieh CL, Gadzar AF, Johnson BE, Sakaguchi AY, Naylor SL, Lee W-H, Lee EY-HP. Altered structure and expression of the human retinoblastoma susceptibility gene in small cell lung cancer. Cancer Res 1990; 50:3067–3072.PubMedGoogle Scholar
  10. 10.
    Horwitz JM, Park S-H, Bogenmann E, Cheng J-C, Yandell DW, Kaye FJ, Minna JD, Dryja TP, Weinberg RA. Frequent inactivation of the retinoblastoma antioncogene is restricted to a subset of human tumors. Proc Natl Acad Sci USA 1990; 87:2775–2779.CrossRefGoogle Scholar
  11. 11.
    Juge-Morineau N, Harousseau JL, Amiot M, Bataille R. The retinoblastoma susceptibility gene RB- 1 in multiple myeloma. Leuk Lymphoma 1997; 24:229–237.PubMedGoogle Scholar
  12. 12.
    DeCaprio JA, Ludlow JW, Figge J, Shew J-Y, Huang C-M, Lee W-H, et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 1988; 54:275–283.PubMedCrossRefGoogle Scholar
  13. 13.
    Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 1988; 334:124–129.PubMedCrossRefGoogle Scholar
  14. 14.
    Munger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J 1989; 8:4099–4105.PubMedGoogle Scholar
  15. 15.
    Whyte P, Williamson NM, Harlow E. Cellular targets for transformation by the adenovirus El A proteins. Cell 1989; 56:67–75.PubMedCrossRefGoogle Scholar
  16. 16.
    Hu QJ, Dyson N, Harlow E. The regions of the retinoblastoma protein needed for binding to adenovirus E1A or S V40 large T antigen are common sites for mutations. EMBO J 1990; 9:1147–1155.PubMedGoogle Scholar
  17. 17.
    Pilon AA, Desjardins P, Hassell JA, Mes-Masson AM. Functional implications of mutations within polyomavirus large T antigen Rb-binding domain: effects on pRb and p107 binding in vitro and immortalization activity in vivo. J Virol 1996; 70:4457–4465.PubMedGoogle Scholar
  18. 18.
    Kaelin WG Jr, Ewen ME, Livingston DM. Definition of the minimal simian virus 40 large T antigenand adenovirus E1A-binding domain in the retinoblastoma gene product. Mol Cell Biol 1990; 10:3761–3769.PubMedGoogle Scholar
  19. 19.
    Moran E. A Region of SV40 large T antigen can substitute for a transforming domain of the adenovirus E1A products. Nature 1988; 334:168–170.PubMedCrossRefGoogle Scholar
  20. 20.
    Moran E, Zarler B, Harrison TM, Mathews MB. Identification of separate domains in the adenovirus E1A gene for immortalization activity and the activation of virus early genes. Mol Cell Biol 1986; 6:3470–3480.PubMedGoogle Scholar
  21. 21.
    Souza RF, Yin J, Smolinski KN, Zou TT, Wang S, Shi YQ, et al. Frequent mutation of the E2F-4 cell cycle gene in primary human gastrointestinal tumors. Cancer Res 1997; 57:2350–2353.PubMedGoogle Scholar
  22. 22.
    Xu G, Livingston DM, Krek W. Multiple members of the E2F transcription factor family are the products of oncogenes. Proc Natl Acad Sci USA 1995; 92:1357–1361.PubMedCrossRefGoogle Scholar
  23. 23.
    Flemington EK, Speck SH, and Kaelin WG. E2F1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc Nall Acad Sci USA 1993; 90:6914–6918.CrossRefGoogle Scholar
  24. 24.
    Weintraub SJ, Prater CA, Dean DC. Retinoblastoma protein switches the E2F site from positive to negative element. Nature 1992; 358:259–261.PubMedCrossRefGoogle Scholar
  25. 25.
    Bremner R, Cohen BL, Sopta M, Hamel PA, Ingles CJ, Gallie BL, Phillips RA. Direct transcriptional repression by pRB and its reversal by specific cyclins. Mol Cell Biol 1995; 15:3256–3265.PubMedGoogle Scholar
  26. 26.
    Zacksenhaus E, Jiang Z, Phillips RA, Gallie BL. Dual mechanisms of repression of E2F1 activity by the retinoblastoma gene product. EMBO J 1996; 15:5917–5927.PubMedGoogle Scholar
  27. 27.
    Chow KN, Starostik P, Dean DC. The Rb family contains a conserved cyclin-dependent-kinase-regulated transcriptional repressor motif. Mol Cell Biol 1996; 16:7173–7181.PubMedGoogle Scholar
  28. 28.
    Starostik P, Chow KN, Dean DC. Transcriptional repression and growth suppression by the p107 pocket protein. Mol Cell Biol 1996; 16:3606–3614.PubMedGoogle Scholar
  29. 29.
    Lam EW, Watson RJ. An E2F-binding site mediates cell-cycle regulated repression of mouse B-myb transcription. EMBO J 1993; 12:2705–2713.PubMedGoogle Scholar
  30. 30.
    Voit R, Schafer K, Grummt I. Mechanism of repression of RNA polymerase I transcription by the retinoblastoma protein. Mol Cell Biol 1997; 17:4230–4237.PubMedGoogle Scholar
  31. 31.
    Chen G, Guy CT, Chen H-W, Hu N, Lee EY- HP, Lee W-H. Molecular cloning and developmental expression of mouse p130, a member of the retinoblastoma gene family. J Biol Chem 1996; 271:9567–9572.PubMedCrossRefGoogle Scholar
  32. 32.
    Ewen ME, Xing Y, Lawrence JB, Livingston DM. Molecular cloning, chromosomal mapping, and expression of the cDNA for p107, a retinoblastoma gene product-related protein. Cell 1991; 66:1155–1164.PubMedCrossRefGoogle Scholar
  33. 33.
    Chellappan SP, Hiebert S, Mudryi M, Horowitz JM, Nevins JR. The E2F transcription factor is a cellular target for the RB protein. Cell 1991; 65:1053–1061.PubMedCrossRefGoogle Scholar
  34. 34.
    Zacny VL, Wilson J, Pagano JS. The Epstein-Barr virus immediate-early gene product, BRLF1, interacts with the retinoblastoma protein during the viral lytic cycle. J Virol 1998; 72:8043–8051.PubMedGoogle Scholar
  35. 35.
    Kato J-Y, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ. Direct binding of cyclin D to the retinoblastoma gene product (Rb) and Rb phosphorylation by the cyclin D-dependent kinase Cdk4. Genes Dey 1993; 7:331–342.CrossRefGoogle Scholar
  36. 36.
    Gu W, Schneider JW, Condorelli G, et al. Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 1993; 72:309–324.PubMedCrossRefGoogle Scholar
  37. 37.
