Skip to main content

Abstract

Recent advances in cancer development studies showed tumorigenesis and metastasis to be complex multistep processes. In the past decade, it became evident that cancer cells have multiple genetic alterations, including point mutations, gene amplification, recombination, gene deletion, reduced or overexpression, and loss of heterozygosity (LOH). Those affected genes include tumor suppressors, oncogenes, and a panoply of genes involved in cell cycle, motility, and adhesion. This review emphasizes the tumor suppressor genes (TSGs) and metastasis suppressor genes, and their alteration at different levels in metastasizing cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lane D, Crawford L. Tantigen is bound to a host protein in SV40-transformed cells. Nature 1979; 278:261–263.

    Article  PubMed  CAS  Google Scholar 

  2. Eliyahu D, Raz A, Gruss P, Givol D, Oren M. Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 1984; 312:646–649.

    Article  PubMed  CAS  Google Scholar 

  3. Johnson P, Gray D, Mowat M, Benchimol S. Expression of wild-type p53 is not compatible with continued growth of p53-negative tumor cells. Mol Cell Biol 1991; 11:1–11.

    PubMed  CAS  Google Scholar 

  4. Lu X, Park SH, Thompson TC, Lane DP. Ras-induced hyperplasia occurs with mutation of p53, but activated ras and myc together can induce carcinoma without p53 mutation. Cell 1992; 70:153–161.

    Article  PubMed  CAS  Google Scholar 

  5. Kern SE, Pietenpol JA, Thiagalingam S, Seymour A, Kinzler KW, Vogelstein B. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 1992; 256:827–830.

    Article  PubMed  CAS  Google Scholar 

  6. Takahashi T, Carbone D, Nau MM, Hida T, Linnoila I, Ueda R, Minna JD. Wild-type but not mutant p53 suppresses the growth of human lung cancer cells bearing multiple genetic lesions. Cancer Res 1992; 52:2340–2343.

    PubMed  CAS  Google Scholar 

  7. Ginsberg D, Mechta F, Yaniv M, Oren M. Wild-type p53 can down-modulate the activity of various promoters. Proc Natl Acad Sci USA 1991; 88:9979–9983.

    Article  PubMed  CAS  Google Scholar 

  8. Hicks GG, Egan SE, Greenberg AH, Mowat M. Mutant p53 tumor suppressor alleles release rasinduced cell cycle growth arrest. Mol Cell Biol 1991; 11:1344–1352.

    PubMed  CAS  Google Scholar 

  9. Milner J, Medcalf EA, Cook AC. Tumor suppressor p53: analysis of wild-type and mutant p53 complexes. Mol Cell Biol 1991; 11:12–19.

    PubMed  CAS  Google Scholar 

  10. Hinds P, Finlay C, Quartin R, Baker S, Fearon E, Vogelstein B, Levine A. Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the“hot spot” mutant phenotypes. Cell Growth Differ 1990; 1:571–580.

    PubMed  CAS  Google Scholar 

  11. Hollstein M, Sidransky D, Vogelstein B, Harris C. p53 mutations in human cancers. Science 1991; 253:49–53.

    Article  PubMed  CAS  Google Scholar 

  12. Tokunaga T, Nakamura M, Oshika Y, Tsuchida T, Kazuno M, Fukushima Y, et al. Alterations in tumour suppressor gene p53 correlate with inhibition of thrombospondin-1 gene expression in colon cancer cells. Virchows Arch 1998; 433:415–418.

    Article  PubMed  CAS  Google Scholar 

  13. Oshiro Y, Chaturvedi V, Hayden D, Nazeer T, Johnson M, Johnston DA, et al. Altered p53 is associated with aggressive behavior of chondrosarcoma: a long term follow-up study. Cancer 1998; 83:2324–2334.

    Article  PubMed  CAS  Google Scholar 

  14. Levesque MA, D’Costa M, Spratt EH, Yaman MM, Diamandis EP. Quantitative analysis of p53 protein in non-small cell lung cancer and its prognostic value. Int JCancer 1998; 79:494–501.

    CAS  Google Scholar 

  15. Yokoyama R, Schneider-Stock R, Radig K, Wex T, Roessner A. Clinicopathologic implications of MDM2, p53 and K-ras gene alterations in osteosarcomas: MDM2 amplification and p53 mutations found in progressive tumors. Pathol Res Pract 1998; 194:615–621.

    Article  PubMed  CAS  Google Scholar 

  16. Wang LS, Chow KC, Liu CC, Chiu JH. p53 gene alternation in squamous cell carcinoma of the esophagus detected by PCR-cold SSCP analysis. Proc Nall Sci Counc Repub China B 1998; 22:114–121.

    CAS  Google Scholar 

  17. Esteve P, Embade N, Perona R, Jimenez B, del Peso L, Leon J, Arends M, Miki T, Lacal JC. Rho-regulated signals induce apoptosis in vitro and in vivo by a p53-independent, but Bcl2 dependent pathway. Oncogene 1998; 17:1855–1869.

    Article  PubMed  CAS  Google Scholar 

  18. Indinnimeo M, Cicchini C, Stazi A, Limiti MR, Giarnieri E, Ghini C, Vecchione A. The prevalence of p53 immunoreactivity in anal canal carcinoma. Oncol Rep 1998; 5:1455–1457.

    PubMed  CAS  Google Scholar 

  19. Shaw P, Bovey R, Tardy S, Sahli R, Sordat B, Costa J. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc Natl Acad Sci USA 1992; 89:4495–4499.

    Article  PubMed  CAS  Google Scholar 

  20. Yonish-Rouach E, Grunwald D, Wilder S, Kimchi A, May E, Lawrence JJ, May P, Oren M. p53mediated cell death: relationship to cell cycle control. Mol Cell Biol 1993; 13:1415–1423.

    PubMed  CAS  Google Scholar 

  21. Debbas M, White E. Wild-type p53 mediates apoptosis by E1A, A, which is inhibited by E 1 B. Genes Dey 1993; 7:546–554.

    Article  CAS  Google Scholar 

  22. Ramgvist T, Magnusson KP, Wang Y, Szekely L, Klein G, Wiman KG. Wild-type p53 induces apoptosis in a Burkitt lymphoma (BL) line that carries mutant p53. Oncogene 1993; 8:1495–1500.

    Google Scholar 

  23. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991; 51:6304–6311.

    PubMed  CAS  Google Scholar 

  24. Lane DP. Cancer. p53, guardian of the genome. Nature 1992; 358:15–16.

    Article  PubMed  CAS  Google Scholar 

  25. Ananthaswamy HN, Pierceall WE. Molecular alterations in human skin tumors. Prog Clin Biol Res 1992; 376:61–84.

    PubMed  CAS  Google Scholar 

  26. Reznikoff CA, Belair C, Savelieva E, Zhai Y, Pfeifer K, Yeager T, et al. Long-term genome stability and minimal genotypic and phenotypic alterations in HPV16 E7-, but not E6-, immortalized human uroepithelial cells. Genes Dey 1994; 8:2227–2240.

    Article  CAS  Google Scholar 

  27. Pogribny IP, Basnakian AG, Miller BJ, Lopatina NG, Poirier LA, James SJ. Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats [published erratum appears] in. Cancer Res 1995; 55:2711

    Google Scholar 

  28. Pogribny IP, Basnakian AG, Miller BJ, Lopatina NG, Poirier LA, James SJ. Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats [published erratum appears] in Cancer Res 1995; 55:1894–1901.

    PubMed  CAS  Google Scholar 

  29. Moro F, Ottagio L, Bonatti S, Simili M, Miele M, Bozzo S, Abbondandolo A. p53 expression in normal versus transformed mammalian cells. Carcinogenesis 1995; 16:2435–2440.

    Article  PubMed  CAS  Google Scholar 

  30. Bertrand P, Rouillard D, Boulet A, Levalois C, Soussi T, Lopez BS. Increase of spontaneous intrachromosomal homologous recombination in mammalian cells expressing a mutant p53 protein. Oncogene 1997; 14:1117–1122.

    Article  PubMed  CAS  Google Scholar 

  31. Mekeel KL, Tang W, Kachnic LA, Luo CM, Defrank JS, Powell SN. Inactivation of p53 results in high rates of homologous recombination. Oncogene 1997; 14:1847–1857.

    Article  PubMed  CAS  Google Scholar 

  32. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 1992; 89:7491–7495.

    Article  PubMed  CAS  Google Scholar 

  33. Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiéctasia. Cell 1992; 71:587–597.

    Article  PubMed  CAS  Google Scholar 

  34. Carr AM, Green MH, Lehmann AR. Checkpoint policing by p53 [letter; comment]. Nature 1992; 359:486–487.

    Article  PubMed  CAS  Google Scholar 

  35. Ryan JJ, Danish R, Gottlieb CA, Clarke MF. Cell cycle analysis of p53-induced cell death in murine erythroleukemia cells. Mol Cell Biol 1993; 13:711–719.

    PubMed  CAS  Google Scholar 

  36. El-Deiry W, Tokino T, Velculescu V, Levy D, Parsons R, Trent J, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75:817–825.

    Article  PubMed  CAS  Google Scholar 

  37. Harper J, Adami G, Wei N, Keyomarsi K, Elledge S. The p21 Cdk-interacting protein Cip 1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75:805–816.

    Article  PubMed  CAS  Google Scholar 

  38. Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S, Kinzler KW, Vogelstein B. 14–3–3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1997; 1:3–11.

    Article  PubMed  CAS  Google Scholar 

  39. Juven T, Barak Y, Zauberman A, George DL, Oren, M. Wild type p53 can mediate sequence-specific transactivation of an internal promoter within the mdm2 gene. Oncogene 1993; 8:3411–3416.

    PubMed  CAS  Google Scholar 

  40. Barak Y, Juven T, Haffner R, Oren M. mdm2 expression is induced by wild type p53 activity. EMBO J 1993; 12:461–468.

    PubMed  CAS  Google Scholar 

  41. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 1993; 362:857–860.

    Article  PubMed  CAS  Google Scholar 

  42. Leveillard T, Wasylyk B. The MDM2 C-terminal region binds to TAFII250 and is required for MDM2 regulation of the cyclin A promoter. J Biol Chem 1997; 272:30,651–30,661.

    Google Scholar 

  43. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387:299–303.

    Article  PubMed  CAS  Google Scholar 

  44. Nozaki T, Masutani M, Sugimura T, Takato T, Wakabayashi K. Abrogation of G1 arrest after DNA damage is associated with constitutive overexpression of Mdm2, Cdk4, and Irf 1 mRNAs in the BALB/c 3T3 A31 variant 1–1 clone. Biochem Biophys Res Commun 1997; 233:216–220.

    Article  PubMed  CAS  Google Scholar 

  45. Lundgren K, Montes de Oca Luna R, McNeill YB, Emerick EP, Spencer B, Barfield OR, et al. Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes Dey 1997; 11:714–725.

    Article  CAS  Google Scholar 

  46. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356:215–221.

    Article  PubMed  CAS  Google Scholar 

  47. Lee JM, Abrahamson JL, Kandel R, Donehower LA, Bernstein A. Susceptibility to radiation-carcinogenesis and accumulation of chromosomal breakage in p53 deficient mice. Oncogene 1994; 9:3731–3736.

    PubMed  CAS  Google Scholar 

  48. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA. Tumor spectrum analysis in p53-mutant mice. Curr Biol 1994; 4:1–7.

    Article  PubMed  CAS  Google Scholar 

  49. Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T, Van Dyke T. p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 1994; 78:703–711.

    Article  PubMed  CAS  Google Scholar 

  50. Hursting SD, Perkins SN, Phang JM. Calorie restriction delays spontaneous tumorigenesis in p53knockout transgenic mice. Proc Natl Acad Sci USA 1994; 91:7036–7040.

    Article  PubMed  CAS  Google Scholar 

  51. Howes KA, Ransom N, Papermaster DS, Lasudry JG, Albert DM, Windle JJ. Apoptosis or retinoblastoma: alternative fates of photoreceptors expressing the HPV- 16 E7 gene in the presence or absence of p53 [published erratum appears in Genes Dey 1994; 8:1738]. Genes Dey 1994; 8:1300–1310.

    Article  CAS  Google Scholar 

  52. Bowman T, Symonds H, Gu, L, Yin C, Oren M, Van Dyke T. Tissue-specific inactivation of p53 tumor suppression in the mouse. Genes Dey 1996; 10:826–835.

    Article  CAS  Google Scholar 

  53. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 1992; 70:923–935.

    Article  PubMed  CAS  Google Scholar 

  54. Nikiforov MA, Hagen K, Ossovskaya VS, Connor TM, Lowe SW, Deichman GI, Gudkov AV. p53 modulation of anchorage independent growth and experimental metastasis. Oncogene 1996; 13:1709–1719.

    PubMed  CAS  Google Scholar 

  55. Levesque MA, Yu H, Clark GM, Diamandis EP. Enzyme-linked immunoabsorbent assay-detected p53 protein accumulation: a prognostic factor in a large breast cancer cohort. J Clin Oncol 1998; 16:2641–2650.