    Xiao Z-X, Chen J, Levine AJ, Modjtahedi N, Xing J, Sellers WR, Livingston DM, Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 1995; 375:694–698.PubMedCrossRefGoogle Scholar
  38. 38.
    Kim SJ, Wagner S, Liu F, O’Reilly MA, Robbins PD, Green MR. Retinoblastoma gene product activates expression of the human TGF-beta2 gene through transcription factor ATF-2. Nature 1992; 358:331–334.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang CY, Petryniak B, Thompson CB, kaelin WG, Leiden JM. Regulation of the Ets-related transcription factor ELF-1 by binding to the retinoblastoma protein. Science 1993; 260:1330–1335.PubMedCrossRefGoogle Scholar
  40. 40.
    Shih HH, Tevosian SG, Yee AS. Regulation of differentiation by HBP1, a target of the retinoblastoma protein. Mol Cell Biol 1998; 18:4732–4743.PubMedGoogle Scholar
  41. 41.
    Robbins PD, Horowitz JM, Mulligan RC. Negative regulation of human c-fos expression by the retinoblastoma gene product. Nature 1990; 346:668–671.PubMedCrossRefGoogle Scholar
  42. 42.
    Nead MA, Baglia LA, Antinore MJ, Ludlow JW, McCance DJ. Rb binds c-Jun activates transcription. EMBO J 1998; 17:2342–2352.PubMedCrossRefGoogle Scholar
  43. 43.
    Park K, Choe J, Osifchin NE, Templeton DJ, Robbins PD, Kim SJ. The Human retinoblastoma susceptibility gene promoter is positively autoregulated by its own product. J Biol Chem 1994; 269:6083–6088.PubMedGoogle Scholar
  44. 44.
    Savoysky E, Mizuno T, Sowa Y, Watanabe H, Sawada J, Nomura H, et al. The retinoblastoma binding factor 1 (RBF-1) site in RB gene promoter binds preferentially E4TF1, a member of the Ets transcription factors family. Oncogene 1994; 9:1839–1846.PubMedGoogle Scholar
  45. 45.
    Batsche E, Muchardt C, Behrens J, Hurst HC, Cremisi C. RB and c-Myc activate expression of the Ecadherin gene in epithelial cells through interaction with transcription factor AP-2. Mol Cell Biol 1998; 18:3647–3658.PubMedGoogle Scholar
  46. 46.
    Wu F, Lee AS. Identification of AP-2 as an interactive target of Rb and a regulator of the G1/S control element of the hamster histone H3.2 promoter. Nucleic Acids Res 1998; 26:4837–4845.PubMedCrossRefGoogle Scholar
  47. 47.
    Lasorella A, Lavarone A, Israel MA. Id2 specifically alters regulation of the cell cycle by tumor suppressor proteins. Mol Cell Biol 1996; 16:2570–2578.PubMedGoogle Scholar
  48. 48.
    Cavanaugh AH, Hempel WM, Taylor LJ, Rogalsky V, Todorov G, Rothblum LI. Activity of RNA polymerase I transcription factor UBF blocked by Rb gene product. Nature 1995; 374:177–180.PubMedCrossRefGoogle Scholar
  49. 49.
    Larminie CGC, Cairns CA, Mital R, Martin K, Kouzarides T, Jackson SP, White RJ. Mechanistic analysis of RNA polymerase III regulation by the retinoblastoma protein. EMBO J 1997; 18:2061–2071.CrossRefGoogle Scholar
  50. 50.
    Shao Z, Siegert JL, Ruppert S, Robbins PD. Rb interacts with TAF(II)250/TFIIID through multiple domains. Oncogene 1997; 15:385–392.PubMedCrossRefGoogle Scholar
  51. 51.
    Siegert JL, Robbins PD. Rb inhibits the intrinsic kinase activity of TATA-binding protein-associated factor TAFII250. Mol Cell Biol 1999; 19:846–854.PubMedGoogle Scholar
  52. 52.
    Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 1998; 391:597–601.PubMedCrossRefGoogle Scholar
  53. 53.
    Magnaghi-Jaulin L, Groisman R, Naguibneve I, Robin P, Larain S, Le Villain JP, et al. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 1998; 391:601–605.PubMedCrossRefGoogle Scholar
  54. 54.
    Luo RX, Postigo AA, Dean DC. Rb interacts with histone deacetylase to repress transcription. Cell 1998; 92:463–473.PubMedCrossRefGoogle Scholar
  55. 55.
    Hagemeier C, Bannister AJ, Cook A, Kouzarides T. The activation domain of transcription factor PU.1 binds the retinoblastoma (RB) protein and the transcription factor TFIID in vitro: RB shows sequence similarity to TFIID and TFIIB. Proc Natl Acad Sci USA 1993; 90:1580–1584.PubMedCrossRefGoogle Scholar
  56. 56.
    Wen ST, Jackson PK, Van Etten RA. The cytostatic function of c-Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene products. EMBO J 1996; 15:1583–1595.PubMedGoogle Scholar
  57. 57.
    Wang S, Ghosh RN, Chellappan SP. Raf-1 physically interacts with Rb and regulates its function: a link between mitogenic signaling and cell cycle regulation. Mol Cell Biol 1998; 18:7487–7498.PubMedGoogle Scholar
  58. 58.
    Guan LS, Rauchman M, Wang ZY. Induction of Rb-associated protein (RbAp46) by Wilms’ tumor suppressor WT1 mediates growth inhibition. J Biol Chem 1998; 273:27,047–27,050.Google Scholar
  59. 59.
    Ach RA, Taranto P, Gruissem W. A conserved family of WD-40 proteins binds to the retinoblastoma protein in both plants and animals. Plant Cell 1997; 9:1595–1606.PubMedGoogle Scholar
  60. 60.
    Qian YW, Wang YC, Hollingsworth RE Jr, Jones D, Ling N, Lee EY. A retinoblastoma-binding protein related to a negative regulator of Ras in yeast. Nature 1993; 364:648–652.PubMedCrossRefGoogle Scholar
  61. 61.
    Chang KH, Chen Y, Chen TT, Chou WH, Chen PL, Ma YY, et al. Thyroid hormone receptor coactivator negatively regulated by the retinoblastoma protein. Proc Natl Acad Sci USA 1997; 94:9040–9045.PubMedCrossRefGoogle Scholar
  62. 62.
    Huang S, Shao G, Liu L. The PR domain of the Rb-binding zinc finger protein R 1 Z 1 is a protein binding interface and is related to the SET domain functioning in chromatin-mediated gene expression. J Biol Chem 1998; 273:15,933–15,939.Google Scholar
  63. 63.
    Buyse IM, Shao G, Huang S. The retinoblastoma protein binds to RIZ, a zinc-finger protein that shares an epitope with the adenovirus E 1 A protein. Proc Natl Acad Sci USA 1995; 92:4467–4471.PubMedCrossRefGoogle Scholar
  64. 64.