    PubMed  CAS  Google Scholar 

  56. Tsuda H, Sakamaki C, Tsugane S, Fukutomi T, Hirohashi S. A prospective study of the significance of gene and chromosome alterations as prognostic indicators of breast cancer patients with lymph node metastases. Breast Cancer Res Treat 1998; 48:21–32.

    Article  PubMed  CAS  Google Scholar 

  57. Oshiro Y, Chaturved V, Hayden D, Nazeer T, Johnson M, Johnston D, Ordonez N, Ayala A, Czerniak B. Altered p53 is associated with aggressive behavior of chondrosarcoma: a long term follow-up study. Cancer 1998; 83:2324–2334.

    Article  PubMed  CAS  Google Scholar 

  58. Atula S, Kurvinen K, Grenman R, Syrjanen S. SSCP pattern indicative for p53 mutation is related to advanced stage and high-grade of tongue cancer. Eur J Cancer B Oral Oncol 1996; 32B:222–229.

    Article  Google Scholar 

  59. Rohlke P, Milde-Langosch K, Weyland C, Pichlmeier U, Jonat W, Loning T. p53 is a persistent and predictive marker in advanced ovarian carcinomas: multivariate analysis including comparison with Ki67 immunoreactivity. J Cancer Res Clin Oncol 1997; 123:496–501.

    Article  PubMed  CAS  Google Scholar 

  60. Sato Y, Nio Y, Song MM, Sumi S, Hirahara N, Minari Y, Tamura K. p53 protein expression as prognostic factor in human pancreatic cancer. Anticancer Res 1997; 17: 2779–2788.

    PubMed  CAS  Google Scholar 

  61. Caminero MJ, Nunez F, Suarez C, Ablanedo P, Riera JR, Dominguez F. Detection of p53 protein in oropharyngeal carcinoma. Prognostic implications. Arch Otolaryngol Head Neck Surg 1996; 122:769–772.

    Article  PubMed  CAS  Google Scholar 

  62. Venara M, Marull R, Bergada I, Gamboni M, Chemes H. Functional adrenal cortical tumors in childhood: a study of ploidy, p53- protein and nucleolar organizer regions (Agnors) as prognostic markers. J Pediatr Endocrinol Metab 1998; 11:597–605.

    Article  PubMed  CAS  Google Scholar 

  63. Silvestrini R, Daidone M, Benini E, Faranda A, Tomasic G, Boracchi P, Salvadori B, Veronesi U. Validation of p53 accumulation as a predictor of distant metastasis at 10 years of follow-up in 1400 node-negative breast cancers. Clin Cancer Res 1996; 12:2007–2013.

    Google Scholar 

  64. Naka T, Toyota N, Kaneko T, Kaibara N. Protein expression of p53, p21 WAF 1, and Rb as prognostic indicators in patients with surgically treated hepatocellular carcinoma. Anticancer Res 1998; 18:555–564.

    PubMed  CAS  Google Scholar 

  65. Erez-Alon N, Herkel J, Wolkowicz R, Ruiz PJ, Waisman A, Rotter V, Cohen IR. Immunity to p53 induced by an idiotypic network of anti-p53 antibodies: generation of sequence-specific anti-DNA antibodies and protection from tumor metastasis. Cancer Res 1998; 58:5447–5452.

    PubMed  CAS  Google Scholar 

  66. Hallak R, Mueller J, Lotter O, Gansauge S, Gansauge F, el-Deen Jumma M, et al. p53 genetic alterations, protein expression and autoantibodies in human colorectal carcinoma: a comparative study. Int J Oncol 1998; 12:785–791.

    PubMed  CAS  Google Scholar 

  67. Shiota G, Kishimoto Y, Suyama A, Okubo M, Katayama S, Harada K, Ishida M, Hori K, Suou T, Kawasaki H. Prognostic significance of serum anti-p53 antibody in patients with hepatocellular carcinoma. J Hepatol 1997; 27:661–668.

    Article  PubMed  CAS  Google Scholar 

  68. Sakamuro D, Sabbatini P, White E, Prendergast GC. The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 1997; 15:887–898.

    Article  PubMed  CAS  Google Scholar 

  69. Meyers FJ, Gumerlock PH, Chi SG, Borchers H, Deitch AD, deVere White RW. Very frequent p53 mutations in metastatic prostate carcinoma and in matched primary tumors. Cancer 1998; 83:2534–2539.

    Article  PubMed  CAS  Google Scholar 

  70. Mashimo T, Watabe M, Hirota S, Hosobe S, Miura K, Tegtmeyer P, Rinker-Shaeffer C, Watabe K. The expression of the KAI1 gene, a tumor metastasis suppressor, is directly activated by p53. Proc Natl Acad Sci USA 1998; 95:11,307–11,311.

    Article  Google Scholar 

  71. Campomenosi P, Assereto P, Bogliolo M, Fronza G, Abbondandolo A, Capasso A, et al. p53 mutations and DNA ploidy in colorectal adenocarcinomas. Anal Cell Pathol 1998; 17:1–12.

    PubMed  CAS  Google Scholar 

  72. Stoll C, Baretton G, Lohrs U. The influence of p53 and associated factors on the outcome of patients with oral squamous cell carcinoma. Virchows Arch 1998; 433:427–433.

    Article  PubMed  CAS  Google Scholar 

  73. Kappes S, Milde-Langosch K, Kressin P, Passlack B, Dockhorn-Dworniczak B, Rohlke P, Loning T. p53 mutations in ovarian tumors, detected by temperature-gradient gel electrophoresis, direct sequencing and immunohistochemistry. Int J Cancer 1995; 64:52–59.

    Article  PubMed  CAS  Google Scholar 

  74. O’Connor PM, Jackman J, Bae I, Myers TG, Fan S, Mutoh M, et al. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res 1997; 57:4285–4300.

    PubMed  Google Scholar 

  75. Lavigueur A, Maltby V, Mock D, Rossant J, Pawson T, Bernstein A. High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol Cell Biol 1989; 9:3982–3991.

    PubMed  CAS  Google Scholar 

  76. Lavigueur A, Bernstein A. p53 transgenic mice: accelerated erythroleukemia induction by Friend virus. Oncogene 1991; 6:2197–2201.

    PubMed  CAS  Google Scholar 

  77. Lee JM, Bernstein A. p53 mutations increase resistance to ionizing radiation. Proc Natl Acad Sci USA 1993; 90:5742–5746.

    Article  PubMed  CAS  Google Scholar 

  78. Cox L, Chen G, Lee E. Tumor suppressor genes and their role in breast cancer. Breast Cancer Res Treat 1994; 32:19–38.

    Article  PubMed  CAS  Google Scholar 

  79. Harrington EA, Bruce JL, Harlow E, Dyson N. pRB plays an essential role in cell cycle arrest induced by DNA damage. Proc Natl Acad Sci USA 1998; 95:11,945–11,950.

    Article  Google Scholar 

  80. Goodrich D, Wang N, Qian Y, Lee E, Lee W. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 1991; 67:293–302.

    Article  PubMed  CAS  Google Scholar 

  81. Hinds P, Mittnacht S, Dulic V, Arnold A, Reed S, Weinberg R. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 1992; 70:993–1006.

    Article  PubMed  CAS  Google Scholar 

  82. Qin X, Chittenden T, Livingston D, Kaelin WJ. Identification of a growth suppression domain within the retinoblastoma gene product. GenesDey 1992; 6:953–964.

    Article  CAS  Google Scholar 

  83. Awazu S, Nakata K, Hida D, Sakamoto T, Nagata K, Ishii N, Kanematsu T. Stable transfection of retinoblastoma gene promotes contact inhibition of cell growth and hepatocyte nuclear factor- lmediated transcription in human hepatoma cells. Biochem Biophys Res Commun 1998; 252:269–273.

    Article  PubMed  CAS  Google Scholar 

  84. Huang H, Yee J, Shew J, Chen P, Bookstein R, Friedmann T, Lee E, Lee W. Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 1988; 242:1563–1566.

    Article  PubMed  CAS  Google Scholar 

  85. Sumegi J, Uzvolgyi E, Klein G. Expression of the RB gene under the control of Mulv- LTR suppresses tumorigenicity of WERI-Rb-27 retinoblastoma cells in immunodefective mice. Cell Growth Differ 1990; 1:247–250.

    PubMed  CAS  Google Scholar 

  86. Madreperla S, Whittum-Hudson J, Prendergast R, Chen P, Lee W. Intraocular tumor suppression of retinoblastoma gene-reconstituted retinoblastoma cells. Cancer Res 1991; 51:6381–6384.

    PubMed  CAS  Google Scholar 

  87. Takahashi R, Hashimoto T, Xu HJ, Hu SX, Matsui T, Mild T, et al. The retinoblastoma gene functions as a growth and tumor suppressor in human bladder carcinoma cells. Proc Natl Acad Sci USA 1991; 88:5257–5261.

    Article  PubMed  CAS  Google Scholar 

  88. Chen P, Chen Y, Shan B, Bookstein R, Lee W. Stability of retinoblastoma gene expression determines the tumorigenicity of reconstituted retinoblastoma cells. Cell Growth Differ 1992; 3:119–125.

    PubMed  CAS  Google Scholar 

  89. Lefebvre D, Gala JL, Heusterspreute M, Delhez H, Philippe M. Introduction of a normal retinoblastoma (Rb) gene into Rb-deficient lymphoblastoid cells delays tumorigenicity in immunodefective mice. Leuk Res 1998; 22:905–912.

    Article  PubMed  CAS  Google Scholar 

  90. Lee EY, Chang CY, Hu N, Wang YC, Lai CC, Herrup K, Lee WH, Bradley A. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 1992; 359:288–294.

    Article  PubMed  CAS  Google Scholar 

  91. Hooper ML. The role of the p53 and Rb-1 genes in cancer, development and apoptosis. J Cell Sci Suppl 1994; 18:13–17.

    PubMed  CAS  Google Scholar 

  92. Williams BO, Schmitt EM, Remington L, Bronson RT, Albert DM, Weinberg RA, Jacks T. Extensive contribution of Rb-deficient cells to adult chimeric mice with limited histopathological consequences. Embo J 1994; 13:4251–4259.

    PubMed  CAS  Google Scholar 

  93. Harrison DJ, Hooper ML, Armstrong JF, Clarke AR. Effects of heterozygosity for the Rb-lt 19neo allele in the mouse. Oncogene 1995; 10:1615–1620.

    PubMed  CAS  Google Scholar 

  94. Harvey M, Vogel H, Lee EY, Bradley A, Donehower LA. Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin. Cancer Res 1995; 55:1146–1151.

    PubMed  CAS  Google Scholar 

  95. Bignon YJ, Chen Y, Chang CY, Riley DJ, Windle JJ, Mellon PL, Lee WH. Expression of a retinoblastoma transgene results in dwarf mice. Genes Dey 1993; 7:1654–1662.

    Article  CAS  Google Scholar 

  96. Abramson D, Ellsworth R, Kitchin F, Tung G. Second nonocular tumors in retinoblastoma survivors. Are they radiation-induced? Ophthalmology 1984; 91:1351–1355.

    PubMed  CAS  Google Scholar 

  97. Goodrich D, Lee W. Molecular characterization of the retinoblastoma susceptibility gene. Biochim Biophys Acta 1993; 1155:43–61.

    PubMed  CAS  Google Scholar 

  98. Welch D, Wei L. Genetic and epigenetic regulation of human breast cancer progression and metastasis. Endocr-Related Cancer 1998; 5:155–197.

    Article  CAS  Google Scholar 

  99. Cohen J, Geradts J. Loss of RB and MTS 1 /CDKN2 (p16) expression in human sarcomas. Hum Pathol 1997; 28:893–898.

    Article  PubMed  CAS  Google Scholar 

  100. Ishikawa T, Furihata M, Ohtsuki Y, Murakami H, Inoue A, Ogoshi S. Cyclin D1 overexpression related to retinoblastoma protein expression as a prognostic marker in human oesophageal squamous cell carcinoma. Br J Cancer 1998; 77:92–97.

    Article  PubMed  CAS  Google Scholar 

  101. Andersen T, Gaustad A, Ottestad L, Farrants G, Nesland J, Tveit K, Borresen A. Genetic alterations of the tumour suppressor gene regions 3p, 11p, 13q, 17p, and 17q in human breast carcinomas. Genes Chromosomes Cancer 1992; 4:113–121.

    Article  PubMed  CAS  Google Scholar 

  102. Spandidos D, Karaiossifidi H, Malliri A, Linardopoulos S, Vassilaros S, Tsikkinis A, Field J. Expression of ras Rbl and p53 proteins in human breast cancer. Anticancer Res 1992; 12:81–89.

    PubMed  CAS  Google Scholar 

  103. Borg A, Zhang Q, Alm P, Olsson H, Seilberg G. The retinoblastoma gene in breast cancer: allele loss is not correlated with loss of gene protein expression. Cancer Res 1992; 52:2991–2994.

    PubMed  CAS  Google Scholar 

  104. Varley J, Armour J, Swallow J, Jeffreys A, Ponder B, T’Ang A, Fung Y, Brammar W, Walker R. The retinoblastoma gene is frequently altered leading to loss of expression in primary breast tumours [published erratum appears] in.Oncogene 1990; 5:245

    CAS  Google Scholar 

  105. Varley J, Armour J, Swallow J, Jeffreys A, Ponder B, T’Ang A, Fung Y, Brammar W, Walker R. The retinoblastoma gene is frequently altered leading to loss of expression in primary breast tumours [published erratum appears] inOncogene 1989; 4:725–729.