    Woitach JT, Zhang M, Niu C-H, Thorgiersson SS. A retinoblastoma-binding protein that affects cellcycle control and confers transforming ability. Nat Genet 1998; 19:371–374.PubMedCrossRefGoogle Scholar
  65. 65.
    Fusco C, Reymond A, Zervos AS. Molecular cloning and characterization of a novel retinoblastomabinding protein. Genomics 1998; 51:351–358.PubMedCrossRefGoogle Scholar
  66. 66.
    Durfee T, Becherer K, Chen PL, Yeh SH, Yang Y, Kilburn AE, Lee WH, Elledge SJ. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dey 1993; 7:555–569.CrossRefGoogle Scholar
  67. 67.
    Rustgi AK, Dyson N, Bernards R. Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product. Nature 1991; 352:541–544.PubMedCrossRefGoogle Scholar
  68. 68.
    Adnane J, Robbins PD. The retinoblastoma susceptibility gene product regulates Myc-mediated transcription. Oncogene 1995; 10:381–387.PubMedGoogle Scholar
  69. 69.
    Trouche D, Le Chalony C, Muchardt C, Yaniv M, Kouzarides T. RB and hbrm cooperate to repress the activation functions of E2F1. Proc Natl Acad Sci USA 1997; 94:11,268–11,273.CrossRefGoogle Scholar
  70. 70.
    Ozaki T, Saijo M, Murakami K, Enomoto H, Taya Y, Sakiyama S. Complex formation between lamm A and the retinoblastoma gene product: identification of the domain on lamin A required for its interaction. Oncogene 1994; 9:2649–2653.PubMedGoogle Scholar
  71. 71.
    Mancini MA, Shan B, Nickerson JA, Penman S, Lee WH. The retinoblastoma gene product is a cell cycle-dependent, nuclear matrix-associated protein. Proc Natl Acad Sci USA 1994; 91:418–422.PubMedCrossRefGoogle Scholar
  72. 72.
    Inoue A, Torigoe T, Sogahata K, Kamiguchi K, Takahashi S, Sawada Y, et al. 70-kDa heat shock cognate protein interacts directly with the N-terminal region of the retinoblastoma gene product pRb. Identification of a novel region of pRb-mediating protein interaction. J Biol Chem 1995; 270:22,571–22,576.Google Scholar
  73. 73.
    Strober BE, Dunaief JL, Guna S, Goff SP. Functional interactions between the hBRM/hBRG 1 transcriptional activators and the pRB family of proteins. Mol Cell Biol 1996; 16:1576–1583.PubMedGoogle Scholar
  74. 74.
    Radulescu RT, Bellitti MR, Ruvo M, Cassani G, Fassina G. Binding of the LXCXE insulin motif to a hexapeptide derived from retinoblastoma protein. Biochem Biophys Res Commun 1995; 206:97–102.PubMedCrossRefGoogle Scholar
  75. 75.
    Lee JO, Russo AA, Pavletich NP. Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature 1998; 391:859–865.PubMedCrossRefGoogle Scholar
  76. 76.
    Bagchi S, Weinmann R, Raychaudhuri P. The retinoblastoma protein copurifies with E2F-1, an E1 Aregulated inhibitor of the transcription factor E2F. Cell 1991; 65:1063–1072.PubMedCrossRefGoogle Scholar
  77. 77.
    Lees JA, Saito M, Vidal M, Valentine M, Look T, Harlow E, Dyson N, Helin K. The retinoblastoma protein binds to a family of E2F transcription factors. Mol Cell Biol 1993; 13:7813–7825.PubMedGoogle Scholar
  78. 78.
    Li J-M, Hu PP-C, Shen X, Yu Y, Wang X-F. E2F4-Rb and E2F4-p107 complexes suppress gene expression by transforming growth factor β through E2F binding sites. Proc Natl Acad Sci USA 1997; 94:4948–4953.PubMedCrossRefGoogle Scholar
  79. 79.
    Cobrinik D, Whyte P, Peeper DS, Jacks T, Weinberg RA. Cell cycle-specific association of E2F with the p130 E1A-binding domain. Genes Dey 1993; 7:2392–2404.CrossRefGoogle Scholar
  80. 80.
    Shan B, Zhu X, Chen PL, Durfee T, Yang Y, Sharp D, Lee WH. Molecular cloning of cellular genes encoding retinoblastoma-associated proteins: identification of a gene with properties of the transcription factor E2F. Mol Cell Biol 1992; 12:5620–5631.PubMedGoogle Scholar
  81. 81.
    Whitaker LL, Su H, Baskaran R, Knudsen ES, Wang JYJ. Growth suppression by an E2F-bindingdefective retinoblastoma protein (RB): Contribution from the RB C pocket. Mol Cell Biol 1998; 18:4032–4042.PubMedGoogle Scholar
  82. 82.
    Chittenden T, Livingston DM, Kaelin WG Jr. The T/E 1 A-binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA-binding protein. Cell 1991; 65:1073–1082.PubMedCrossRefGoogle Scholar
  83. 83.
    Welch PJ, Wang JY. C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell 1993; 75:779–790.PubMedCrossRefGoogle Scholar
  84. 84.
    Whitaker LL, Su H, Baskaran R, Knudsen ES, Wang JY. Growth suppression by an E2F-bindingdefective retinoblastoma protein (RB): contribution from the RB C pocket. Mol Cell Biol 1998; 18:4032–4042.PubMedGoogle Scholar
  85. 85.
    Faha B, Ewen ME, Tsai L-H, Livingston DM, Harlow E. Interaction between human cyclin A and adenovirus E1A-associated p 107 protein. Science 1992; 255:87–90.PubMedCrossRefGoogle Scholar
  86. 86.
    Ewen ME, Faha B, Harlow E, Livingston DM. Interaction of p107 with cyclin A independent of complex formation with viral oncoproteins. Science 1992; 255:85–87.PubMedCrossRefGoogle Scholar
  87. 87.
    Hannon GJ, Demetrick D, Beach D. Isolation of the Rb-related p130 through its interaction with CDK2 and cyclins. Genes Dey 1993; 7:2378–2391.CrossRefGoogle Scholar
  88. 88.
    Li Y, Graham C, Lacy S, Duncan AMV, Whyte P. The Adenovirus E1A-associated 130-kD protein is encoded by a member of the retinoblastoma gene family and physically interacts with cyclins A and E. Genes Dey 1993; 7:2366–2377.CrossRefGoogle Scholar
  89. 89.
    Lu X, Horvitz HR. lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48. Cell 1998; 95:981–991.PubMedCrossRefGoogle Scholar
  90. 90.
    Du W, Vidal M, Xie J-E, Dyson N. RBF, a novel RB-related gene that regulates EF activity and interacts with cyclin E in Drosophila. Genes Dey 1996; 10:1206–1218.CrossRefGoogle Scholar
  91. 91.
    Dyson N. The Regulation of E2F by pRb-family proteins. Genes Dey 1998; 12:2245–2262.CrossRefGoogle Scholar
  92. 92.
    DeGregori J, Kowalik T, Nevins JR. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol Cell Biol 1995; 15:4215–4224.PubMedGoogle Scholar
  93. 93.
    Oswald F, Dobner T, Lipp M. The E2F transcription factor activates a replication-dependent human H2A gene in early S phase of the cell cycle. Mol Cell Biol 1996; 16:1889–1895.PubMedGoogle Scholar
  94. 94.
    Qin X-Q, Livingston DM, Ewen M, Sellers WR, Arany Z, Kaelin WG Jr. The Transcription factor E2F-1 is a downstream target of RB action. Mol Cell Biol 1995; 15:742–755.PubMedGoogle Scholar
  95. 95.
    Zwicker J, Liu N, Engeland K, Lucibello FC, Muller R. Cell cycle regulation of E2F site occupation in vivo. Science 1996; 271:1595–1597.PubMedCrossRefGoogle Scholar
  96. 96.
    DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Piwnica-Worms H, Huang C-M, Livingston DM. The Product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 1989; 58:1085–1095.PubMedCrossRefGoogle Scholar
  97. 97.
    Schwarz JK, Devoto SH, Smith EJ, Chellappan SP, Jakoi L, Nevins JR. Interactions of the p107 and Rb proteins with E2F during the cell proliferation response. EMBO J 1993; 12:1013–1020.PubMedGoogle Scholar
  98. 98.
    Corbeil HB, Whyte P, Branton PE. Characterization of transcription factor E2F complexes during muscle and neuronal differentiation. Oncogene 1995; 11:909–920.PubMedGoogle Scholar
  99. 99.
    Smith EJ, Leone G, DeGregori J, Jakoi L, Nevins JR. The Accumulation of an E2F-p130 transcriptional repressor distinguishes a GO cell state from a G1 cell state. Mol Cell Biol 1996; 16:6965–6976.PubMedGoogle Scholar
  100. 100.
    Knudsen ES, Buckmaster C, Chen TT, Feramisco JR, Wang JY. Inhibition of DNA synthesis by RB: effects on G1/S transition and S-phase progression. Genes Dey 1998; 12:2278–2292.CrossRefGoogle Scholar
  101. 101.
    Niculescu III AB, Chen X, Smeets M, Hengst L, Prives C, Reed SI. Effects of p21 Cip l /Waf l at both the Gl/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 1998; 18:629–643.PubMedGoogle Scholar
  102. 102.
    Moberg K, Starz M, Lees JA. E2F-4 switches from p130 to p107 and pRb in response to cell cycle reentry. Mol Cell Biol 1996; 16:1436–1449.PubMedGoogle Scholar
  103. 103.
    Dyson N, Dembski M, Fattaey A, Ngwu C, Ewen M, Helin K. Analysis of p107-associated proteins: p107 associates with a form of E2F that differs from pRb-associated E2F-1. J Vir. 1993; 67:7641–7647.Google Scholar
  104. 104.
    Beijersbergen RL, Kerkhoven RM, Zhu L, Carlee L, Voorhoeve PM, Bernards R. E2F-4, a new member of the E2F gene family, has oncogenic activity and associates with p107 in vivo. Genes Dey 1994; 8:2680–2690.CrossRefGoogle Scholar
  105. 105.
    Ginsberg D, Vairo G, Chittenden T, Xiao Z-X, Xu G, Wydner KL, et al. E2F-4, a new member of the E2F transcription factor family, interacts with p107. Genes Dey 1994; 8:2665–2679.CrossRefGoogle Scholar
  106. 106.
    Vairo G, Livingston DM, Ginsberg D. Functional interaction between E2F-4 and p130: evidence for distinct mechanisms underlying growth suppression by different retinoblastoma protein family members. Genes Dey 1995; 9:869–881.CrossRefGoogle Scholar
  107. 107.
    Hijmans EM, Voorhoeve PM, Beijersbergen RL, van’t Veer LJ, Bernards R. E2F-5, a new E2F family member that interacts with p130 in vivo. Mol Cell Biol 1995; 15:3082–3089.PubMedGoogle Scholar
  108. 108.
    Hurford RK Jr, Cobrinik D, Lee MH, Dyson N. pRb and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dey 1997; 11:1447–1463.CrossRefGoogle Scholar
  109. 109.
    Tao Y, Kassatly RF, Cress WD, Horowitz JM. Subunit composition determines E2F DNA-binding site specificity. Mol Cell Biol 1997; 17:6994–7007.PubMedGoogle Scholar
  110. 110.
    Morkel M, Wenkel J, Bannister AJ, Kouzarides T, Hagemeier C. An E2F-like repressor of transcription. Nature 1997; 390:567–568.PubMedCrossRefGoogle Scholar
  111. 111.
    Dynlacht BD, Flores O, Lees JA, Harlow E. Differential regulation of E2F trans-activation by cyclin/cdk2 complexes Genes Dey 1994; 8:1772–1786.CrossRefGoogle Scholar
  112. 112.
    Hofmann F, Livingston DM. Differential effects of cdk2 and cdk3 on the control of pRb and E2F function during G1 exit. Genes Dey 1996; 10:851–861.CrossRefGoogle Scholar
  113. 113.
    Krek W, Xu G, Livingston DM. Cyclin A-kinase regulation of E2F-1 DNA binding function underlies suppression of an S phase checkpoint. Cell 1995; 83:1149–1158.PubMedCrossRefGoogle Scholar
  114. 114.
    Bandara LR, Buck VM, Zamanian M, Johnston LH, La Thangue NB. Functional synergy between DP-1 and E2F-1 in the cell cycle-regulating transcription factor DRTF 1 /E2F. EMBO J 1993; 12:4317–4324.PubMedGoogle Scholar
  115. 115.
    Weintraub SJ, Prater CA, Dean DC. Retinoblastoma protein switches the E2F site from positive to negative element. Nature 1992; 358:259–261.PubMedCrossRefGoogle Scholar
  116. 116.
    Cartwright P, Muller H, Wagener C, Holm K, Helin K. E2F-6: A novel member of the E2F family is an inhibitor of E2F-dependent transcription. Oncogene 1998; 17:611–623.PubMedCrossRefGoogle Scholar
  117. 117.
    Trimarchi JM, Fairchild B, Verona R, Moberg K, Andon N, Lees JA. E2F-6, a member of the E2F family that can behave as a transcriptional repressor. Proc Natl Acad Sci USA 1998; 95:2850–2855.PubMedCrossRefGoogle Scholar
  118. 118.