    PubMed  CAS  Google Scholar 

  106. Miyaki M, Tanaka K, Kikuchi-Yanoshita R, Muraoka M, Konishi M, Takeichi M. Increased cell-substratum adhesion, and decreased gelatinase secretion and cell growth, induced by E-cadherin transfection of human colon carcinoma cells. Oncogene 1995; 11:2547–2552.

    PubMed  CAS  Google Scholar 

  107. Maruyama K, Ochiai A, Nakamura S, Baba S, Hirohashi S. Dysfunction of E-cadherin-catenin system in invasion and metastasis of colorectal cancer. Nippon Geka Gakkai Zasshi 1998; 99:402–408.

    PubMed  CAS  Google Scholar 

  108. Shimoyama Y, Hirohashi S. Cadherin intercellular adhesion molecule in hepatocellular carcinomas: loss of E-cadherin expression in an undifferentiated carcinoma. Cancer Lett 1991; 57:131–135.

    Article  PubMed  CAS  Google Scholar 

  109. Tahara E, Kuniyasu H, Nakayama H, Yasui W, Yokozaki H. Metastasis related genes and malignancy in human esophageal, gastric and colorectal cancers. Gan To Kagaku Ryoho 1993; 20:326–331.

    PubMed  CAS  Google Scholar 

  110. Imao T, Koshida K, Endo Y, Uchibayashi T, Sasaki T, Namiki M. Dominant role of E-cadherin in the progression of bladder cancer. J Urol 1999; 161:692–698.

    Article  PubMed  CAS  Google Scholar 

  111. Byers SW, Sommers CL, Hoxter B, Mercurio AM, Tozeren A. Role of E-cadherin in the response of tumor cell aggregates to lymphatic, venous and arterial flow: measurement of cell-cell adhesion strength. J Cell Sci 1995; 108:2053–2064.

    PubMed  CAS  Google Scholar 

  112. Bukholm I, Nesland J, Karesen R, Jacobsen U, Borresen-Dale A. E-cadherin and alpha-, beta-, and gamma-catenin protein expression in relation to metastasis in human breast carcinoma. J Pathol 1998; 185:262–266.

    Article  PubMed  CAS  Google Scholar 

  113. Bussemakers MJ, van Moorselaar RJ, Giroldi LA, Ichikawa T, Isaacs JT, Takeichi M, Debruyne FM, Schalken JA. Decreased expression of E-cadherin in the progression of rat prostatic cancer. Cancer Res 1992; 52:2916–2922.

    PubMed  CAS  Google Scholar 

  114. Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Lochner D, Birchmeier W. E-cadherinmediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 1991; 113:173–185.

    Article  PubMed  CAS  Google Scholar 

  115. Mbalaviele G, Dunstan CR, Sasaki A, Williams PJ, Mundy GR, Yoneda T. E-cadherin expression in human breast cancer cells suppresses the development of osteolytic bone metastases in an experimental metastasis model. Cancer Res 1996; 56:4063–4070.

    PubMed  CAS  Google Scholar 

  116. Mareel MM, Behrens J, Birchmeier W, De Bruyne GK, Vleminckx K, Hoogewijs A, Fiers WC, Van Roy FM. Down-regulation of E-cadherin expression in Madin Darby canine kidney (MDCK) cells inside tumors of nude mice. Int J Cancer 1991; 47:922–928.

    Article  PubMed  CAS  Google Scholar 

  117. Schipper JH, Frixen UH, Behrens J, Unger A, Jahnke K, Birchmeier W. E-cadherin expression in squamous cell carcinomas of head and neck: inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res 1991; 51:6328–6337.

    PubMed  CAS  Google Scholar 

  118. Inoue M, Ogawa H, Miyata M, Shiozaki H, Tanizawa O. Expression of E-cadherin in normal, benign, and malignant tissues of female genital organs. Am J Clin Pathol 1992; 98:76–80.

    PubMed  CAS  Google Scholar 

  119. Hashimoto M, Niwa O, Nitta Y, Takeichi M, Yokoro K. Unstable expression of E-cadherin adhesion molecules in metastatic ovarian tumor cells. Jpn J Cancer Res 1989; 80:459–463.

    Article  PubMed  CAS  Google Scholar 

  120. Franchi A, Gallo O, Boddi V, Santucci M. Prediction of occult neck metastases in laryngeal carcinoma: role of proliferating cell nuclear antigen, MIB-1, and E-cadherin immunohistochemical determination. Clin Cancer Res 1996; 2:1801–1808.

    PubMed  CAS  Google Scholar 

  121. Shun CT, Wu MS, Lin JT, Wang HP, Houng RL, Lee WJ, Wang TH, Chuang SM. An immunohistochemical study of E-cadherin expression with correlations to clinicopathological features in gastric cancer. Hepatogastroenterology 1998; 45:944–949.

    PubMed  CAS  Google Scholar 

  122. Kuniyasu H, Ellis LM, Evans DB, Abbruzzese JL, Fenoglio CJ, Bucana CD, Cleary KR, Tahara E, Fidler IJ. Relative expression of E-cadherin and type IV collagenase genes predicts disease outcome in patients with resectable pancreatic carcinoma. Clin Cancer Res 1999; 5:25–33.

    PubMed  CAS  Google Scholar 

  123. Washington K, Chiappori A, Hamilton K, Shyr Y, Blanke C, Johnson D, Sawyers J, Beauchamp D. Expression of beta-catenin, alpha-catenin, and E-cadherin in Barrett’s esophagus and esophageal adenocarcinomas. Modern Pathol 1998; 11:805–813.

    CAS  Google Scholar 

  124. Karayiannakis AJ, Syrigos KN, Chatzigianni E, Papanikolaou S, Alexiou D, Kalahanis N, Rosenberg T, Bastounis E. Aberrant E-cadherin expression associated with loss of differentiation and advanced stage in human pancreatic cancer. Anticancer Res 1998; 18:4177–4180.

    PubMed  CAS  Google Scholar 

  125. Gofuku J, Shiozaki H, Tsujinaka T, Inoue M, Tamura S, Doki Y, Matsui S, Tsukita S, Kikkawa N, Monden M. Expression of E-cadherin and alpha-catenin in patients with colorectal carcinoma. Correlation with cancer invasion and metastasis. Am J Clin Pathol 1999; 111:29–37.

    PubMed  CAS  Google Scholar 

  126. Hirvikoski P, Kumpulainen E, Virtaniemi J, Helin H, Rantala I, Johansson R, Juhola M, Kosma V. Cytoplasmic accumulation of alpha-catenin is associated with aggressive features in laryngeal squamous-cell carcinoma. Int J Cancer 1998; 79:546–550.

    Article  PubMed  CAS  Google Scholar 

  127. No V, Willems J, Vandekerckhove J, Roy F, Bruyneel E, Mareel M. Inhibition of adhesion and induction of epithelial cell invasion by HAV- containing E-cadherin-specific peptides. J Cell Sci 1998; 112:127–135.

    Google Scholar 

  128. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15:356–362.

    Article  PubMed  CAS  Google Scholar 

  129. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang S, et al. R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275:1943–1947.

    Article  PubMed  CAS  Google Scholar 

  130. Li DM, Sun H. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res 1997; 57:2124–2129.

    PubMed  CAS  Google Scholar 

  131. Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 1997; 16:64–67.

    Article  PubMed  CAS  Google Scholar 

  132. Furnari FB, Lin H, Huang HS, Cavenee WK. Growth suppression of glioma cells by PTEN requires a functional phosphatase catalytic domain. Proc Natl Acad Sci USA 1997; 94:12,479–12,484.

    Article  Google Scholar 

  133. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 1998; 280:1614–1617.

    Article  PubMed  CAS  Google Scholar 

  134. Gu J, Tamura M, Yamada K. Tumor suppressor PTEN inhibits integrin- and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways. J Cell Biol 1998; 143:1375–1383.

    Article  PubMed  CAS  Google Scholar 

  135. Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA 1998; 95:15,587–15,691.

    Google Scholar 

  136. Furnari FB, Huang HJ, Cavenee WK. The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive G1 growth arrest in glioma cells. Cancer Res 1998; 58:5002–5008.

    PubMed  CAS  Google Scholar 

  137. Haas-Kogan D, Shalev N, Wong M, Mills G, G, Y, Stokoe D. Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr Biol 1998; 8:1195–1198.

    Article  PubMed  CAS  Google Scholar 

  138. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998; 273:13,375–13,378.

    Article  Google Scholar 

  139. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998; 95:29–39.

    Article  PubMed  CAS  Google Scholar 

  140. Dahia PL, Marsh DJ, Zheng Z, Zedenius J, Komminoth P, Frisk T, et al. Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res 1997; 57:4710–4713.

    PubMed  CAS  Google Scholar 

  141. Tsou HC, Teng DH, Ping XL, Brancolini V, Davis T, Hu R, et al. The role of MMAC 1 mutations in early-onset breast cancer: causative in association with Cowden syndrome and excluded in BRCA 1negative cases. Am J Hum Genet 1997; 61:1036–1043.

    Article  PubMed  CAS  Google Scholar 

  142. Tashiro H, Blazes MS, Wu R, Cho KR, Bose S, Wang SI, Li J, Parsons R, Ellenson LH. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res 1997; 57:3935–3940.

    PubMed  CAS  Google Scholar 

  143. Rasheed BK, Stenzel TT, McLendon RE, Parsons R, Friedman AH, Friedman HS, Bigner DD, Bigner SH. PTEN gene mutations are seen in high-grade but not in low-grade gliomas. Cancer Res 1997; 57:4187–4190.

    PubMed  CAS  Google Scholar 

  144. Wang SI, Puc J, Li J, Bruce JN, Cairns P, Sidransky D, Parsons R. Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res 1997; 57:4183–4186.

    PubMed  CAS  Google Scholar 

  145. Guldberg P, thor Straten P, Birck A, Ahrenkiel V, Kirkin AF, Zeuthen J. Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res 1997; 57:3660–3663.

    PubMed  CAS  Google Scholar 

  146. Rhei E, Kang L, Bogomolniy F, Federici MG, Borgen PI, Boyd J. Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in primary breast carcinomas. Cancer Res 1997; 57:3657–3659.

    PubMed  CAS  Google Scholar 

  147. Nelen MR, van Staveren WC, Peeters EA, Hassel MB, Gorlin RJ, Hamm H, et al. Germline mutations in the PTEN/MMAC 1 gene in patients with Cowden disease. Hum Mol Genet 1997; 6:1383–1387.

    Article  PubMed  CAS  Google Scholar 

  148. Marsh DJ, Dahia PL, Zheng Z, Liaw D, Parsons R, Gorlin RJ, Eng C. Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet 1997; 16:333–334.

    Article  PubMed  CAS  Google Scholar 

  149. Lynch ED, Ostermeyer EA, Lee MK, Arena JF, Ji H, Dann J, et al. Inherited mutations in PTEN that are associated with breast cancer, cowden disease, and juvenile polyposis. Am J Hum Genet 1997; 61:1254–1260.

    Article  PubMed  CAS  Google Scholar 

  150. Teng DH, Hu R, Lin H, Davis T, Iliev D, Frye C, et al. MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res 1997; 57:5221–5225.

    PubMed  CAS  Google Scholar 

  151. Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, Herman JG, et al. Frequent inactivation of PTEN/MMAC 1 in primary prostate cancer. Cancer Res 1997; 57:4997–5000.

    PubMed  CAS  Google Scholar 

  152. Gray I, Stewart L, Phillips S, Hamilton J, Gray N, Watson G, Spurr N, Snary D. Mutation and expression analysis of the putative prostate tumour-suppressor gene PTEN. Br J Cancer 1998; 78:1296–1300.

    Article  PubMed  CAS  Google Scholar 

  153. Lin WM, Forgacs E, Warshal DP, Yeh IT, Martin JS, Ashfaq R, Muller CY. Loss of heterozygosity and mutational analysis of the PTEN/MMAC 1 gene in synchronous endometrial and ovarian carcinomas. Clin Cancer Res 1998; 4:2577–2583.

    PubMed  CAS  Google Scholar 

  154. Shao X, Tandon R, Samara G, Kanki H, Yano H, Close L, Parsons R, Sato T. Mutational analysis of the PTEN gene in head and neck squamous cell carcinoma. Int J Cancer 1998; 77:684–688.

    Article  PubMed  CAS  Google Scholar 

  155. Kim SK, Su LK, Oh Y, Kemp BL, Hong WK, Mao L. Alterations of PTEN/MMAC 1, a candidate tumor suppressor gene, and its homologue, PTH2, in small cell lung cancer cell lines. Oncogene 1998; 16:89–93.

    Article  PubMed  CAS  Google Scholar 

  156. Okami K, Wu L, Riggins G, Cairns P, Goggins M, Evron E, et al. Analysis of PTEN/MMAC 1 alterations in aerodigestive tract tumors. Cancer Res 1998; 58:509–511.