    White RJ, Trouche D, Martin K, Jackson SP, Kouzarides T. Repression of RNA polymerase III transcription by the retinoblastoma protein. Nature 1996; 382:88–90.PubMedCrossRefGoogle Scholar
  119. 119.
    White RJ. Regulation of RNA polymerases I and III by the retinoblastoma protein: a mechanism for growth control? TIBS 1997; 22:77–80.PubMedGoogle Scholar
  120. 120.
    Cairns CA, White RJ. p53 is a general repressor of RNA polymerase III transcription. EMBO J 1998; 17:3112–3123.PubMedCrossRefGoogle Scholar
  121. 121.
    White RJ. Transcription factor IIIB: An important determinant of biosynthetic capacity that is targeted by tumor suppressors and transforming proteins. Int J Oncol 1998; 12:741–748.PubMedGoogle Scholar
  122. 122.
    Geiduschek EP, Kassavetis GA. Comparing transcriptional initiation by RNA polymerases I and III. Curr Opin Cell Biol 1995; 7:344–351.PubMedCrossRefGoogle Scholar
  123. 123.
    Johnson DG, Schwarx JK, Cress WD, Nevins JR. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 1993; 365:349–352.PubMedCrossRefGoogle Scholar
  124. 124.
    Mauck JC, Green H. Regulation of pre-transfer RNA synthesis during transition from resting to growing state. Cell 1974; 3:171–177.PubMedCrossRefGoogle Scholar
  125. 125.
    Larminie CGC, Alzuherri HM, Cairns CA, McLees A, White RJ. Transcription by RNA polymerases I and III: a potential link between cell growth, protein synthesis and the retinoblastoma protein. J Mol Med 1998; 76:94–103.PubMedCrossRefGoogle Scholar
  126. 126.
    Ferreira R, Magnaghi-Jaulin L, Robin P, Harel-Bellan A, Trouche D. The three members of the pocket proteins family share the ability to repress E2F activity through recruitment of a histone deacetylase. Proc Natl Acad Sci USA 1998; 95:10,493–10,498.CrossRefGoogle Scholar
  127. 127.
    Ait-Si-Ali S, Ramirez S, Barre FX, Dkhissi F, Magnaghi-Jaulin L, Girault JA, et al. Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein El/6i. Nature 1998; 396:184–186.PubMedCrossRefGoogle Scholar
  128. 128.
    Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997; 90:595–606.PubMedCrossRefGoogle Scholar
  129. 129.
    Wolfe AP. Transcriptional control. Sinful repression. Nature 1997; 387:16–17.CrossRefGoogle Scholar
  130. 130.
    Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dey 1998; 12:599–606.CrossRefGoogle Scholar
  131. 131.
    Pazin MJ, Kadonaga JT. What’s up and down with histone deacetylation and transcription? Cell 1997; 89:325–328.PubMedCrossRefGoogle Scholar
  132. 132.
    DePinho RA. The cancer-chromatin connection. Nature 1998; 391:533–536.PubMedCrossRefGoogle Scholar
  133. 133.
    LaTangue NB. DRTF1/E2F: an expanding family of heterodimeric transcription factors implicated in cell-cycle control. Trends Biochem Sci 1994; 19:108–114.CrossRefGoogle Scholar
  134. 134.
    Matsushime H, Quelle DE, Shurtleff SA, Shibuya M, Sherr CJ, Kato J-Y. D-type cyclin-dependent kinase activity in mammalian cells. Mol Cell Biol 1994; 14:2066.Google Scholar
  135. 135.
    Sewing A, Burger C, Brusselbach S, Schalk C, Lucibello FC, Muller R. Human cyclin D1 encodes a labile nuctear protein wose synthesis is directly induced by growth factors and suppressed by cyclic AMP. J Cell Sci 1993; 104:545–554.PubMedGoogle Scholar
  136. 136.
    Zhu X, Ohsubo M, Bohmer RM, Roberts JM, Assoian RK. Adhesion-dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E-cdk2, and phosphorylation of the retinoblastoma protein. J Cell Biol 1996; 133:391–403.PubMedCrossRefGoogle Scholar
  137. 137.
    Dowdy SF, Hinds PW, Louie K, Reed SI, Arnold A, Weinberg RA. Physical interaction of the retinoblastoma protein with human D cyclins. Cell 1993; 73:499–511.PubMedCrossRefGoogle Scholar
  138. 138.
    Ewen ME, Sluss HK, Shen CJ, Matsushime H, Kato J-Y, Livingston DM. Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 1993; 73:487–497.PubMedCrossRefGoogle Scholar
  139. 139.
    Connell-Crowley L, Harper JW, Goodrich DW. Cyclin D1/Cdk4 regulates retinoblastoma proteinmediated cell cycle arrest by site-specific phosphorylation. Mol Biol Cell 1997; 8:287–301.PubMedGoogle Scholar
  140. 140.
    Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M. Human cyclin E, a nuclear protein essential for the G1 -to-S phase transition. Mol Cell Biol 1995; 15:2612–2624.PubMedGoogle Scholar
  141. 141.
    Knoblich JA, Sauer K, Jones L, Richardson H, Saint R, Lehner CF. Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell 1994; 77:107–120.PubMedCrossRefGoogle Scholar
  142. 142.
    Peeper DS, Upton TM, Ladha MH, Neuman E, Zalvide J, Bernards R, DeCaprio JA, Ewen ME. Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein. Nature 1997; 386:177–181.PubMedCrossRefGoogle Scholar
  143. 143.
    Arber N, Sutter T, Miyake M, Kahn SM, Venkatraj VS, Sobrino A, et al. Increased expression of cyclin D1 and the Rb tumor suppressor gene in c-K-ras transformed rat enterocytes. Oncogene 1996; 12:1903–1908.PubMedGoogle Scholar
  144. 144.
    Fan J, Bertino JR. K-ras modulates the cell cycle via both positive and negative regulatory pathways. Oncogene 1997; 14:2595–2607.PubMedCrossRefGoogle Scholar
  145. 145.
    Mittnacht S, Paterson H, Olson MF, Marshall CJ. Ras signaling is required for inactivation of the tumour suppressor pRb cell-cycle control protein. Curr Biol 1997; 7:219–221.PubMedCrossRefGoogle Scholar
  146. 146.
    Ladha MH, Lee KY, Upton TM, Reed MF, Ewen ME. Regulation of exit from quiescence by p27 and cyclin D1-CDK4. Mol Cell Biol 1998; 18:6605–6615.PubMedGoogle Scholar
  147. 147.
    Cheng M, Sexi V, Sherr CJ, Roussel MF. Assembly of cyclin D-dependent kinase and titration of p27Kip 1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc Natl Acad Sci USA 1998; 95:1091–1096.PubMedCrossRefGoogle Scholar
  148. 148.