    PubMed  CAS  Google Scholar 

  157. Bostrom J, Cobbers JM, Wolter M, Tabatabai G, Weber RG, Lichter P, Collins VP, Reifenberger G. Mutation of the PTEN (MMAC1) tumor suppressor gene in a subset of glioblastomas but not in meningiomas with loss of chromosome arm lOq. Cancer Res 1998; 58:29–33.

    PubMed  CAS  Google Scholar 

  158. Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS, Culotti JG, Tessier-Lavigne M. Deleted in colorectal cancer (DCC) encodes a netrin receptor. Cell 1996; 87:175–185.

    Article  PubMed  CAS  Google Scholar 

  159. Drescher U. Netrins find their receptor. Nature 1996; 384:416–417.

    Article  PubMed  CAS  Google Scholar 

  160. Deiner MS, Kennedy TE, Fazeli A, Serafini T, Tessier-Lavigne M, Sretavan DW. Netrin-1 and DCC mediate axon guidance locally at the optic disc: loss of function leads to optic nerve hypoplasia. Neuron 1997; 19:575–589.

    Article  PubMed  CAS  Google Scholar 

  161. de la Torre JR, Hopker VH, Ming GL, Poo MM, Tessier-Lavigne M, Hemmati-Brivanlou A, Holt CE. Turning of retinal growth cones in a netrin-1 gradient mediated by the netrin receptor DCC. Neuron 1997; 19:1211–1224.

    Article  PubMed  Google Scholar 

  162. Klingelhutz A, Hedrick L, Cho K, McDougall J. The DCC gene suppresses the malignant phenotype of transformed human epithelial cells. Oncogene 1995; 10:1581–1586.

    PubMed  CAS  Google Scholar 

  163. Fazeli A, Dickinson SL, Hermiston ML, Tighe RV, Steen RG, Small CG, et al. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 1997; 386:796–804.

    Article  PubMed  CAS  Google Scholar 

  164. Mehlen P, Rabizadeh S, Snipas SJ, Assa-Munt N, Salvesen GS, Bredesen DE. The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature 1998; 395:801–804.

    Article  PubMed  CAS  Google Scholar 

  165. Aoyama N, Minami R, Fujimori T, Maeda S. Structure and function of DCC (deleted in colorectal cancer) gene and its product. Nippon Rinsho 1996; 54:972–980.

    PubMed  CAS  Google Scholar 

  166. Ookawa K, Sakamoto M, Hirohashi S, Yoshida YTS, Terada M, Yokota J. Concordant p53 and DCC alterations and allelic losses on chromosomes 13q and 14q associated with liver metastases of colorectal carcinoma. Int J Cancer 1993; 53:382–387.

    Article  PubMed  CAS  Google Scholar 

  167. Miyake S, Nagai K, Yoshino K, Oto M, Endo M, Yuasa Y. Point mutations and allelic deletion of tumor suppressor gene DCC in human esophageal squamous cell carcinomas and their relation to metastasis. Cancer Res 1994; 54:3007–3010.

    PubMed  CAS  Google Scholar 

  168. Wakita K, Kohno N, Sakoda Y, Ishikawa Y, Sakaue M. Decreased expression of the DCC gene in human breast carcinoma. Surg Today 1996; 26:900–903.

    Article  PubMed  CAS  Google Scholar 

  169. Strohmeyer D, Langenhof S, Ackermann R, Hartmann M, Strohmeyer T, Schmidt B. Analysis of the DCC tumor suppressor gene in testicular germ cell tumors: mutations and loss of expression. J Urol 1997; 157:1973–1976.

    Article  PubMed  CAS  Google Scholar 

  170. Yoshida Y, Itoh F, Endo T, Hinoda Y, Imai K. Decreased DCC mRNA expression in human gastric cancers is clinicopathologically significant. Int J Cancer 1998; 79:634–639.

    Article  PubMed  CAS  Google Scholar 

  171. Fang DC, Jass JR, Wang DX. Loss of heterozygosity and loss of expression of the DCC gene in gastric cancer. J Clin Pathol 1998; 51:593–596.

    Article  PubMed  CAS  Google Scholar 

  172. Reymond MA, Dworak O, Remke S, Hohenberger W, Kirchner T, Kockerling F. DCC protein as a predictor of distant metastases after curative surgery for rectal cancer. Dis Colon Rectum 1998; 41:755–760.

    Article  PubMed  CAS  Google Scholar 

  173. Goi T, Yamaguchi A, Nakagawara G, Urano T, Shiku H, Furukawa K. Reduced expression of deleted colorectal carcinoma (DCC) protein in established colon cancers. Br J Cancer 1998; 77:466–471.

    Article  PubMed  CAS  Google Scholar 

  174. Chen J, Silver DP, Walpita D, Cantor SB, Gazdar AF, Tomlinson G, et al. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell 1998; 2:317–328.

    Article  PubMed  CAS  Google Scholar 

  175. Fan S, Wang JA, Yuan RQ, Ma YX, Meng Q, Erdos, MR, Brody LC, Goldberg ID, Rosen EM. BRCA1 as a potential human prostate tumor suppressor: modulation of proliferation, damage responses and expression of cell regulatory proteins. Oncogene 1998; 16:3069–3082.

    Article  PubMed  CAS  Google Scholar 

  176. Jensen DE, Proctor M, Marquis ST, Gardner HP, Ha SI, Chodosh LA, et al. BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA 1-mediated cell growth suppression. Oncogene 1998; 16:1097–1112.

    Article  PubMed  CAS  Google Scholar 

  177. Rohlfs EM, Learning WG, Friedman KJ, Couch FJ, Weber BL, Silverman LM. Direct detection of mutations in the breast and ovarian cancer susceptibility gene BRCA1 by PCR-mediated site-directed mutagenesis. Clin Chem 1997; 43:24–29.

    PubMed  CAS  Google Scholar 

  178. Shao N, Chai YL, Shyam E, Reddy P, Rao VN. Induction of apoptosis by the tumor suppressor protein BRCA1. Oncogene 1996; 13:1–7.

    PubMed  CAS  Google Scholar 

  179. Rao VN, Shao N, Ahmad M, Reddy ES. Antisense RNA to the putative tumor suppressor gene BRCA1 transforms mouse fibroblasts. Oncogene 1996; 12:523–528.

    PubMed  CAS  Google Scholar 

  180. Vaughn JP, Cirisano FD, Huper G, Berchuck A, Futreal PA, Marks JR, Iglehart JD. Cell cycle control of BRCA2. Cancer Res 1996; 56:4590–4594.

    PubMed  CAS  Google Scholar 

  181. Gudmundsson J, Johannesdottir G, Bergthorsson JT, Arason A, Ingvarsson S, Egilsson V, Barkardottir RB. Different tumor types from BRCA2 carriers show wild-type chromosome deletions on 13q12-q13. Cancer Res 1995; 55:4830–4832

    PubMed  CAS  Google Scholar 

  182. Wong AKC, Pero R, Ormonde PA, Tavtigian SV, Bartel PL. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J Biol Chem 1997; 272:31,941–31,944.

    Google Scholar 

  183. Bertwistle D, Swift S, Marston NJ, Jackson LE, Crossland S, Crompton MR, Marshall CJ, Ashworth A. Nuclear location and cell cycle regulation of the BRCA2 protein. Cancer Res 1997; 57:5485–5488.

    PubMed  CAS  Google Scholar 

  184. Suzuki A, de la Pompa JL, Hakem R, Elia A, Yoshida R, et al. Brca2 is required for embryonic cellular proliferation in the mouse. Genes Dey 1997; 11:1242–1252.

    Article  CAS  Google Scholar 

  185. Rajan JV, Marquis ST, Gardner HP, Chodosh LA. Developmental expression of Brca2 colocalizes with Brcal and is associated with proliferation and differentiation in multiple tissues. Dey Biol 1997; 184:385–401.

    Article  CAS  Google Scholar 

  186. Marmorstein LY, Ouchi T, Aaronson SA. The BRCA2 gene product functionally interacts with p53 and RAD51. Proc Natl Acad Sci USA 1998; 95:13,869–13,874.

    Article  Google Scholar 

  187. Rio PG, Pernin D, Bay JO, Albuisson E, Kwiatkowski F, De Latour M, Bernard-Gallon DJ, Bignon YJ. Loss of heterozygosity of BRCA1, BRCA2 and ATM genes in sporadic invasive ductal breast carcinoma. Int J Oncol 1998; 13:849–853.

    PubMed  CAS  Google Scholar 

  188. Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 1994; 264:436–440.

    Article  PubMed  CAS  Google Scholar 

  189. Mori T, Miura K, Aoki T, Nishihira T, Mori S, Nakamura Y. Frequent somatic mutation of the MTS 1/CDK4I (multiple tumor suppressor/cyclin-dependent kinase 4 inhibitor) gene in esophageal squamous cell carcinoma. Cancer Res 1994; 54:3396–3397.

    PubMed  CAS  Google Scholar 

  190. Arap W, Knudsen E, Sewell DA, Sidransky D, Wang JY, Huang HJ, Cavenee WK. Functional analysis of wild-type and malignant glioma derived CDKN2Abeta alleles: evidence for an RB-independent growth suppressive pathway. Oncogene 1997; 15:2013–2020.

    Article  PubMed  CAS  Google Scholar 

  191. Wu Q, Possati L, Montesi M, Gualandi F, Rimessi P, Morelli C, Trabanelli C, Barbanti-Brodano G. Growth arrest and suppression of tumorigenicity of bladder-carcinoma cell lines induced by the P16/CDKN2 (p16INK4A, MTS1) gene and other loci on human chromosome 9. Int J Cancer 1996; 65:840–846.

    Article  PubMed  CAS  Google Scholar 

  192. Tenan M, Benedetti S, Finocchiaro G. Deletion and transfection analysis of the p15/MTS2 gene in malignant gliomas. Biochem Biophys Res Commun 1995; 217:195–202.

    Article  PubMed  CAS  Google Scholar 

  193. Jin X, Nguyen D, Zhang WW, Kyritsis AP, Roth JA. Cell cycle arrest and inhibition of tumor cell proliferation by the p16INK4 gene mediated by an adenovirus vector. Cancer Res 1995; 55:3250–3253.

    PubMed  CAS  Google Scholar 

  194. Gutmann DH, Wood DL, Collins FS. Identification of the neurofibromatosis type 1 gene product. Proc Natl Acad Sci USA 1991; 88:9658–9662.

    Article  PubMed  CAS  Google Scholar 

  195. Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulino AM, et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients [published erratum appears in Science 1990; 250:1749]. Science 1990; 249:181–186.

    Article  PubMed  CAS  Google Scholar 

  196. Cawthon RM, Weiss R, Xu GF, Viskochil D, Culver M, Stevens J, et al. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations [published erratum appears in Cell 1990; 62:following 608]. Cell 1990; 62:193–201.

    Article  PubMed  CAS  Google Scholar 

  197. Viskochil D, Buchberg AM, Xu G, Cawthon RM, Stevens J, Wolff RK, et al. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 1990; 62:187–192.

    Article  PubMed  CAS  Google Scholar 

  198. Johnson MR, Declue JE, Felzmann S, Vass WC, Xu G, White R, Lowy DR. Neurofibromin can inhibit Ras-dependent growth by a mechanism independent of its GTPase-accelerating function. Mol Cell Biol 1994; 14:641–645.

    PubMed  CAS  Google Scholar 

  199. Nur EKMS, Varga M, Maruta H. The GTPase-activating NF 1 fragment of 91 amino acids reverses vHa-Ras-induced malignant phenotype. J Biol Chem 1993; 268:22,331–22,337.

    Google Scholar 

  200. Gutmann DH, Sherman L, Seftor L, Haipek C, Hoang Lu K, Hendrix M. Increased expression of the NF2 tumor suppressor gene product, merlin, impairs cell motility, adhesionand spreading. Hum Mol Genet 1999; 8:267–275.

    Article  PubMed  CAS  Google Scholar 

  201. McClatchey AI, Saotome I, Mercer K, Crowley D, Gusella JF, Bronson RT, Jacks T. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev 1998; 12:1121–1133.

    Article  PubMed  CAS  Google Scholar 

  202. Shaw RJ, McClatchey AI, Jacks T. Localization and functional domains of the neurofibromatosis type II tumor suppressor, merlin. Cell Growth Differ 1998; 9:287–296.

    PubMed  CAS  Google Scholar 

  203. Sherman L, Xu HM, Geist RT, Saporito-Irwin S, Howells N, Ponta H, Herrlich P, Gutmann DH. Interdomain binding mediates tumor growth suppression by the NF2 gene product. Oncogene 1997; 15:2505–2509.

    Article  PubMed  CAS  Google Scholar 

  204. Lutchman M, Rouleau GA. The neurofibromatosis type 2 gene product, schwannomin, suppresses growth of NIH 3T3 cells. Cancer Res 1995; 55:2270–2274.

    PubMed  CAS  Google Scholar 

  205. Rouleau GA, Seizinger BR, Wertelecki W, Haines JL, Superneau DW, Martuza RL, Gusella JF. Flanking markers bracket the neurofibromatosis type 2 (NF2) gene on chromosome 22. Am J Hum Genet 1990; 46:323–328.