    Soos TJ, Kiyokawa H, Yan JS, Rubin MS, Giordano A, DeBlasio A, et al. Formation of p27-CDK complexes during the human mitotic cell cycle. Cell Growth Differ 1996; 7:135–146.PubMedGoogle Scholar
  149. 149.
    Durand B, Fero ML, Roberts JM, Raff MC. p27Kop 1 alters the response of cells to mitogen and is part of a cell-intrinsic timer that arrests the cell cycle and initiates differentiation. Curr Biol 1998; 8:431–440.PubMedCrossRefGoogle Scholar
  150. 150.
    Hengst L, Reed SI. Translational control of p27Kipl accumulation during the cell cycle. Science 1996; 271:1861–1864.PubMedCrossRefGoogle Scholar
  151. 151.
    Dietrich C, Wallenfang K, Oesch F, Wieser R. Differences in the mechanisms of growth control in contact-inhibited and serum-deprived human fibroblasts. Oncogene 1997; 15:2743–2747.PubMedCrossRefGoogle Scholar
  152. 152.
    Rivard N, L’Allemain G, Bartek J, Pouyssegur J. Abrogation of p27Kip1 by cDNA antisense suppresses quiescence (GO state) in fibroblasts. J Biol Chem 1996; 271:18,337–18,341.Google Scholar
  153. 153.
    Nguyen H, Gitig DM, Koff A. Cell-free degradation of p27(kipl), a G1 cyclin-dependent kinase inhibitor, is dependent on CDK2 activity and the proteasome. Mol Cell Biol 1999; 19:1190–1201.PubMedGoogle Scholar
  154. 154.
    Lukas J, Bartkova J, Rogde M, Strauss M, Bartek J. Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity. Mol Cell Biol 1995; 15:2600–2611.PubMedGoogle Scholar
  155. 155.
    Lukas J, Parry D, Aagard L, Mann DJ, Bartkova J, Strauss M, Peters G, Bartek J. Retinoblastomaprotein-dependent cell-cycle inhibition by the tumor suppressor p16. Nature 1995; 375:503–506.PubMedCrossRefGoogle Scholar
  156. 156.
    Guan K-L, Jenkins CW, Li Y, Nichols MA, Wu X, O’Keefe CL, Matera AG, Xiong Y. Growth suppression by p18, a p 16INK4/MTS 1 and p 14INK4B/MS2-related Cdk6 inhibitor, correlates with wildtype Rb function. Genes Dey 1994; 8:2939–2952.CrossRefGoogle Scholar
  157. 157.
    Medema RH, Herrera RE, Lamb F, Weinberg RA. Growth suppression by p 16ink4 requires functional retinoblastoma protein. Proc Natl Acad Sci USA 1995; 92:6289–6293.PubMedCrossRefGoogle Scholar
  158. 158.
    Horton LE, Qian Y, Templeton DJ. G1 cyclins control the retinoblastoma gene product growth regulation activity via upstream mechanisms. Cell Growth Differ 1995; 6:395–407.PubMedGoogle Scholar
  159. 159.
    Mittnacht S, Lees JA, Desai D, Harlow E, Morgan DO, Weinberg RA. Distinct sub-populations of the retinoblastoma protein show a distinct pattern of phosphorylation. EMBO J 1994; 13:118–127.PubMedGoogle Scholar
  160. 160.
    Akiyama T, Ohuchi T, Sumida S, Matsumoto K, Toyoshima K. Phosphorylation of the retinoblastoma protein by Cdk2. Proc Nall Acad Sci USA 1992; 89:7900–7904.CrossRefGoogle Scholar
  161. 161.
    Knudsen ES, Wang JYJ. Differential regulation of retinoblastoma protein function by specific Cdk phosphorylation sites. J Biol Chem 1996; 14:8313–8320.Google Scholar
  162. 162.
    DeCaprio JA, Furukawa Y, Ajchenbaum F, Griffin JD, Livingston DM. The retinoblastoma-susceptibility gene product becomes phosphorylated in multiple stages during cell cycle entry and progression. Proc Natl Acad Sci USA 1992; 89:1795–1798.PubMedCrossRefGoogle Scholar
  163. 163.
    Kitagawa M, Higashi H, Jung H-K, Suzuki-Takahashi I, Ikeda M, Tamai K, et al. The consensus motif for phosphorylation by cyclin Dl-cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J 1996; 15:7060–7069.PubMedGoogle Scholar
  164. 164.
    Lundberg AS, Weinberg RA. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol 1998; 18:753–761.PubMedGoogle Scholar
  165. 165.
    Adams PD, Li X, Sellers WR, Baker KB, Leng X, Harper JW, Taya Y, Kaelin WG Jr. The retinoblastoma protein contains a C-terminal motif that targets it for phosphorylation by cyclin/cdk2 complexes. Mol Cell Biol, in press.Google Scholar
  166. 166.
    Lukas J, Herzinger T, Hansen K, Moroni MC, Resnitzky D, Helin I, et al. Cyclin E-induced S phase without activation of the Rb/E2F pathway. Genes Dey 1997; 11:1479–1492.CrossRefGoogle Scholar
  167. 167.
    Leng X, Connell-Crowley L, Goodrich D, Harper JW. S-phase entry upon ectopic expression of G1 cyclin-dependent kinases in the absence of retinoblastoma protein phosphorylation. Curr Biol 1997; 7:709–712.PubMedCrossRefGoogle Scholar
  168. 168.
    Connell-Crowley L, Elledge SJ, Harper JW. G1 cyclin-dependent kinases are sufficient to initiate DNA synthesis in quiescent human fibroblasts. Curr Biol 1997; 8:65–68.CrossRefGoogle Scholar
  169. 169.
    Leone G, DeGregori J, Jakoi L, et al. Collaborative role of E2F transcriptional activity and G1 cyclin dependent Kinase activity in the induction of S-phase. Proc Nall Acad Sci USA 1999; 96:6626–6631.CrossRefGoogle Scholar
  170. 170.
    Lee EY-HP, Chang C-Y, Hu N, Wang Y-CJ, Lai C-C, et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 1992; 359:288–295.PubMedCrossRefGoogle Scholar
  171. 171.
    Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. Effects of an Rb mutation in the mouse. Nature 1992; 359:295–300.PubMedCrossRefGoogle Scholar
  172. 172.
    Clarke AR, Maandag ER, van Roon M, van der Lugt NMT, van der Valk M, et al. Reguirement for a functional Rb-1 gene in murine development. Nature 1993; 359:328–330.CrossRefGoogle Scholar
  173. 173.
    Macleod KF, Hu Y, and Jacks T. Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. EMBO J 1996; 15:6176–6188.Google Scholar
  174. 174.
    Hu N, Gulley ML, Kung JT, Lee EY. Retinoblastoma gene deficiency has mitogenic but not tumorigenic effects on erythropoiesis. Cancer Res 1997; 57:4123–4129.PubMedGoogle Scholar
  175. 175.
    Williams BO, Schmitt EM, Remington L, Bronson RT, Albert DM, Weinberg RA, Jacks T. Extensive contribution of Rb-deficient cells to adult chimeric mice with limited histopathological consequences. EMBO J 1994; 13:4251–4259.PubMedGoogle Scholar
  176. 176.
    Maandag EC, van der Valk M, Vlaar M, Feltkamp C, O’Brien J, van Roon M, et al. Developmental rescue of an embryonic-lethal mutation in the retinoblastoma gene in chimeric mice. EMBO J 1994; 13:4260–4268.PubMedGoogle Scholar
  177. 177.
    Hu N, Gutsmann A, Herbert DC, Bradley A, Lee WH, Lee EY. Heterozygous Rb-1 delta 20/+ mice are predisposed to tumors of the pituitary gland with a nearly complete penetrance. Oncogene 1994; 9:1021–1027.PubMedGoogle Scholar
  178. 178.
    Nikitin AY, Lee WH. Early loss of the retinoblastoma gene is associated with impaired growth inhibitory innervation during melanotroph carcinogenesis in Rb+/- mice. Genes Dev 1996; 10:1870–1879.PubMedCrossRefGoogle Scholar
  179. 179.
    Lee M-H, Williams BO, Mulligan G, Mukai S, Bronson RT, Dyson N, Harlow E, Jacks T. Targeted disruption of p107: functional overlap between p107 and Rb. Genes Dev 1996; 10:1621–1632.PubMedCrossRefGoogle Scholar
  180. 180.
    Robanus-Mandag E, Dekker M, van der Valk M, Carrozza ML, Jeanny JC, Dannenberg JH, Berns A, Riele H. p107 is a suppressor of retinoblastoma development in pRb-deficient mice. Genes Dev 1998; 12:1599–1609.CrossRefGoogle Scholar
  181. 181.
    LeCouter JE, Hardy WR, Ying C, Megeney LA, May LL, Rudnicki MA. Strain-dependent myeloid metaplasia, growth deficiency, and shortened cell-cycle in mice lacking p107. Mol Cell Biol 1998; 18:7455–7465.PubMedGoogle Scholar
  182. 182.
    Cobrinik D, Lee M-H, Hannon G, Mulligan G, Bronson RT, Dyson N, et al. Shared role of the pRBrelated p130 and p107 proteins in limb development. Genes Dev 1996; 10:1633–1644.PubMedCrossRefGoogle Scholar
  183. 183.
    LeCouter JE, Kablar B, Whyte PFM, Ying C, Rudnicki MA. Strain-dependent embryonic lethality in mice lacking the retinoblastoma-related p130 gene. Development 1998; 125:4669–4679.PubMedGoogle Scholar
  184. 184.
    Mulligan GJ, Wong J, Jacks T. p130 is dispensable in peripheral T lymphocytes: evidence for functional compensation by p107 and pRB. Mol Cell Biol 1998; 18:206–220.PubMedGoogle Scholar
  185. 185.
    Chittenden T, Livingston DM, DeCaprio JA. Cell cycle analysis of E2F in primary human T cells reveals novel E2F complexes and biochemically distinct forms of free E2F. Mol Cell Biol 1993; 13:3975–3983.PubMedGoogle Scholar
  186. 186.
    Field SJ, Tsai FY, Kuo F, Zubiaga AM, Kaelin WG Jr, Livingston DM, Orkin SH, Greenberg ME. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 1996; 85:549–561.PubMedCrossRefGoogle Scholar
  187. 187.
    Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson NJ. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 1996; 85:537–548.PubMedCrossRefGoogle Scholar
  188. 188.
    Yamasaki L, Bronson R, Williams BO, Dyson NJ, Harlow E, Jacks T. Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb 1(+/-) mice. Nat Genet 1998; 18:360–364.PubMedCrossRefGoogle Scholar
  189. 189.
    Tsai KY, Hu Y, Macleod KF, Crowley D, Yamasaki L, Jacks T. Mutation of E2F-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol Cell 1998; 2:293–304.PubMedCrossRefGoogle Scholar
  190. 190.
    Field SJ, Tsai F-Y, Kuo F, Zubiaga AM, Kaelin WG Jr, Livingston DM, Orkin SH, Greenberg ME. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 1996; 85:549–561.PubMedCrossRefGoogle Scholar
  191. 191.
    Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, Klein WH. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 1993; 364:501–506.PubMedCrossRefGoogle Scholar
  192. 192.
    Nabeshima Y, Hanaoka K, Hayasaka M, Esumi E, Li S, Nonaka I. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 1993; 364:532–535.PubMedCrossRefGoogle Scholar
  193. 193.
    Rawls A, Valdez MR, Zhang W, Richardson J, Klein WH, Olson EN. Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice. Development 1998; 125:2349–2358.PubMedGoogle Scholar
  194. 194.
    Rudnicki MA, Schnegelsberg PNJ, Stead RH, Braun T, Arnold H-H, Jaenisch R. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 1993; 75:1351–1359.PubMedCrossRefGoogle Scholar
  195. 195.
    Rudnicki MA, Jaenisch R. The MyoD family of transcription factors and skeletal myogenesis. BioEssays 1995; 17:203–209.PubMedCrossRefGoogle Scholar
  196. 196.
    Rao SS, Chu C, Kohtz DS. Ectopic expression of cyclin D1 prevents activation of gene transcription by myogenic basic helix-loop-helix regulators. Mol Cell Biol 1994; 14:5259–5267.PubMedGoogle Scholar
  197. 197.
    Skapek SX, Rhee J, Spicer DB, and Lassar AB. Inhibition of myogenic differentiation in proliferating myoblasts by cyclin D1-dependent kinase. Science 1995; 267:1022–1024.PubMedCrossRefGoogle Scholar
  198. 198.
    Skapek SX, Rhee J, Kim PS, Novitch BG, and Lassar AB. Cyclin-mediated inhibition of muscle gene expression via a mechanism that is independent of pRB hyperphosphorylation. Mol Cell Biol 1996; 16:7043–7053.PubMedGoogle Scholar
  199. 199.
    Taylor DA, Kraus VB, Schwarz JJ, Olson EN, Kraus WE. E 1 A-mediated inhibition of myogenesis correlates with a direct physical interaction of E 1 A 12S and basic helix-loop-helix proteins. Mol Cell Biol 1993; 13:4714–4727.PubMedGoogle Scholar
  200. 200.
    Crescenzi M, Soddu S, Sacchi A, Tato F. Adenovirus infection induces reentry into the cell cycle of terminally differentiated skeletal muscle cells. Ann NYAcad Sci 1995; 752:9–18.CrossRefGoogle Scholar
  201. 201.