    PubMed  CAS  Google Scholar 

  206. Trofatter JA, Maccollin MM, Rutter JL, Murrell JR, Duyao MP, Parry DM, et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor [published erratum appears in Cell 1993; 75:826]. Cell 1993; 72:791–800.

    Article  PubMed  CAS  Google Scholar 

  207. Rubinfeld B, Albert I, Porfiri E, Munemitsu S, Polakis P. Loss of beta-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Res 1997; 57:4624–4630.

    PubMed  CAS  Google Scholar 

  208. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B, Clevers H. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 1997; 275:1784–1787.

    Article  PubMed  CAS  Google Scholar 

  209. Morin PJ, Vogelstein B. Kinzler KW. Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci USA 1996; 93:7950–7954.

    Article  PubMed  CAS  Google Scholar 

  210. Groden J, Joslyn G, Samowitz W, Jones D, Bhattacharyya N, Spirio L, et al. Response of colon cancer cell lines to the introduction of APC, a colon-specific tumor suppressor gene. Cancer Res 1995; 55:1531–1539.

    PubMed  CAS  Google Scholar 

  211. Sulekova Z, Ballhausen WG. A novel coding exon of the human adenomatous polyposis coli gene. Hum Genet 1995; 96:469–471.

    Article  PubMed  CAS  Google Scholar 

  212. Joslyn G, Carlson M, Thliveris A, Albertsen H, Gelbert L, Samowitz W, et al. Identification of deletion mutations and three new genes at the familial polyposis locus. Cell 1991; 66:601–613.

    Article  PubMed  CAS  Google Scholar 

  213. Nakamura Y, Nishisho I, Kinzler KW, Vogelstein B, Miyoshi Y, Milki Y, Ando H, Horii A. Mutations of the APC (adenomatous polyposis coli) gene in FAP (familial polyposis coli) patients and in sporadic colorectal tumors. Tohoku J Exp Med 1992; 168:141–7.

    Article  PubMed  CAS  Google Scholar 

  214. Ichii S, Horii A, Nakatsuru S, Furuyama J, Utsunomiya J, Nakamura Y. Inactivation of both APC alleles in an early stage of colon adenomas in a patient with familial adenomatous polyposis (FAP). Hum Mol Genet 1992; 1:387–390.

    Article  PubMed  CAS  Google Scholar 

  215. Steeg PS, Bevilacqua G, Kopper L, Thorgeirsson UP, Talmadge JE, Liotta LA, Sobel ME. Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 1988; 80:200–204.

    Article  PubMed  CAS  Google Scholar 

  216. Rosengard AM, Krutzsch HC, Shearn A, Biggs JR, Barker E, Margulies IM, et al. Reduced Nm23/Awd protein in tumour metastasis and aberrant Drosophila development. Nature 1989; 342:177–180.

    Article  PubMed  CAS  Google Scholar 

  217. Stahl JA, Leone A, Rosengard AM, Porter L, King CR, Steeg PS. Identification of a second human nm23 gene, nm23-H2. Cancer Res 1991; 51:445–449.

    PubMed  CAS  Google Scholar 

  218. Venturelli D, Martinez R, Melotti P, Casella I, Peschle C, Cucco C, et al. Overexpression of DRnm23, a protein encoded by a member of the nm23 gene family, inhibits granulocyte differentiation and induces apoptosis in 32Dc13 myeloid cells. Proc Natl Acad Sci USA 1995; 92:7435–7439.

    Article  PubMed  CAS  Google Scholar 

  219. Milon L, Rousseau-Merck MF, Munier A, Erent M, Lascu I, Capeau J. Lacombe ML. nm23-H4, a new member of the family of human nm23/nucleoside diphosphate kinase genes localised on chromosome 16p13. Hum Genet 1997; 99:550–557.

    Article  PubMed  CAS  Google Scholar 

  220. Munier A, Feral C, Milon L, Pinon VP, Gyapay G, Capeau F, Guellaen G, Lacombe ML. A new human nm23 homologue (nm23-H5) specifically expressed in testis germinal cells. FEBS Lett 1998; 434:289–294.

    Article  PubMed  CAS  Google Scholar 

  221. Dearolf CR, Hersperger E, Shearn A. Developmental consequences of awdb3, a cell-autonomous lethal mutation of Drosophila induced by hybrid dysgenesis. Dey Biol 1988; 129:159–168.

    Article  CAS  Google Scholar 

  222. Dearolf CR, Tripoulas N, Biggs J, Shearn A. Molecular consequences of awdb3, a cell-autonomous lethal mutation of Drosophila induced by hybrid dysgenesis. Dey Biol 1988; 129:169–178.

    Article  CAS  Google Scholar 

  223. Ouatas T, Abdallah B, Gasmi L, Bourdais J, Postel E, Mazabraud A. Three different genes encode NM23/nucleoside diphosphate kinases in Xenopus laevis. Gene 1997: 194:215–225.

    Article  PubMed  CAS  Google Scholar 

  224. Wallet V, Mutzel R, Troll H, Barzu O, Wurster B, Veron M, Lacombe ML. Dictyostelium nucleoside diphosphate kinase highly homologous to Nm23 and Awd proteins involved in mammalian tumor metastasis and Drosophila development. J Nall Cancer Inst 1990; 82:1199–1202.

    Article  CAS  Google Scholar 

  225. Lakshmi MS, Parker C, Sherbet GV. Metastasis associated MTS1 and NM23 genes affect tubulin polymerisation in B16 melanomas: a possible mechanism of their regulation of metastatic behaviour of tumours. Anticancer Res 1993; 13:299–303.

    PubMed  CAS  Google Scholar 

  226. Caligo MA, Cipollini G, Cope Di Valromita A, Bistocchi M, Bevilacqua G. Decreasing expression of NM23 gene in metastatic murine mammary tumors of viral etiology (MMTV). Anticancer Res 1992; 12:969–973.

    PubMed  CAS  Google Scholar 

  227. Steeg PS, Bevilacqua G, Pozzatti R, Liotta LA, Sobel ME. Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res 1988; 48:6550–6554.

    PubMed  CAS  Google Scholar 

  228. Su ZZ, Austin VN, Zimmer SG, Fisher PB. Defining the critical gene expression changes associated with expression and suppression of the tumorigenic and metastatic phenotype in Ha-ras-transformed cloned rat embryo fibroblast cells. Oncogene 1993; 8:1211–1219.

    PubMed  CAS  Google Scholar 

  229. Radinsky R, Weisberg HZ, Staroselsky AN, Fidler IJ. Expression level of the nm23 gene in clonal populations of metastatic murine and human neoplasms. Cancer Res 1992; 52:5808–5814.

    PubMed  CAS  Google Scholar 

  230. Heimann R, Ferguson DJ, Hellman S. The relationship between nm23, angiogenesis, and the metastatic proclivity of node-negative breast cancer. Cancer Res 1998; 58:2766–2771.

    PubMed  CAS  Google Scholar 

  231. Han S, Yun IJ, Noh DY, Choe KJ, Song SY, Chi JG. Abnormal expression of four novel molecular markers represents a highly aggressive phenotype in breast cancer. Immunohistochemical assay of p53, nm23, erbB-2, and cathepsin D protein. J Surg Oncol 1997; 65:22–27.

    Article  PubMed  CAS  Google Scholar 

  232. Hennessy C, Henry JA, May FE, Westley BR, Angus B, Lennard TW. Expression of anti-metastatic gene nm23. Br J Cancer 1991; 63:1024.

    Article  PubMed  CAS  Google Scholar 

  233. Charpin C, Bouvier C, Garcia S, Martini F, Andrac L, Lavaut MN, Allasia C. Automated and quantitative immunocytochemical assays of Nm23/NDPK protein in breast carcinomas. Int J Cancer 1997; 74:416–420.

    Article  PubMed  CAS  Google Scholar 

  234. Barnes R, Masood S, Barker E, Rosengard AM, Coggin DL, Crowell T, et al. Low nm23 protein expression in infiltrating ductal breast carcinomas correlates with reduced patient survival. Am J Pathol 1991; 139:245–250.

    PubMed  CAS  Google Scholar 

  235. Tokunaga Y, Urano T, Furukawa K, Kondo H, Kanematsu T, Shiku H. Reduced expression of nm23H 1, but not of nm23-H2, is concordant with the frequency of lymph-node metastasis of human breast cancer. Int J Cancer 1993; 55:66–71.

    Article  PubMed  CAS  Google Scholar 

  236. Noguchi M, Earashi M, Ohnishi I, Kinoshita K, Thomas M, Fusida S, Miyazaki I, Mizukami Y. Nm23 expression versus Helix pomatia lectin binding in human breast cancer metastases. Int J Oncol 1994; 4:1353–1358.

    PubMed  CAS  Google Scholar 

  237. Sauer T, Furu I, Beraki K, Jebsen PW, Ormerod E, Naess O. nm23 protein expression in fine-needle aspirates from breast carcinoma: inverse correlation with cytologic grading, lymph node status, and ploidy. Cancer 1998; 84:109–114.

    Article  PubMed  CAS  Google Scholar 

  238. Duenas-Gonzalez A, Abad-Hernandez MM, Garcia-Mata J, Paz-Bouza JI, Cruz-Hernandez JJ. Gonzalez-Sarmiento R. Analysis of nm23-H1 expression in breast cancer. Correlation with p53 expression and clinicopathologic findings. Cancer Lett 1996; 101:137–142.

    Article  PubMed  CAS  Google Scholar 

  239. Bertheau P, Steinberg SM, Merino MJ. C-erbB-2, p53, and nm23 gene product expression in breast cancer in young women: immunohistochemical analysis and clinicopathologic correlation. Hum Pathol 1998; 29:323–329.

    Article  PubMed  CAS  Google Scholar 

  240. Russo A, Bazan V, Morello V, Valli C, Giarnieri E, Dardanoni G, et al. Nm23-H1 protein immunohistochemical expression in human breast cancer-Relationship to prognostic factors and risk of relapse. Oncol Rep 1996; 3:183–189.

    PubMed  CAS  Google Scholar 

  241. Cropp CS, Lidereau R, Leone A, Liscia D, Cappa AP, Campbell G, et al. NME1 protein expression and loss of heterozygosity mutations in primary human breast tumors. J Nall Cancer Inst 1994; 86:1167–1169.

    Article  CAS  Google Scholar 

  242. Sarac E, Ayhan A, Ertoy D, Tuncer ZS, Yasui W, Tahara E. nm23 expression in carcinoma of the uterine cervix. Eur J Gynaecol Oncol 1998; 19:312–315.

    PubMed  CAS  Google Scholar 

  243. Marone M, Scambia G, Ferrandina G, Giannitelli C, Benedetti-Panici P, Iacovella S, Leone A, Mancuso S. Nm23 expression in endometrial and cervical cancer: inverse correlation with lymph node involvement and myometrial invasion. Br J Cancer 1996; 74:1063–1068.

    Article  PubMed  CAS  Google Scholar 

  244. Mandai M, Konishi I, Koshiyama M, Komatsu T, Yamamoto S, Nanbu K, Mori T, Fukumoto M. Altered expression of nm23-H1 and c-erbB-2 proteins have prognostic significance in adenocarcinoma but not in squamous cell carcinoma of the uterine cervix. Cancer 1995; 75:2523–2529.

    Article  PubMed  CAS  Google Scholar 

  245. Ilijas M, Pavelic K, Sarcevic B, Kapitanovic S, Kurjak A, Stambrook P, Gluckman J, Pavelic Z. Expression of nm23-H1 gene in squamous cell carcinoma of the cervix correlates with 5-year survival. Int J Oncol 1994; 5:1455–1457.

    PubMed  CAS  Google Scholar 

  246. Boix L, Bruix J, Campo E, Sole M, Castells A, Fuster J, Rivera F, Cardesa A, Rodes J. nm23-H1 expression and disease recurrence after surgical resection of small hepatocellular carcinoma. Gastroenterology 1994; 107:486–491.

    PubMed  CAS  Google Scholar 

  247. Nakayama T, Ohtsuru A, Nakao K, Shima M, Nakata K, Watanabe K, et al. Expression in human hepatocellular carcinoma of nucleoside diphosphate kinase, a homologue of the nm23 gene product. J Natl Cancer Inst 1992; 84:1349–1354.

    Article  PubMed  CAS  Google Scholar 

  248. Yamaguchi A, Urano T, Goi T, Takeuchi K, Niimoto S, Nakagawara G, Furukawa K, Shiku H. Expression of human nm23-H1 and nm23-H2 proteins in hepatocellular carcinoma. Cancer 1994; 73:2280–2284.

    Article  PubMed  CAS  Google Scholar 

  249. Scambia G, Ferrandina G, Marone M, Benedetti Panici P, Giannitelli C, Piantelli M, Leone A, Mancuso S. nm23 in ovarian cancer: correlation with clinical outcome and other clinicopathologic and biochemical prognostic parameters. J Clin Oncol 1996; 14:334–342.