    Gu W, Schneider JW, Condoreili G, Kaushal S, Mandave V, Nadal-Ginard B. Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 1993; 72:309–324.PubMedCrossRefGoogle Scholar
  202. 202.
    Novitch BG, Mulligan GJ, Jacks T, Lassar AB. Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle. J Cell Biol 1996; 135:441–456.PubMedCrossRefGoogle Scholar
  203. 203.
    Schneider JW, Gu W, Zhu L, Mandavi V, Nadal-Ginard B. Reversal of terminal differentiation mediated by p107 in Rb-/- muscle cells. Science 1994; 264:1467–1471.PubMedCrossRefGoogle Scholar
  204. 204.
    Zacksenhaus E, Jiang Z, Chung D, Marth JD, Phillips RA, Gallie BL. pRb controls proliferation, differentiation, and death of skeletal muscle cells and other lineages during embryogenesis. Genes Dey 1996; 10:3051–3064.CrossRefGoogle Scholar
  205. 205.
    Lavender P, Vandel L, Bannister AJ, Kouzarides T. The HMG-box transcription factor HBP1 is targeted by the pocket proteins and E 1 A. Oncogene 1997; 14:2721–2728.PubMedCrossRefGoogle Scholar
  206. 206.
    Deng C, Zhang P, Harper JW, Elledge SJ, Leder P. Mice lacking p21 CIP 1 /WAF 1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995; 82:675–684.PubMedCrossRefGoogle Scholar
  207. 207.
    Zhang P, Wong C, Liu D, Finegold M, Harper JW, Elledge SJ. p21 CIP 1 and p57KIP2 control muscle differentiation at the myogenin step. Genes Dey 1999; 13:213–224.CrossRefGoogle Scholar
  208. 208.
    Andres V, Walsh K. Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J Cell Biol 1996; 132:657–666.PubMedCrossRefGoogle Scholar
  209. 209.
    Parker SB, Eichele G, Zhang P, Rawls A, Sands AT, Bradley A, Olson EN, Harper JW, Elledge SJ. p53 independent expression of p21Cipl in muscle and other terminally differentiating cells. Science 1995; 267:1024–1027.PubMedCrossRefGoogle Scholar
  210. 210.
    Almasan A, Yin Y, Kelly RE, Lee EY- HP, Bradley A, Li W, Bertino JR, Wahl GM. Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes, and apoptosis. Proc Natl Acad Sci USA 1995; 92:5436–5440.PubMedCrossRefGoogle Scholar
  211. 211.
    DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci USA 1997; 94:7245–7250.PubMedCrossRefGoogle Scholar
  212. 212.
    Pan H, Yin C, Dyson NJ, Harlow E, Yamasaki L, Dyke TV. Key roles for E2F1 in signaling p53-dependent apoptosis and in cell division within developing tumors. Mol Cell 1998; 2:283–292.PubMedCrossRefGoogle Scholar
  213. 213.
    Qin X-Q, Livingston DM, Kaelin WG Jr, Adams PD. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci USA 1994; 91:10,918–10,922.Google Scholar
  214. 214.
    Shan B, Lee W- H. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol Cell Biol 1994; 14:8166–8173.PubMedGoogle Scholar
  215. 215.
    Bates S, Phillips AC, Clark PA, Stott F, Peters G, Ludwig RL, Vousden KH. p19ARF links the tumour suppressors RB and p53. Nature 1998; 395:124–125.PubMedCrossRefGoogle Scholar
  216. 216.
    Palmero I, Pantoja C, Serrano M. p19ARF links the tumour suppressor p53 to Ras. Nature 1998; 395:125–126.PubMedCrossRefGoogle Scholar
  217. 217.
    Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, et al. The Ink4a tumor suppressor gene product, p l 9Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 1998; 92:713–723.PubMedCrossRefGoogle Scholar
  218. 218.
    Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARFINK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 92:725–734.PubMedCrossRefGoogle Scholar
  219. 219.
    Honda R, Yasuda H. Association of p19(ARF) with mdm2 inhibits ubiquitin ligase activity of mdm2 for tumor suppressor p53. EMBO J 1999; 18:22–27.PubMedCrossRefGoogle Scholar
  220. 220.
    Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 1998; 95:8292–8297.PubMedCrossRefGoogle Scholar
  221. 221.
    Jones DL, Thompson DA, Munger K. Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology 1997; 238:97–107.CrossRefGoogle Scholar
  222. 222.
    Janicke RU, Walker PA, Lin XY, Porter AG. Specific cleavage of the retinoblastoma protein by an ICE-like protease in apoptosis. EMBO J 1996; 15:6969–6978.PubMedGoogle Scholar
  223. 223.
    An B, Dou QP. Cleavage of retinoblastoma protein during apoptosis: and interleukin 1 beta-converting enzyme-like protease as candidate. Cancer Res 1996; 56:438–442.PubMedGoogle Scholar
  224. 224.
    Bowen C, Spiegel S, Gelmann EP. Radiation-induced apoptosis mediated by retinoblastoma protein. Cancer Res 1998; 58:3275–3281.PubMedGoogle Scholar
  225. 225.
    Tan X, Wang JYJ. The caspase-RB connection in cell death. Trends Cell Biol 1998; 8:116–120.PubMedCrossRefGoogle Scholar
  226. 226.
    Chen X, Ko LJ, Jayaraman L, Prives C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dey 1996; 10:2438–2451.CrossRefGoogle Scholar
  227. 227.
    Wyllie FS, Haughton MF, Bond JA, Rowson JM, Jones CJ, Wynford-Thomas D. S phase cell-cycle arrest following DNA damage is independent of the p53/p21(WAF1) signalling pathway. Oncogene 1996; 12:1077–1082.PubMedGoogle Scholar
  228. 228.
    Macleod KF, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K, Vogelstein B, Jacks T. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dey 1995; 9:935–944.CrossRefGoogle Scholar
  229. 229.
    Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998; 282:1497–1501.PubMedCrossRefGoogle Scholar
  230. 230.
    Niculescu AB III, Chen X, Smeets M, Hengst L, Prives C, Reed SI. Effects of p21(Cip 1 /Waf 1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 1998; 18:629–643.PubMedGoogle Scholar
  231. 231.
    Harrington EA, Bruce JL, Harlow E, Dyson N. pRB plays an essential role in cell cycle arrest induced by DNA damage. Proc Natl Acad Sci USA 1998; 95:11,945–11,950.CrossRefGoogle Scholar
  232. 232.
    Herrera RE, Sah VP, Williams BO, Makela TP, Weinberg RA, Jacks T. Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in Rb-deficient fibroblasts. Mol Cell Biol 1996; 16:2402–2407.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Lilia Stepanova
  • J. Wade Harper

There are no affiliations available

Personalised recommendations