    PubMed  CAS  Google Scholar 

  250. Veil A, Dall’Agnese L, Canzonieri V, Sopracordevole F, Capozzi E, Carbone A, Visentin M, Boiocchi M. Suppressive role of the metastasis-related nm23-H1 gene in human ovarian carcinomas: association of high messenger RNA expression with lack of lymph node metastasis. Cancer Res 1995; 55:2645–2650.

    Google Scholar 

  251. Mandai M, Konishi I, Komatsu T, Mori T, Arao S, Nomura H, Kanda Y, Hiai H, Fukumoto M. Mutation of the nm23 gene, loss of heterozygosity at the nm23 locus and K-ras mutation in ovarian carcinoma: correlation with tumour progression and nm23 gene expression. Br J Cancer 1995; 72:691–695.

    Article  PubMed  CAS  Google Scholar 

  252. Kapitonovic S, Spaventi R, Vujsic S, Petrovic Z, Kurjak A, Pavelic Z, Gluckman J, Stambrook P, Pavelic K. Nm23-H1 gene expression in ovarian tumors: a potential tumor marker. Anticancer Res 1995; 15:587–590.

    Google Scholar 

  253. Bodey B, Kaiser HE, Goldfarb RH. Immunophenotypically varied cell subpopulations in primary and metastatic human melanomas. Monoclonal antibodies for diagnosis, detection of neoplastic progression and receptor directed immunotherapy. Anticancer Res 1996; 16:517–531.

    PubMed  CAS  Google Scholar 

  254. Florenes VA, Aamdal S, Myklebost O, Maelandsmo GM, Bruland OS, Fodstad O. Levels of nm23 messenger RNA in metastatic malignant melanomas: inverse correlation to disease progression. Cancer Res 1992; 52:6088–6091.

    PubMed  CAS  Google Scholar 

  255. Greco IM, Calvisi G, Ventura L, Cerrito F. An immunohistochemical analysis of nm23 gene product expression in uveal melanoma. Melanoma Res 1997; 7:231–236.

    Article  PubMed  CAS  Google Scholar 

  256. Lee CS, Pirdas A, Lee MW. Immunohistochemical demonstration of the nm23-H1 gene product in human malignant melanoma and Spitz nevi. Pathology 1996; 28:220–224.

    Article  PubMed  CAS  Google Scholar 

  257. Xerri L, Grob JJ, Battyani Z, Gouvernet J, Hassoun J, Bonerandi JJ. NM23 expression in metastasis of malignant melanoma is a predictive prognostic parameter correlated with survival. Br J Cancer 1994; 70:1224–1228.

    Article  PubMed  CAS  Google Scholar 

  258. Wang L, Patel U, Ghosh L, Chen HC, Banerjee S. Mutation in the nm23 gene is associated with metastasis in colorectal cancer [published erratum appears in Cancer Res 1993; 53:3652]. Cancer Res 1993; 53:717–720.

    PubMed  CAS  Google Scholar 

  259. Leone A, McBride OW, Weston A, Wang MG, Anglard P, Cropp CS, et al. Somatic allelic deletion of nm23 in human cancer. Cancer Res 1991; 51:2490–2493.

    PubMed  CAS  Google Scholar 

  260. Chang CL, Zhu XX, Thoraval DH, Ungar D, Rawwas J, Hora N, et al. Nm23-H1 mutation in neuroblastoma [letter]. Nature 1994; 370:335–336.

    Article  PubMed  CAS  Google Scholar 

  261. Hailat N, Keim DR, Melhem RF, Zhu XX, Eckerskorn C, Brodeur GM, et al. High levels of p 1 9/nm23 protein in neuroblastoma are associated with advanced stage disease and with N-myc gene amplification. J Clin Invest 1991; 88:341–345.

    Article  PubMed  CAS  Google Scholar 

  262. Leone A, Seeger RC, Hong CM, Hu YY, Arboleda MJ, Brodeur GM, et al. Evidence for nm23 RNA overexpression, DNA amplification and mutation in aggressive childhood neuroblastomas. Oncogene 1993; 8:855–865.

    PubMed  CAS  Google Scholar 

  263. Leone A, Flatow U, King CR, Sandeen MA, Margulies IM, Liotta LA, Steeg PS. Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma cells. Cell 1991; 65:25–35.

    Article  PubMed  CAS  Google Scholar 

  264. Leone A, Flatow U, VanHoutte K, Steeg PS. Transfection of human nm23-H1 in to the human MDAMB-435 breast carcinoma cell line: effects on tumor metastatic potential, colonization and enzymatic activity. Oncogene 1993; 8:2325–2333.

    PubMed  CAS  Google Scholar 

  265. Kantor JD, McCormick B, Steeg PS, Zetter BR. Inhibition of cell motility after nm23 transfection of human and murine tumor cells. Cancer Res 1993; 53:1971–1973.

    PubMed  CAS  Google Scholar 

  266. Russell R, Pedersen A, Kantor J, Geisinger K, Long R, Zbieranski N, et al. Relationship of nm23 to proteolytic factors, proliferation and motility in breast cancer tissues and cell lines. Br J Cancer 1998; 78:710–717.

    Article  PubMed  CAS  Google Scholar 

  267. Parhar RS, Shi Y, Zou M, Farid NR, Ernst P, al-Sedairy ST. Effects of cytokine-mediated modulation of nm23 expression on the invasion and metastatic behavior of B l6F 10 melanoma cells. Int J Cancer 1995; 60:204–210.

    Article  PubMed  CAS  Google Scholar 

  268. Fukuda M, Ishii A, Yasutomo Y, Shimada N, Ishikawa N, Hanai N, et al. Decreased expression of nucleoside diphosphate kinase alpha isoform, an nm23-H2 gene homolog, is associated with metastatic potential of rat mammary-adenocarcinoma cells. Int J Cancer 1996; 65:531–537.

    Article  PubMed  CAS  Google Scholar 

  269. Baba H, Urano T, Okada K, Furukawa K, Nakayama E, Tanaka H, Iwasaki K, Shiku H. Two isotypes of murine nm23/nucleoside diphosphate kinase, nm23-M1 and nm23-M2, are involved in metastatic suppression of a murine melanoma line. Cancer Res 1995; 55:1977–1981.

    PubMed  CAS  Google Scholar 

  270. Howlett AR, Petersen OW, Steeg PS, Bissell MJ. A novel function for the nm23-H1 gene: overexpression in human breast carcinoma cells leads to the formation of basement membrane and growth arrest. J Natl Cancer Inst 1994; 86:1838–1844.

    Article  PubMed  CAS  Google Scholar 

  271. Hsu S, Huang F, Wang L, Banerjee S, Winawer S, Friedman E. The role of nm23 in transforming growth factor beta 1-mediated adherence and growth arrest. Cell Growth Differ 1994; 5:909–917.

    PubMed  CAS  Google Scholar 

  272. Gervasi F, D’Agnano I, Vossio S, Zupi G, Sacchi A, Lombardi D. nm23 influences proliferation and differentiation of PC 12 cells in response to nerve growth factor. Cell Growth Differ 1996; 7:1689–1695.

    PubMed  CAS  Google Scholar 

  273. MacDonald NJ, Freije JMP, Stracke ML, Manrow RE, Steeg PS. Site-directed mutagenesis of nm23H1 . Mutation of proline 96 or serine 120 abrogates its motility inhibitory activity upon transection into human breast carcinoma cells. J Biol Chem 1996; 271:25,107–25,116.

    Google Scholar 

  274. Stracke ML, Krutzsch HC, Unsworth EJ, Arestad A, Cioce V, Schiffmann E, Liotta LA. Identification purification and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J Biol Chem 1992; 267:2524–2529.

    PubMed  CAS  Google Scholar 

  275. MacDonald NJ, De la Rosa A, Benedict MA, Freije JM, Krutsch H, Steeg PS. A serine phosphorylation of Nm23, and not its nucleoside diphosphate kinase activity, correlates with suppression of tumor metastatic potential. J Biol Chem 1993; 268:25,780–25,789.

    Google Scholar 

  276. Tepper AD, Dammann H, Bominaar AA, Veron M. Investigation of the active site and the conformational stability of nucleoside diphosphate kinase by site-directed mutagenesis. J Biol Chem 1994; 269:32,175–32,180.

    Google Scholar 

  277. Biggs J, Hersperger E, Steeg PS, Liotta, LA, Shearn A. A Drosophila gene that is homologous to a mammalian gene associated with tumor metastasis codes for a nucleoside diphosphate kinase. Cell 1990; 63:933–940.

    Article  PubMed  CAS  Google Scholar 

  278. Wagner PD, Vu ND. Phosphorylation of ATP-citrate lyase by nucleoside diphosphate kinase. J Biol Chem 1995; 270:21758–21764.

    Article  PubMed  CAS  Google Scholar 

  279. Wagner PD, Steeg PS, Vu ND. Two-component kinase-like activity of nm23 correlates with its motility-suppressing activity. Proc Natl Acad Sci USA 1997; 94:9000–9005.

    Article  PubMed  CAS  Google Scholar 

  280. Lu Q, Park H, Egger LA, Inouye M. Nucleoside-diphosphate kinase-mediated signal transduction via histidyl-aspartyl phosphorelay systems in Escherichia coli. J Biol Chem 1996; 271:32,886–32,893.

    Google Scholar 

  281. Freije JM, Blay P, MacDonald NJ, Manrow RE, Steeg PS. Site-directed mutation of Nm23-H1. Mutations lacking motility suppressive capacity upon transfection are deficient in histidine-dependent protein phosphotransferase pathways in vitro. J Biol Chem 1997; 272:5525–5532.

    Article  PubMed  CAS  Google Scholar 

  282. Engel M, Veron M, Theisinger B, Lacombe ML, Seib T, Dooley S, Welter C. A novel serine/threonine-specific protein phosphotransferase activity of Nm23/nucleoside-diphosphate kinase. Eur J Biochem 1995; 234:200–207.

    Article  PubMed  CAS  Google Scholar 

  283. Engel M, Seifert M, Theisinger B, Seyfert U. Welter C. Glyceraldehyde-3-phosphate dehydrogenase and Nm23-Hl/nucleoside diphosphate kinase A. Two old enzymes combine for the novel Nm23 protein phosphotransferase function. J Biol Chem 1998; 273:20,058–20,065.

    Google Scholar 

  284. Biondi RM, Engel M, Sauane M, Welter C, Issinger OG, Jimenez de Asua L, Passeron S. Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in Hela cells in culture. FEBS Lett 1996; 399:183–187.

    Article  PubMed  CAS  Google Scholar 

  285. Hemmerich S, Pecht I. Oligomeric structure and autophosphorylation of nucleoside diphosphate kinase from rat mucosal mast cells. Biochemistry 1992; 31:4580–4587.

    Article  PubMed  CAS  Google Scholar 

  286. Munoz-Dorado J, Almaula N, Inouye S, Inouye M. Autophosphorylation of nucleoside diphosphate kinase from Myxococcus xanthus. J Bacteriol 1993; 175:1176–1181.

    PubMed  CAS  Google Scholar 

  287. Leung SM, Hightower LE. A 16-kDa protein functions as a new regulatory protein for Hsc70 molecular chaperone and is identified as a member of the Nm23/nucleoside diphosphate kinase family [published erratum appears in J Biol Chem 1997; 272:12,248]. J Biol Chem 1997; 272:2607–2014.

    Article  PubMed  CAS  Google Scholar 

  288. Paravicini G, Steinmayr M, Andre E, Becker-Andre M. The metastasis suppressor candidate nucleotide diphosphate kinase NM23 specifically interacts with members of the ROR/RZR nuclear orphan receptor subfamily. Biochem Biophys Res Commun 1996; 227:82–87.

    Article  PubMed  CAS  Google Scholar 

  289. Lombardi D, Sacchi A, D’ Agostino G, Tibursi G. The association of the Nm23-M1 protein and betatubulin correlates with cell differentiation. Exp Cell Res 1995; 217:267–271.

    Article  PubMed  CAS  Google Scholar 

  290. Otero AS. Copurification of vimentin, energy metabolism enzymes, and a MER5 homolog with nucleoside diphosphate kinase. Identification of tissue-specific interactions. J Biol Chem 1997; 272:14,690–14,694.

    Google Scholar 

  291. Xu J, Liu LZ, Deng XF, Timmons L, Hersperger E, Steeg PS, Veron M, Shearn A. The enzymatic activity of Drosophila AWD/NDP kinase is necessary but not sufficient for its biological function. Dey Biol 1996; 177:544–557.

    Article  CAS  Google Scholar 

  292. Ferguson AW, Flatow U, MacDonald NJ, Larminat F, Bohr VA, Steeg PS. Increased sensitivity to cisplatin by nm23-transfected tumor cell lines. Cancer Res 1996; 56:2931–2935.

    PubMed  CAS  Google Scholar 

  293. De la Rosa A, Mikhak B, Steeg PS. Identification and characterization of the promoter for the human metastasis suppressor gene nm23-Hl. Arch Med Res 1996; 27:395–401.

    PubMed  CAS  Google Scholar 

  294. Chen HC, Wang L, Banerjee S. Isolation and characterization of the promoter region of human nm23H1, a metastasis suppressor gene. Oncogene 1994; 9:2905–2912.

    PubMed  CAS  Google Scholar 

  295. Okada K, Urano T, Baba H, Furukawa K, Shiku H. Independent and differential expression of two isotypes of human Nm23: analysis of the promoter regions of the nm23-H1 and H2 genes. Oncogene 1996; 13:1937–1943.

    PubMed  CAS  Google Scholar 

  296. Dong J, Lamb P, Rinker-Schaeffer C, Vukanovic J, Ichikawa T, Isaacs J, Barrett J. KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2 Science 1995; 268:884–886.

    Article  PubMed  CAS  Google Scholar 

  297. Dong J, Suzuki H, Pin S, Bova G, Schalken J, Isaacs W, Barrett J, Isaacs J. Down regulation of the KAI1 metastasis suppressor gene during the progression of human prostatic cancer infrequently involves gene mutation or allelic loss. Cancer Res 1996; 56:4387–4390.

    PubMed  CAS  Google Scholar 

  298. Sun HC, Tang ZY, Zhou G, Li XM. KAI1 gene expression in hepatocellular carcinoma and its relationship with intrahepatic metastases J Exp Clin Cancer Res 1998; 17:307–311.

    PubMed  CAS  Google Scholar 

  299. Friess H, Guo XZ, Berberat P, Graber HU, Zimmermann A, Korc M, Buchler MW. Reduced KAI1 expression in pancreatic cancer is associated with lymph node and distant metastasis. Int J Cancer 1998; 79:349–355.

    Article  PubMed  CAS  Google Scholar 

  300. Higashiyama M, Kodama K, Yokouchi H, Takami K, Adachi M, Taki T, et al. KAIl/CD82 expression in nonsmall cell lung carcinoma is a novel, favorable prognostic factor: an immunohistochemical analysis. Cancer 1998; 83:466–474.

    Article  PubMed  CAS  Google Scholar 

  301. White A, Lamb P, Barrett J. Frequent downregulation of the KAI1 (CD82) metastasis suppressor protein in human cancer cell lines. Oncogene 1998; 16:3143–3149.

    Article  PubMed  CAS  Google Scholar 

  302. Takaoka A, Hinoda Y, Satoh S, Adachi Y, Itoh F, Adachi M, Imai K. Suppression of invasive properties of colon cancer cells by a metastasis suppressor KAIl gene. Oncogene 1998; 16:1443–1453.

    Article  PubMed  CAS  Google Scholar 

  303. Takaoka A, Hinoda Y, Sato S, Itoh F, Adachi M, Hareyama M, Imai K. Reduced invasive and metastatic potentials of KAI l transfected melanoma cells. Jpn J Cancer Res 1998; 89:397–404.

    Article  PubMed  CAS  Google Scholar 

  304. Yu Y, Yang J, Markovic B, Jackson P, Yardley G, Barrett J, Russell P. Loss of KAI1 messenger RNA expression in both high-grade and invasive human bladder cancers. Clin Cancer Res 1997; 3:1045–1049.

    Google Scholar 

  305. Yu Y, Yang J, Markovic B, Jackson P, Yardley G, Barrett J, Russell P. Loss of KAI1 messenger RNA expression in both high-grade and invasive human bladder cancers. Clin Cancer Res 1997; 3:1045–1049.

    PubMed  CAS  Google Scholar 

  306. Yang X, Welch DR, Phillips KK, Weissman BE, Wei LL. KAI l , a putative marker for metastatic potential in human breast cancer. Cancer Lett 1997; 119:149–155.

    Article  PubMed  CAS  Google Scholar 

  307. Guo X, Friess H, Di Mola F, Heinicke J, Abou-Shady M, Graber H, et al. KAIl, a new metastasis suppressor gene, is reduced in metastatic hepatocellular carcinoma. Hepatology 1998; 28:1481–1488.

    Article  PubMed  CAS  Google Scholar 

  308. Hinoda Y, Adachi Y, Takaoka A, Mitsuuchi H, Satoh Y, Itoh F, Kondoh Y, Imai K. Decreased expression of the metastasis suppressor gene KAIl in gastric cancer. Cancer Lett 1998; 129:229–234.

    Article  PubMed  CAS  Google Scholar 

  309. Huang C, Kohno N, Ogawa E, Adachi M, Taki T, Miyake M. Correlation of reduction in MRP-1/CD9 and KAI1/CD82 expression with recurrences in breast cancer patients. Am J Pathol 1998; 153:973–983.

    Article  PubMed  CAS  Google Scholar 

  310. Lee J, Miele M, Hicks D, Phillips K, Trent J, Weissman B, Welch D. Kiss-1, a novel human malignant melanoma metastasis-suppressor gene [published erratum appears in J Natl Cancer Inst 1997; 89:1549]. J Natl Cancer Inst 1996; 88:1731–1737.

    Article  PubMed  CAS  Google Scholar 

  311. West A, Vojta P, Welch D, Weissman B. Chromosome localization and genomic structure of the Kiss-1 metastasis suppressor gene (KISS 1). Genomics 1998; 54:145–148.

    Article  PubMed  CAS  Google Scholar 

  312. Lee J, Welch D. Identification of highly expressed genes in metastasis-suppressed chromosome 6/human malignant melanoma hybrid cells using subtractive hybridization and differential display. Int J Cancer 1997; 71:1035–1044.

    Article  PubMed  CAS  Google Scholar 

  313. Lee J, Welch D. Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, Kiss-1. Cancer Res 1997; 57:2384–2387.

    PubMed  CAS  Google Scholar 

  314. Bertin N, Clezardin P, Kubiak R, Frappart L. Thrombospondin-1 and-2 messenger RNA expression in normal, benign, and neoplastic human breast tissues: correlation with prognostic factors, tumor angiogenesis, and fibroblastic desmoplasia. Cancer Res 1997; 57:396–399.

    PubMed  CAS  Google Scholar 

  315. Grant S, Kyshtoobayeva A, Kurosaki T, Jakowatz J, Fruehauf J. Mutant p53 correlates with reduced expression of thrombospondin-1, increased angiogenesis, and metastatic progression in melanoma. Cancer Detect Prey 1998; 22:185–194.

    Article  CAS  Google Scholar 

  316. Volpert O, Lawler J, Bouck N. A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental metastases via thrombospondin-1. Proc Natl Acad Sci USA 1998; 95:6343–6348.

    Article  PubMed  CAS  Google Scholar 

  317. Xu M, Kumar D, Stass S, Mixson A. Gene therapy with p53 and a fragment of thrombospondin I inhibits human breast cancer in vivo. Mol Genet Metab 1998; 63:103–109.

    Article  PubMed  CAS  Google Scholar 

  318. Weinstat-Saslow DL, Zabrenetzky VS, VanHoutte K, Frazier WA, Roberts DD, Steeg PS. Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Res 1994; 54:6504–6511.

    PubMed  CAS  Google Scholar 

  319. Roberts DD. Regulation of tumor growth and metastasis by thrombospondin-1. FASEB J 1996; 10:1183–1191.

    PubMed  CAS  Google Scholar 

  320. Guo N, Zabrenetzky V, Chandrasekaran L, Sipes J, Lawler J, Krutzsch H, Roberts D. Differential roles of protein kinase C and pertussis toxin-sensitive G-binding proteins in modulation of melanoma cell proliferation and motility by thrombospondin 1. Cancer Res 1998; 58:3154–3162.

    PubMed  CAS  Google Scholar 

  321. Wagner TM, Moslinger RA, Muhr D, Langbauer G, Hirtenlehner K, Concin H, et al. BRCAl-related breast cancer in Austrian breast and ovarian cancer families: specific BRCA1 mutations and pathological characteristics. Int J Cancer 1998; 77:354–360.

    Article  PubMed  CAS  Google Scholar 

  322. Eisinger F, Nogues C, Birnbaum D, Jacquemier J, Sobol H. Low frequency of lymph-node metastasis in BRCAl-associated breast cancer. Lancet 1998; 351:1633–1634.

    Article  PubMed  CAS  Google Scholar 

  323. Robson M, Gilewski T, Haas B, Levin D, Borgen P, Rajan P, et al. BRCA-associated breast cancer in young women. J Clin Oncol 1998; 16:1642–1649.

    PubMed  CAS  Google Scholar 

  324. Karp SE, Tonin PN, Begin LR, Martinez JJ, Zhang JC, Pollak MN, Foulkes WD. Influence of BRCA1 mutations on nuclear grade and estrogen receptor status of breast carcinoma in Ashkenazi Jewish women. Cancer 1997; 80:435–441.

    Article  PubMed  CAS  Google Scholar 

  325. Beckmann MW, Picard F, An HX, van Roeyen CR, Dominik SI, Mosny DS, Schnurch HG, Bender HG, Niederacher D. Clinical impact of detection of loss of heterozygosity of BRCA1 and BRCA2 markers in sporadic breast cancer. Br J Cancer 1996; 73:1220–1226.

    Article  PubMed  CAS  Google Scholar 

  326. Mori T, Aoki T, Matsubara T, Iida F, Du X, Nishihira T, Mori S, Nakamura Y. Frequent loss of heterozygosity in the region including BRCA1 on chromosome 17q in squamous cell carcinomas of the esophagus. Cancer Res 1994; 54:1638–1640.

    PubMed  CAS  Google Scholar 

  327. Schmutzler RK, Homann A, Bierhoff E, Wiestler OD, von Daimling A, Krebs D. Detection of genetic alterations in sporadic breast tumors. Gynakol Geburtshilfliche Rundsch 1995; 35:(Suppl 1) 63–67.

    Article  PubMed  Google Scholar 

  328. Prechtel D, Werenskiold AK, Prechtel K, Keller G, Hofler H. Frequent loss of heterozygosity at chromosome 13q12–13 with BRCA2 markers in sporadic male breast cancer. Diagn Mol Pathol 1998;7:57–62.

    Article  PubMed  CAS  Google Scholar 

  329. Bieche I, Nogues C, Rivoilan S, Khodja A, Latil A, Lidereau R. Prognostic value of loss of heterozygosity at BRCA2 in human breast carcinoma. Br J Cancer 1997; 76:1416–1418.

    Article  PubMed  CAS  Google Scholar 

  330. Lothe RA, Saeter G, Danielsen HE, Stenwig AE, Hoyheim B, O’Connell P, Borresen AL. Genetic alterations in a malignant schwannoma from a patient with neurofibromatosis (NF1). Pathol Res Pract 1993; 189:465–471 discussion 471–474.

    Article  PubMed  CAS  Google Scholar 

  331. Legius E, Marchuk DA, Collins FS, Glover TW. Somatic deletion of the neurofibromatosis type 1 gene in a neurofibrosarcoma supports a tumour suppressor gene hypothesis. Nat Genet 1993; 3:122–126.

    Article  PubMed  CAS  Google Scholar 

  332. Andersen LB, Fountain JW, Gutmann DH, Tarle SA, Glover TW, Dracopoli NC, Housman DE, Collins FS. Mutations in the neurofibromatosis 1 gene in sporadic malignant melanoma cell lines. Nat Genet 1993; 3:118–121.

    Article  PubMed  CAS  Google Scholar 

  333. Shannon KM, O’Connell P, Martin GA, Paderanga D, Olson K, Dinndorf P, McCormick F. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med 1994; 330:597–601.

    Article  PubMed  CAS  Google Scholar 

  334. Miles DK, Freedman MH, Stephens K, Pallavicini M, Sievers EL, Weaver M, et al. Patterns of hematopoietic lineage involvement in children with neurofibromatosis type 1 and malignant myeloid disorders. Blood 1996; 88:4314–4120.

    PubMed  CAS  Google Scholar 

  335. Colman SD, Williams CA, Wallace MR. Benign neurofibromas in type 1 neurofibromatosis (NF1) show somatic deletions of the NF1 gene. Nat Genet 1995; 11:90–92.

    Article  PubMed  CAS  Google Scholar 

  336. Jensen S, Paderanga DC, Chen P, Olson K, Edwards M, Iavorone A, Israel MA, Shannon K. Molecular analysis at the NF1 locus in astrocytic brain tumors. Cancer 1995; 76:674–677.

    Article  PubMed  CAS  Google Scholar 

  337. Fridman M, Tikoo A, Varga M, Murphy A, Nur EKMS, Maruta H. The minimal fragments of c-Raf-1 and NF1 that can suppress v-Ha-Ras-induced malignant phenotype. J Biol Chem 1994; 269:30105–30108.

    PubMed  CAS  Google Scholar 

  338. Kalra R, Paderanga DC, Olson K, Shannon KM. Genetic analysis is consistent with the hypothesis that NF1 limits myeloid cell growth through p2lras. Blood 1994; 84:3435–3439.

    PubMed  CAS  Google Scholar 

  339. Mangues R, Corral T, Lu S, Symmans WF, Liu L, Pellicer A. NF1 inactivation cooperates with N-ras in in vivo lymphogenesis activating Erk by a mechanism independent of its Ras-GTPase accelerating activity. Oncogene 1998; 17:1705–1716.

    Article  PubMed  CAS  Google Scholar 

  340. Side LE, Emanuel PD, Taylor B, Franklin J, Thompson P, Castleberry RP, Shannon KM. Mutations of the NF1 gene in children with juvenile myelomonocytic leukemia without clinical evidence of neurofibromatosis, type 1. Blood 1998; 92:267–272.

    PubMed  CAS  Google Scholar 

  341. Zhang YY, Vik TA, Ryder JW, Srour EF, Jacks T, Shannon K, Clapp DW. Nfl regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines. J Exp Med 1998; 187:1893–1902.

    Article  PubMed  CAS  Google Scholar 

  342. Serra E, Puig S, Otero D, Gaona A, Kruyer H, Ars E, Estivill X, Lazaro C. Confirmation of a doublehit model for the NF1 gene in benign neurofibromas. Am J Hum Genet 1997; 61:512–519.

    Article  PubMed  CAS  Google Scholar 

  343. Side L, Taylor B, Cayouette M, Conner E, Thompson P, Luce M, Shannon K. Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N Engl J Med 1997; 336:1713–1720.

    Article  PubMed  CAS  Google Scholar 

  344. Park VM, Pivnick EK. Neurofibromatosis type 1 (NF1): a protein truncation assay yielding identification of mutations in 73% of patients. J Med Genet 1998; 35:813–820.

    Article  PubMed  CAS  Google Scholar 

  345. Kai S, Sumita H, Fujioka K, Takahashi H, Hanzawa N, Funabiki T, Ikuta K, Sasaki H. Loss of heterozygosity of NF1 gene in juvenile chronic myelogenous leukemia with neurofibromatosis type 1. Int J Hematol 1998; 68:53–60.

    Article  PubMed  CAS  Google Scholar 

  346. Klose A, Ahmadian MR, Schuelke M, Scheffzek K, Hoffmeyer S, Gewies A, et al. Selective disactivation of neurofibromin GAP activity in neurofibromatosis type 1. Hum Mol Genet 1998; 7:1261–1268.

    Article  PubMed  CAS  Google Scholar 

  347. Rasmussen SA, Colman SD, Ho VT, Abernathy CR, Am PH, Weiss L, et al. Constitutional and mosaic large NF1 gene deletions in neurofibromatosis type 1. J Med Genet 1998; 35:468–471.

    Article  PubMed  CAS  Google Scholar 

  348. Ars E, Kruyer H, Gaona A, Casquero P, Rosell J, Volpini V, Serra E, Lazaro C, Estivill X. A clinical variant of neurofibromatosis type 1: familial spinal neurofibromatosis with a frameshift mutation in the NF1 gene. Am J Hum Genet 1998; 62:834–841.

    Article  PubMed  CAS  Google Scholar 

  349. Wellenreuther R, Kraus JA, Lenartz D, Menon AG, Schramm J, Louis DN, et al. Analysis of the neurofibromatosis 2 gene reveals molecular variants of meningioma. Am J Pathol 1995; 146:827–832.

    PubMed  CAS  Google Scholar 

  350. Papi L, De Vitis LR, Vitelli F, Ammannati F, Mennonna P, Montali E, Bigozzi U. Somatic mutations in the neurofibromatosis type 2 gene in sporadic meningiomas. Hum Genet 1995; 95:347–351.

    Article  PubMed  CAS  Google Scholar 

  351. Merel P, Khe HX, Sanson M, Bijlsma E, Rouleau G, Laurent-Puig P, et al. Screening for germ-line mutations in the NF2 gene. Genes Chromosomes Cancer 1995; 12:117–127.

    Article  PubMed  CAS  Google Scholar 

  352. Jacoby LB, MacCollin M, Barone R, Ramesh V, Gusella JF. Frequency and distribution of NF2 mutations in schwannomas. Genes Chromosomes Cancer 1996; 17:45–55.

    Article  PubMed  CAS  Google Scholar 

  353. Mautner VF, Baser ME, Kluwe L. Phenotypic variablity in two families with novel splice-site and frameshift NF2 mutations. Hum Genet 1996; 98:203–206.

    Article  PubMed  CAS  Google Scholar 

  354. Huynh DP, Pulst SM. Neurofibromatosis 2 antisense oligodeoxynucleotides induce reversible inhibition of schwannomin synthesis and cell adhesion in STS26T and T98G cells. Oncogene 1996; 13:73–84.

    PubMed  CAS  Google Scholar 

  355. De Vitis LR, Tedde A, Vitelli F, Ammannati F, Mennonna P, Bigozzi U, Montali E, Papi L. Screening for mutations in the neurofibromatosis type 2 (NF2) gene in sporadic meningiomas. Hum Genet 1996; 97:632–637.

    Article  PubMed  Google Scholar 

  356. Harada T, Irving RM, Xuereb JH, Barton DE, Hardy DG, Moffat DA, Maher ER. Molecular genetic investigation of the neurofibromatosis type 2 tumor suppressor gene in sporadic meningioma. J Neurosurg 1996; 84:847–51.

    Article  PubMed  CAS  Google Scholar 

  357. Kluwe L, Mautner VF. A missense mutation in the NF2 gene results in moderate and mild clinical phenotypes of neurofibromatosis type 2. Hum Genet 1996; 97:224–7.

    Article  PubMed  CAS  Google Scholar 

  358. Bianchi AB, Mitsunaga SI, Cheng JQ, Klein WM, Jhanwar SC, Seizinger B, et al. High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc Nall Acad Sci USA 1995; 92:10854–10858.

    Article  CAS  Google Scholar 

  359. Hitotsumatsu T, Iwaki T, Kitamoto T, Mizoguchi M, Suzuki SO, Hamada Y, Fukui M, Tateishi J. Expression of neurofibromatosis 2 protein in human brain tumors: an immunohistochemical study. Acta Neuropathol (Ber) 1997; 93:225–232.

    Article  CAS  Google Scholar 

  360. Welling DB. Clinical manifestations of mutations in the neurofibromatosis type 2 gene in vestibular schwannomas (acoustic neuromas). Laryngoscope 1998; 108:178–189.

    Article  PubMed  CAS  Google Scholar 

  361. Jacoby LB, Jones D, Davis K, Kronn D, Short MP, Gusella J, MacCollin M. Molecular analysis of the NF2 tumor-suppressor gene in schwannomatosis. Am J Hum Genet 1997; 61:1293–1302.

    Article  PubMed  CAS  Google Scholar 

  362. Luca M, Xie S, Gutman M, Huang S, Bar-Eli M. Abnormalities in the CDKN2 (p 16INK4/MTS-1) gene in human melanoma cells: relevance to tumor growth and metastasis. Oncogene 1995; 11:1399–1402.

    PubMed  CAS  Google Scholar 

  363. Roncalli M, Bosari S, Marchetti A, Buttitta F, Bossi P, Graziani D, et al. Cell cycle-related gene abnormalities and product expression in esophageal carcinoma. Lab Invest 1998; 78:1049–1057.

    PubMed  CAS  Google Scholar 

  364. Takeuchi H, Ozawa S, Ando N, Shih CH, Koyanagi K, Ueda M, Kitajima M. Altered p16/MTS 1/CDKN2 and cyclin D 1/PRAD-1 gene expression is associated with the prognosis of squamous cell carcinoma of the esophagus. Clin Cancer Res 1997; 3:2229–2236.

    PubMed  CAS  Google Scholar 

  365. Jarrard DF, Bova GS, Ewing CM, Pin SS, Nguyen SH, Baylin SB, et al. Deletional, mutational, and methylation analyses of CDKN2 (p 16/MTS 1) in primary and metastatic prostate cancer. Genes Chromosomes Cancer 1997; 19:90–96.

    Article  PubMed  CAS  Google Scholar 

  366. Marchetti A, Buttitta F, Pellegrini S, Bertacca G, Chella A, Carnicelli V, et al. Alterations of P16 (MTS1) in node-positive non-small cell lung carcinomas. J Pathol 1997; 181:178–182.

    Article  PubMed  CAS  Google Scholar 

  367. Liu L, Dilworth D, Gao L, Monzon J, Summers A, Lassam N, Hogg D. Mutation of the CDKN2A 5’ UTR creates an aberrant initiation codon and predisposes to melanoma. Nat Genet 1999; 21:128–132.

    Article  PubMed  CAS  Google Scholar 

  368. Kim JR, Kim SY, Kim MJ, Kim JH. Alterations of CDKN2 (MTS1/p16INK4A) gene in paraffinembedded tumor tissues of human stomach, lung, cervix and liver cancers. Exp Mol Med 1998; 30:109–114.

    Article  PubMed  CAS  Google Scholar 

  369. Pande P, Mathur M, Shukla NK, Ralhan R. pRb and p16 protein alterations in human oral tumorigenesis. Oral Oncol 1998; 34:396–403.

    Article  PubMed  CAS  Google Scholar 

  370. Chi SG, deVere White RW, Muenzer JT, Gumerlock PH. Frequent alteration of CDKN2 (p 16(INK4A)/MTS 1) expression in human primary prostate carcinomas. Clin Cancer Res 1997; 3:1889–1897.

    PubMed  CAS  Google Scholar 

  371. Gazzeri S, Della Valle V, Chaussade L, Brambilla C, Larsen CJ, Brambilla E. The human p 19ARF protein encoded by the beta transcript of the p l 6INK4a gene is frequently lost in small cell lung cancer. Cancer Res 1998; 58:3926–3931.

    PubMed  CAS  Google Scholar 

  372. Hao Y, Zhang J, Yi C, Qian W. Abnormal change of p53 gene in gastric and precancerous lesions and APC gene deletion in gastric carcinoma and near tissues. J Tongji Med Univ 1997; 17:75–78.

    Article  PubMed  CAS  Google Scholar 

  373. Imai Y, Oda H, Tsurutani N, Nakatsuru Y, Inoue T, Ishikawa T. Frequent somatic mutations of the APC and p53 genes in sporadic ampullary carcinomas. Jpn J Cancer Res 1997; 88:846–854.

    Article  PubMed  CAS  Google Scholar 

  374. Bala S, Sulekova Z, Ballhausen WG. Constitutive APC exon 14 skipping in early-onset familial adenomatous polyposis reveals a dramatic quantitative distortion of APC gene-specific isoforms. Hum Mutat 1997; 10:201–206.

    Article  PubMed  CAS  Google Scholar 

  375. Bala S, Wunsch PH, Ballhausen WG. Childhood hepatocellular adenoma in familial adenomatous polyposis: mutations in adenomatous polyposis coli gene and p53. Gastroenterology 1997; 112:919–922.

    Article  PubMed  CAS  Google Scholar 

  376. Alman BA, Li C, Pajerski ME, Diaz-Cano S, Wolfe HJ. Increased beta-catenin protein and somatic APC mutations in sporadic aggressive fibromatoses (desmoid tumors). Am J Pathol 1997; 151:329–34.

    PubMed  CAS  Google Scholar 

  377. Zhuang Z, Vortmeyer AO, Mark EJ, Odze R, Emmert-Buck MR, Merino MJ, et al. Barrett’s esophagus: metaplastic cells with loss of heterozygosity at the APC gene locus are clonal precursors to invasive adenocarcinoma. Cancer Res 1996; 56:1961–1964.

    PubMed  CAS  Google Scholar 

  378. Mao EJ, Oda D, Haigh WG, Beckmann AM. Loss of the adenomatous polyposis coli gene and human papillomavirus infection in oral carcinogenesis. Eur J Cancer B Oral Oncol 1996; 32B:260–263.

    Article  Google Scholar 

  379. Miyaki M, Konishi M, Kikuchi-Yanoshita R, Enomoto M, Igari T, Tanaka K, et al. Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res 1994; 54:3011–3020.

    PubMed  CAS  Google Scholar 

  380. Varesco L, Gismondi V, Presciuttini S, Groden J, Spirio L, Sala P, et al. Mutation in a splice-donor site of the APC gene in a family with polyposis and late age of colonic cancer death. Hum Genet 1994; 93:281–286.

    Article  PubMed  CAS  Google Scholar 

  381. Harach HR, Williams GT, Williams ED. Familial adenomatous polyposis associated thyroid carcinoma: A distinct type of follicular cell neoplasm. Histopathology 1994; 25:549–561.

    Article  PubMed  CAS  Google Scholar 

  382. Cawkwell L, Lewis FA, Quirke P. Frequency of allele loss of DCC, p53, RBI, WT 1, NF 1, NM23 and APC/MCC in colorectal cancer assayed by fluorescent multiplex polymerase chain reaction. Br J Cancer 1994; 70:813–818.

    Article  PubMed  CAS  Google Scholar 

  383. Miyaki M, Konishi M, Kikuchi-Yanoshita R, Enomoto M, Tanaka K, Takashashi H, et al. Coexistence of somatic and germ-line mutations of APC gene in desmoid tumors from patients with familial adenomatous polyposis. Cancer Res 1993; 53:5079–5082.

    PubMed  CAS  Google Scholar 

  384. Lim S, Lee HY, Lee M. Inhibition of colonization and cell-matrix adhesion after nm23 transfection of human prostrate carcinoma cells. Cancer Lett. 1998; 133:143–149.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ouatas, T., Hartsough, M.T., Steeg, P.S. (2001). Tumor Suppressors in Metastasis. In: Fisher, D.E. (eds) Tumor Suppressor Genes in Human Cancer. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-230-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-230-2_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-198-1

  • Online ISBN: 978-1-59259-230-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics