Skip to main content

Adoptive Immunotherapy in Renal Cell Carcinoma

  • Chapter
Renal Cell Carcinoma

Part of the book series: Current Clinical Oncology ((CCO))

  • 122 Accesses

Abstract

The study of cancer immunotherapy has gained increasing popularity since Dr. William Coleys’ observations in the late 19th century of patient tumor shrinkage after life-threatening bacterial infections. The idea that tumor cells, similar to invading foreign pathogens, can express abnormal antigens has formed the basis of attempts to manipulate the immune system to cause improved tumor surveillance and destruction. Over the last two decades, considerable strides have been made in the field of tumor immunology. This includes further knowledge of antigen processing and presentation via the major histocompatability complex (1, 2); understanding the interaction between T cells and antigen presenting cells (APC) via the T-cell receptor (TCR) (3), secondary signals such as costimulatory molecules, regulation of the immune response by cytokines, and most notably the characterization of a variety of genes-encoding tumor-associated antigens (TAA). For many tumor types, the DNA and amino acid sequences of TAA have been worked out including the immunodominant peptide restricted by major histocompatibility complex (MHC) rules. These relatively recent discoveries have allowed for the exploration of more targeted immunotherapies. The transfer of cells with antitumor reactivity is termed adoptive immunotherapy and shows promise in the treatment of selected malignancies. Adoptively transferred T cells have been shown to bring about regression in animal tumor models (4–6), and have been studied in human clinical trials since the 1980’s. It is now evident that the potential of adoptive therapy seen in animal models has not yet fully translated into human models. However, there are well-documented studies demonstrating durable responses in human cancers, most notably renal cell carcinoma (RCC) and melanoma. This chapter will focus on the development of adoptive immunotherapy for RCC, its shortcomings, and potential for improvement. Adoptive immunotherapy employing autolymphocyte therapy (ALT), lymphokine-activated killer cells (LAK), and tumor infiltrating lymphocytes (TIL) will be featured, as will other promising approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjorkman PJ, Saper MA, Samraoui B, et al. The foreign antigen binding site and T-cell recognition regions of class I histocompatability antigens, Nature, 329 (1987) 512.

    Article  PubMed  CAS  Google Scholar 

  2. Bjorkman PJ and Parham P. Structure, function and diversity of class I major histocompatability complex molecules, Annu. Rev. Biochem., 59 (1990) 253.

    Article  CAS  Google Scholar 

  3. Boon T, Coulie P, Marchand M, Weynants P, Wolfel P, and Brichard V. Genes coding for tumor rejection agents: perspectives for specific immunotherapy. In Biologic Therapy of Cancer Updates. DeVita VT, Hellman S, and Rosenberg SA (eds.), JB Lippincott, Philadelphia, PA, 14(1994) 2.

    Google Scholar 

  4. Mule JJ, Shu S, and Rosenberg SA. The anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo, J. Immunol., 135 (1985) 646.

    PubMed  CAS  Google Scholar 

  5. Ettinghausen SE, Lipford EH, Mule JJ, et al. Recombinant interleukin 2 stimulates in vivo proliferation of adoptively transferred lymphokine-activated killer cells, J. Immunol., 135 (1985) 3623.

    PubMed  CAS  Google Scholar 

  6. Speiss PJ, Yang JC, and Rosenberg SA. In vivo antitumor activity of tumor infiltrating lymphocytes expanded in recombinant interleukin 2, J. Natl. Cancer Inst., 79 (1987) 1067.

    Google Scholar 

  7. Roitt I, Brostoff J, and Male D. Immunology, 2nd ed. JB Lippincott, Philadelphia, PA, 1989.

    Google Scholar 

  8. Salter RD, Benjamin RJ, Wesly PK, et al. A binding site for the T-cell co-receptor CD8 on the alpha-3 domain of HLA-A2, Nature, 345 (1990) 41.

    Article  PubMed  CAS  Google Scholar 

  9. Cammarota G, Scheirle A, Takacs B, et al. Identification of a CD4 binding site on the beta-2 domain of HLA-DR molecules, Nature, 356 (1992) 799.

    Article  PubMed  CAS  Google Scholar 

  10. Morgan DA, Ruscetti FW, and Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows, Science, 193 (1976) 1007.

    Google Scholar 

  11. Ruscetti FW, Morgan DA, and Gallo RC. Functional and morphologic characterization of human T cells continuously grown in vitro, J. Immunol., 119 (1977) 131.

    PubMed  CAS  Google Scholar 

  12. McGuire KL, Yang JA, and Rothenberg EV. Influence of activating stimulus on functional phenotype: interleukin 2 mRNA accumulation differentially induced by ionophore and receptor ligands in subsets of murine T cells, Proc. Natl. Acad. Sci. USA, 85 (1988) 6503.

    Article  PubMed  CAS  Google Scholar 

  13. Cantrell DA and Smith KA. The interleukin 2 T-cell system: a new cell growth model, Science, 224 (1984) 1312.

    Google Scholar 

  14. Malkovsky M, Loveland B, North M, et al. Recombinant interleukin 2 augments the cytotoxicity of human monocytes, Nature, 325 (1987) 262.

    Article  PubMed  CAS  Google Scholar 

  15. Kasid A, Director EP, and Rosenberg SA. Induction of endogenous cytokine mRNA in circulating peripheral blood mononuclear cells by IL-2 administration to cancer patients, J. Immunol., 143 (1989) 736.

    PubMed  CAS  Google Scholar 

  16. Rosenberg SA, Mule JJ, Speiss PJ, et al. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant IL-2, J. Exp. Med., 161 (1985) 1169.

    Google Scholar 

  17. Rosenberg SA, Lotze MT, Yang JC, et al. Experience with the use of high-dose interleukin 2 in the treatment of 652 cancer patients, Ann. Surg., 210 (1989) 474.

    Article  PubMed  CAS  Google Scholar 

  18. Bukowski RM, Goodman P, Crawford ED, et al. Phase II trial of high-dose intermittent interleukin 2 in metastatic renal cell carcinoma: a Southwest Oncology Group study, J. Natl. Cancer Inst., 82 (1990) 143.

    Article  PubMed  CAS  Google Scholar 

  19. Cheever MA, Greenberg PD, Fefer A, et al. Augmentation of the anti-tumor therapeutic efficacy of long-term cultured lymphocytes by in vivo administration of purified interleukin 2, J. Exp. Med., 155 (1982) 968.

    Article  PubMed  CAS  Google Scholar 

  20. Donohue JH, Rosenstein M, Chang AE, et al. The systemic administration of purified interleukin 2 enhances the ability of sensitized murine lymphocytes to cure a disseminated syngeneic lymphoma, J. Immunol., 132 (1984) 2123.

    Google Scholar 

  21. Chever MA, Greenberg PD, Irle C, et al. Interleukin 2 administered in vivo induces the growth of cultured T cells in vivo, J. Immunol., 132 (1984) 2259.

    Google Scholar 

  22. Herzberg VL and Smith KA. T cell growth without serum, J. Immunol., 139 (1987) 998.

    PubMed  CAS  Google Scholar 

  23. Gold JE, Masters TR, and Osband ME. Autolymphocyte therapy III. Effective adjuvant adoptive cell therapy using ex vivo activated memory T-lymphocytes, (retracted J. Surg. Res., 1998 ) J. Surg. Res., 59 (1995) 279–286.

    Google Scholar 

  24. Gold JE and Osband ME. Autolymphocyte therapy: 1. In vivo tumour-specific adoptive cellular therapy of murine melanoma and carcinoma using ex vivo activated memory T lymphocytes, Eur. J. Cancer, 30A (1994) 1871–1882.

    Article  Google Scholar 

  25. Sawczuk IS. Autolymphocyte therapy in the treatment of metastatic renal cell carcinoma, Urol. Clin. North Am., 20 (1993) 297–301.

    Google Scholar 

  26. Khan MM, Sansone P, Englemen EG, et al. Pharmacologic effects of autacoids on subsets of T cells: regulation of expression function of histamine2 receptors by a subset of suppressor cells, J. Clin. Invest., 75 (1985) 1578.

    Google Scholar 

  27. Waymack JP, Guzman RF, Burleson DG, et al. Effect of prostaglandin E in multiple experimental models, Prostaglandins, 38 (1989) 345.

    PubMed  CAS  Google Scholar 

  28. Wasserman J, Petrini B, and Blomgren H. Radiosensitivity of T lymphocyte subpopulations, J. Clin. Lab. Immunol., 7 (1982) 139.

    CAS  Google Scholar 

  29. Osband ME, Lavin PT, Babayan RK, et al. Effect of autolymphocyte therapy on survival and quality of life in patients with metastatic renal cell carcinoma, Lancet, 335 (1990) 994–998.

    Article  PubMed  CAS  Google Scholar 

  30. Lavin PT, Maar R, Franklin M, et al. Autolymphocyte therapy for metastatic renal cell carcinoma: initial clinical results from 335 patients treated in a multisite clinical practice, Transplant Proc., 24 (1992) 3057–3062.

    Google Scholar 

  31. Graham S, Babayan RK, Lamm DL, et al. The use of ex vivo activated memory T cells (autolymphocyte therapy) in the treatment of metastatic renal cell carcinoma: final results from a randomized controlled multisite study, Semin. Urol., 11 (1993) 27–34.

    CAS  Google Scholar 

  32. Sawczuk IS, Graham SD Jr, Miesowicz F, and the ALT Adjuvant Study Group, Cellcor Inc., Newton MA, Emory Clinic, Atlanta GA, and Columbia University, NY, NY. Randomized, controlled trial of adjuvant therapy with ex vivo activated T cells (ALT) in T 1–3a,b,c or T4N+M0 renal cell carcinoma, Proc. Am. Soc. Clin. Oncol., 16 (1997) 326a.

    Google Scholar 

  33. Grimm EA, Robb J, Roth JA, et al. Lymphokine-activated killer cell phenomenon III. Evidence that IL-2 is sufficient for direct activation of peripheral blood lymphocytes into lymphokine-activated killer cells, J. Exp. Med., 158 (1983) 1356.

    Google Scholar 

  34. Grimm EA, Mazumder A, Zhang HZ, and Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes, J. Exp. Med., 155 (1982) 1823.

    Google Scholar 

  35. Herberman RB, Hiserodt JC, Vujanovic NK, et al. Lymphokine-activated killer cell activity: characteristics of effector cells and progenitor cells in blood and spleen, Immunol. Today, 8 (1987) 178.

    Google Scholar 

  36. Hiserodt JC. Lymphokine-activated killer cells: biology and relevance to disease, Cancer Invest., 11 (1993) 420.

    Article  PubMed  CAS  Google Scholar 

  37. Morris DG and Pross HF. Studies on lymphokine-activated killer cells. Evidence using novel monoclonal antibodies that most human LAK precursor cells share a common surface marker, J. Exp. Med., 169 (1989) 717.

    Article  CAS  Google Scholar 

  38. Ortaldo JR and Hiserodt JC. Mechanisms of cytotoxicity by natural killer cells, Curr. Opin. Immunol., 2 (1989) 39.

    Article  CAS  Google Scholar 

  39. Hiserodt JC. Some thoughts on the cytolytic activity of natural killer lymphocytes, Cancer Cells, 3 (1991) 530.

    PubMed  CAS  Google Scholar 

  40. Lafreniere R and Rosenberg SA. Adoptive immunotherapy of murine hepatic metastases with lymphokine-activated killer cells and recombinant interleukin 2 can mediate the regression of both immunogenic and nonimmunogenic sarcomas and an adenocarcinoma, J. Immunol., 135 (1985) 4273.

    PubMed  CAS  Google Scholar 

  41. Papa MZ, Mule JJ, and Rosenberg SA. Antitumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo: successful immunotherapy of established pulmonary metastases from weakly immunogenic and nonimmunogenic tumors of three distinct histological types, Cancer Res., 46 (1986) 4973.

    PubMed  CAS  Google Scholar 

  42. Rosenberg SA. Immunotherapy of cancer by systemic administration of lymphoid cells plus interleukin 2, J. Biol. Resp. Mod., 3 (1984) 501.

    Google Scholar 

  43. Mazumder A, Eberlein TJ, Grimm EA, et al. Phase I study of the adoptive immunotherapy of human cancer with lectin-activated autologous mononuclear cells, Cancer, 53 (1984) 896.

    Article  PubMed  CAS  Google Scholar 

  44. Rosenberg SA, Lotze MT, Muul LM, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin 2 to patients with metastatic cancer, N. Engl. J. Med., 313 (1985) 1485.

    Google Scholar 

  45. Sznol M, Clark JW, Smith JW, et al. Pilot study of interleukin 2 and lymphokine-activated killer cells combined with immunomodulatory doses of chemotherapy and sequenced with interferon alpha-2A in patients with metastatic melanoma and renal cell carcinoma, J. Natl. Cancer Inst., 84 (1992) 929.

    Article  PubMed  CAS  Google Scholar 

  46. Rosenberg SA, Lotze MT, Yang JC, et al. Prospective randomized trial of high dose interleukin 2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancers, J. Natl. Cancer Inst., 85 (1993) 622.

    Article  PubMed  CAS  Google Scholar 

  47. Clark JW, Smith JW, Steis RG, et al. Interleukin 2 and lymphokine-activated killer cell therapy: analysis of a bolus interleukin 2 and a continuous infusion interleukin 2 regimen, Cancer Res., 50 (1990) 7343.

    PubMed  CAS  Google Scholar 

  48. Schoof DD, Gramolini BA, Davidson DL, et al. Adoptive immunotherapy of human cancer using low dose recombinant interleukin 2 and lymphokine-activated killer cells, Cancer Res., 48 (1988) 5007.

    PubMed  CAS  Google Scholar 

  49. Weiss GR, Margolin KA, Aronson FR, et al. A randomized phase II trial of continuous infusion interleukin 2 or bolus injection interleukin 2 plus lymphokine-activated killer cells for advanced renal cell carcinoma, J. Clin. Oncol., 10 (1992) 275.

    PubMed  CAS  Google Scholar 

  50. Rosenberg SA. Karnofsky Memorial Lecture: the immunotherapy and gene therapy of cancer, J. Clin. Oncol., 10 (1992) 180.

    PubMed  CAS  Google Scholar 

  51. Parkinson DR, Fisher RI, Rayner AA, et al. Therapy of renal cell carcinoma with interleukin 2 and lymphokine-activated killer cells: phase II experience with a hybrid bolus and continuous infusion interleukin 2 regimen, J. Clin. Oncol., 8 (1990) 1630.

    Google Scholar 

  52. Dillman RO, Church C, Oldham RK, et al. A randomized phase II trial of continuous infusion interleukin 2 in 788 patients with cancer. The National Biotherapy Study Group Experience, Cancer, 71 (1993) 2358.

    Google Scholar 

  53. Palmer PA, Vinke J, Evers P, et al. Continuous infusion of recombinant interleukin 2 with or without autologous lymphokine-activated killer cells for the treatment of advanced renal cell carcinoma, Eur. J. Cancer, 28A (1992) 1038.

    Google Scholar 

  54. Foon KA, Walther PJ, Bernstein ZP, et al. Renal cell carcinoma treated with continuous-infusion interleukin 2 with ex vivo-activated killer cells, J. Immunother., 11 (1992) 184.

    Article  PubMed  CAS  Google Scholar 

  55. Thompson JA, Shulman KL, Benyunes MC, et al. Prolonged continuous intravenous infusion interleukin 2 and lymphokine-activated killer cell therapy for metastatic renal cell carcinoma, J. Clin. Oncol., 10 (1992) 960.

    PubMed  CAS  Google Scholar 

  56. Gramata JW, Schmitz PIM, Goey SH, et al. Modulation of Immune Parameter in patients with metastatic renal-cell cancer receiving combination immunotherapy (IL-2, IFNa, and autologous IL-2- activated lymphocytes), Int. J. Cancer, 65 (1996) 152–160.

    Article  Google Scholar 

  57. McCabe M, Stablein D, and Hawkins MJ. The Modified Group C experience—phase III randomized trials of IL-2 versus IL-2/LAK in advanced renal cell cancer and advanced melanoma [Abstract 714], Proc. Am. Soc. Oncol., 10 (1991) 213.

    Google Scholar 

  58. Bajorin D, Sell KW, Richards JM, et al. A randomized trial of interleukin 2 plus lymphokine-activated killer cells versus interleukin 2 alone in renal cell carcinoma [Abstract 1106], Proc. Am. Assoc. Cancer Res., 31 (1990) A1 106.

    Google Scholar 

  59. Yron I, Wood TA, Spiess P, and Rosenberg SA. In vitro growth of murine T cells V. The isolation and growth of lymphoid cells infiltrating syngeneic solid tumors, J. Immunol., 125 (1980) 238.

    PubMed  CAS  Google Scholar 

  60. Rosenberg SA, Speiss PJ, and Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes, Science, 233 (1986) 1318.

    Google Scholar 

  61. Schwartzentruber DJ, Topalian SL, Mancini MJ, et al. Specific release of granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-alpha, and interferon gamma by tumor-infiltrating lymphocytes after autologous tumor stimulation, J. Immunol., 146 (1991) 3674.

    PubMed  CAS  Google Scholar 

  62. Ferrini S, Biassoni R, Moretta A, Bruzzone M, Nicolin A, and Moretta L. Clonal analysis of T lymphocytes isolated from ovarian carcinoma ascites fluid: phenotypic and functional characterization of T cell clones capable of lysing, Int. J. Cancer, 36 (1985) 337.

    PubMed  CAS  Google Scholar 

  63. Itoh K, Platisoucas CD, and Balch CM. Autologous tumor-specific cytotoxic T lymphocytes in the infiltrate of human metastatic melanomas: activation of interleukin 2 and autologous tumor cells, and involvement of the T cell receptor, J. Exp. Med., 168 (1988) 1419.

    Google Scholar 

  64. Yannelli JR, Hyatt C, McConnell S, et al. Growth of tumor-infiltrating lymphocytes from human solid cancers: summary of a 5-year experience, Int. J. Cancer, 65 (1996) 413–421.

    Article  PubMed  CAS  Google Scholar 

  65. Koo AS, Tso CL, Peyret C, deKernion JB, and Belldegrun A. Autologous tumor-specific cytotoxicity of tumor infiltrating lymphocytes derived from human renal cell carcinoma, J. Immunother., 10 (1991) 347.

    Article  PubMed  CAS  Google Scholar 

  66. Finke JH, Rayman P, Hart L, et al. Characterization of tumor infiltrating lymphocyte subsets from human renal cell carcinoma: specific reactivity defined by cytotoxicity, interferon gamma secretion, and proliferation, J. Immunother., 15 (1994) 91.

    Article  CAS  Google Scholar 

  67. Schendel DJ, Gansbacher B, Oberneder R, et al. Tumor-specific lysis of human renal cell carcinoma by tumor-infiltrating lymphocytes I. HLA-A2 restricted recognition of autologous and allogeneic tumor lines, J. Immunol., 151 (1993) 4209.

    PubMed  CAS  Google Scholar 

  68. Halapi E, Yamamoto Y, Juhlin C, et al. Restricted T cell receptor V-beta usage in T cells from interleukin 2 cultured lymphocytes of ovarian and renal carcinomas, Cancer Immunol. Immunother., 36 (1993) 191.

    Article  CAS  Google Scholar 

  69. Belldegrun A, Pierce WC, Kaboo R, et al. Interferon alpha-primed tumor-infiltrating lymphocytes combined with interleukin 2 and interferon alpha as a therapy for metastatic renal cell carcinoma, J. Urol., 150 (1993) 1384.

    Google Scholar 

  70. Topalian SL, Solomon D, Frederick P, et al. Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin 2: a pilot study, J. Clin. Oncol., 6 (1988) 839.

    PubMed  CAS  Google Scholar 

  71. Kradin RL, Lazarus DS, Dubinett SM, et al. Tumour-infiltrating lymphocytes and interleukin 2 in treatment of advanced cancer, Lancet, 1 (1989) 577.

    Article  PubMed  CAS  Google Scholar 

  72. Bukowski RM, Sharfman W, Murthy S, et al. Clinical results and characterization of tumor-infiltrating lymphocytes with or without recombinant interleukin 2 in human metastatic renal cell carcinoma, Cancer Res., 51 (1991) 4199.

    PubMed  CAS  Google Scholar 

  73. Olencki T, Finke J, Lorenzi V, et al. Adoptive immunotherapy (AIT) for renal cell carcinoma (RCC) tumor infiltrating lymhocytes (TILs) cultured in vitro with rIL-2, rhIL-4, and autologous tumor: a phase II trial [Abstract 762], Proc. Am. Soc. Clin. Oncol., 13 (1994) 244.

    Google Scholar 

  74. Figlin RA, Pierce WC, Kaboo R, et al. Treatment of metastatic renal cell carcinoma with nephrectomy, interleukin-2 and cytokine-primed or CD8(+) selected tumor infiltrating lymphocytes from primary tumor, J. Urol., 158 (1997) 740–745.

    Article  PubMed  CAS  Google Scholar 

  75. Goedegebuure PS, Douville LM, Li H, et.al. Adoptive Immunotherapy with tumor-infiltrating lymphoctes and interleukin-2 in patients with metastatic malignant melanoma and renal cell carcinoma: a pilot study, J. Clin. Oncol., 13 (1995) 1939–1949.

    PubMed  CAS  Google Scholar 

  76. Figlin RA, Belldegrun A, Moldawer N, et al. Concomitant administration of recombinant human interleukin 2 and recombinant interferon alpha-2A: an active outpatient regimen in metastatic renal cell carcinoma, J. Clin. Oncol., 10 (1992) 414.

    PubMed  CAS  Google Scholar 

  77. Elson PJ, Witte RS, and Trump DL. Prognostic factors for survival in patients with recurrent or metastatic renal cell carcinoma, Cancer Res., 48 (1988) 7310.

    PubMed  CAS  Google Scholar 

  78. Figlin, RA, Thompson, JA, Bukowski, MD, et al. A multi-center, randomized, phase III trial of CD8+ tumor-infiltrating lymphocytes in combination with recombinant interleukin-2 in metastatic renal cell carcinoma, J. Clin. Oncol., 1999, in press.

    Google Scholar 

  79. Walther MM, Alexander RB, Weiss GH, et al. Cytoreductive surgery prior to interleukin-2-based therapy in patients with metastatic renal cell carcinoma, Urology, 42 (1993) 250–258.

    Article  PubMed  CAS  Google Scholar 

  80. Flanigan RC. Role of surgery in patients with metastatic renal cell carcinoma, Sem. Urol. Oncol., 14 (1996) 227–229.

    Google Scholar 

  81. Franklin JR, Figlin RA, Rauch J, et al. Cytoreductive surgery in the management of metastatic renal cell carcinoma: The UCLA experience, Sem. Urol. Oncol., 14 (1996) 230–236.

    CAS  Google Scholar 

  82. Wolf JS Jr, Aronson FR, Small EJ, and Carroll PR. Nephrectomy for metastatic renal cell carcinoma: a component of systemic treatment regimens, J. Surg. Oncol., 55 (1994) 7–13.

    Article  PubMed  Google Scholar 

  83. Fallick ML, McDermott DF, LaRock D et al, Nephrectomy before interleukin-2 therapy for patients with metastatic renal cell carcinoma, J. Urol., 158 (1997) 1691–1695.

    Article  PubMed  CAS  Google Scholar 

  84. Ridolfi R, Flamini E, Riccobon A, et al. Adjuvant adoptive immunotherapy with tumour-infiltrating lymphocytes and modulated doses of interleukin-2 in 22 patients with melanoma, colorectal and renal cancer, after radical metastasectomy, and in 12 advanced patients, Cancer Immunol. Immunother., 46 (1998) 185–193.

    Article  CAS  Google Scholar 

  85. Belldegrun A, Tso CL, Kaboo R, et al, Natural immune reactivity-associated therapeutic response in patients with metastatic renal cell carcinoma receiving tumor-infiltrating lymphocytes and IL-2 based therapy, J. Immunother., 19 (1996) 149–161.

    Article  CAS  Google Scholar 

  86. Finke JH, Zea AH, Stanley J, et al. Loss of T cell recepto zeta chain and p56lck in T-cells infiltrating human renal cell carcinoma. Cancer Res., 53 (1993) 5613–5616.

    PubMed  CAS  Google Scholar 

  87. Reichert TE, Rabinowich H, Johnson JY, and Whiteside TL. Mechanisms responsible for signaling and functional defects, J. Immunother., 21 (1998) 295–306.

    Article  PubMed  CAS  Google Scholar 

  88. Kantoff PW, Kohn DB, Mitsuia H, et al. Correction of adenosine deaminase deficiency in cultured human T and B cells by retrovirus-mediated gene transfer, Proc. Natl. Acad. Sci. USA, 83 (1986) 6563.

    Article  PubMed  CAS  Google Scholar 

  89. Asher AL, Mule JJ, Reichert CM, et al. Studies of the anti-tumor efficacy of systemically administered recombinant tumor necrosis factor against several murine tumors in vivo, J. Immunol., 138 (1987) 963.

    PubMed  CAS  Google Scholar 

  90. Treisman J, Hwu P, Yannelli JY, et al. Upregulation of tumor necrosis factor-alpha production by retrovirally transduced human tumor-infiltrating lymphocytes using trans-retinoic acid, Cellular Immunol., 156 (1994) 448–457.

    Article  CAS  Google Scholar 

  91. Treisman J, Hwu P, Minamoto S, et al. Interleukin-2 transduced lymphocytes grow in an autocrine fashion and remain responsive to antigen, Blood, 85(1995) 139–145.

    PubMed  CAS  Google Scholar 

  92. Merrouche Y, Negrier S, Bain C, et al. Clinical application of retroviral gene transfer in oncology: Results of a French study with tumor-infiltrating lymphocytes transduced with the gene of resistance to neomycin, J. Clin. Oncol., 13 (1995) 410–418.

    PubMed  CAS  Google Scholar 

  93. Economou JS, Belldegrun AS, Glaspy J, et al. In vivo trafficking of adoptively transferred interleukin2 expanded tumor-infiltrating lymphocytes and peripheral blood lymphocytes. Results of a double gene marking trial, J. Clin. Invest., 97 (1996) 515–521.

    Article  PubMed  CAS  Google Scholar 

  94. Mulders P, Tso CL, Pang S, et al. Adenovirus-mediated interleukin-2 production by tumors induces growth of cytotoxic tumor-infiltrating lymphocytes against human renal cell carcinoma, J. Immunother., 21 (1998) 170–180.

    Article  PubMed  CAS  Google Scholar 

  95. Yoshizawa H, Chang AE, and Shu S. Specific adoptive immunotherapy mediated by tumor-draining lymph node cells sequentially activated with anti-CD3 and IL-2, J. Immunol., 147 (1991) 729–737.

    PubMed  CAS  Google Scholar 

  96. Meuer SC, Hodgdon JC, Hussey RE, et al. Antigen-like effects of monoclonal antibodies directed at receptors on human T cell clones, J. Exp. Med., 158 (1983) 988–993.

    Article  PubMed  CAS  Google Scholar 

  97. Aruga A, Shu S, and Chang AE. Tumor-specific granulocyte/macrophage colony-stimulating factor and interferon gamma secretion is associated with in vivo therapeutic efficacy of activated tumor-draining lymph node cells, Cancer Immunol. Immunother., 41 (1995) 317–324.

    Article  CAS  Google Scholar 

  98. Chang AE, Aruga A, Cameron MJ, et al. Adoptive Immunotherapy with vaccine-primed lymph node cells secondarily activated with anti-CD3 and IL-2, J. Clin. Oncol., 15 (1997) 796–807.

    PubMed  CAS  Google Scholar 

  99. Sosman JA, Oettle KR, Hank JA, et al. Specific recognition of human leukemic cells by allogeneic T cell lines, Transplantation, 48 (1989) 486–495.

    Article  PubMed  CAS  Google Scholar 

  100. Loeffler CM, Platt JL, Anderson PM, et al. Antitumor effects of interleukin-2, liposomes and antiCD3-stimulated T-cells against murine MCA 38 hepatic metastasis, Cancer Res., 51 (1991) 2127–2132.

    PubMed  CAS  Google Scholar 

  101. Yun YS, Hargrove ME, and Tng CC. In vivo anti tumor activity of anti-CD3 induced activated killer cells, Cancer Res., 49 (1989) 4770–4774.

    PubMed  CAS  Google Scholar 

  102. Saxton ML, Longo DL, Wetzel HE, et al. Adoptive transfer of anti-CD3-activated CD4+ T cells plus cyclophosphamide and liposome encapsulated interleukin-2 cure murine MC-38 and 3LL tumors and establish tumor specific immunity, Blood, 89 (1997) 2529–2536.

    PubMed  CAS  Google Scholar 

  103. Curti BC, Longo DJ, Ochoa AC, et al. Treatment of cancer patients with ex vivo anti-CD-3 activated killer cells and interleukin-2, J. Clin. Oncol., 11 (1993) 653–660.

    Google Scholar 

  104. Curti BC, Ochoa AC Powers CG, et al. Phase I trial of anti-CD-3 stimulated CD4+ T-cells, infusional interleukin-2 and cyclophosphamide inpatients with advanced cancer, J. Clin. Oncol., 16 (1998) 2752–2760.

    PubMed  CAS  Google Scholar 

  105. Jenkins MK and Johnson JG. Molecules involved in T-cell costimulation, Curr. Opin. Immunol., 5 (1993) 361–367.

    Article  CAS  Google Scholar 

  106. Schwartz RH. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin2 production and immunotherapy, Cell, 71 (1992) 1065–1068.

    Article  PubMed  CAS  Google Scholar 

  107. Thompson CB, Lindsten T, Ledbetter JA, et al. CD 28 activation pathway regulates the production of multiple T-cells derived lymphokines/cytokines, Proc. Natl. Acad. Sci. USA, 86 (1989) 1333–1337.

    Article  PubMed  CAS  Google Scholar 

  108. Boise LH, Noel PJ, and Thompson CS. CD28 and apoptosis, Curr. Opin. Immunol., 7 (1995) 620–625.

    Article  PubMed  CAS  Google Scholar 

  109. Harada M, Okamoto T, Omoto K, et al. Specific immunotherapy with tumour-draining lymph node cells cultured with both anti-CD3 and anti-CD28 monoclonal antibodies, Immunology, 87 (1996) 446–453.

    Article  Google Scholar 

  110. Lum LG, LeFever AV, Treisman J, et al. Phase I study of antiCD3/anti CD28 coactivated T cells (COACTS) in cancer patients: enhanced TH1 responses in vivo, Exp. Hematol., 26 (1998) 772 (abstract).

    Google Scholar 

  111. Fidler IJ. Inhibition of pulmonary metastasis by intravenous injection of specifically activated macrophages, Cancer Res., 34 (1974) 1074–1078.

    PubMed  CAS  Google Scholar 

  112. Hennemann B, Rehm A, Kottke A, et al. Adoptive immunotherapy with tumor-cytotoxic macrophages derived from recombinant human granulocyte-macrophage colony-stimulating factor (rhuGM-CSF) mobilized peripheral blood monocytes, J. Immunother., 20 (1997) 365–371.

    Article  PubMed  CAS  Google Scholar 

  113. Kiertcher S and Roth M. Human CD14+ leukocytes acquire the phenotype and function of antigen-presenting dendritic cells when cultured in GM-CSF and IL-4, J. Leukocyte Biol., 59 (1996) 208–218.

    Google Scholar 

  114. Inaba K, Metlay JP, Crowley MT, et al. Dendritic cells as antigen presenting cells in vivo, Intern. Rev. Immunol., 6 (1990) 197–206.

    Article  CAS  Google Scholar 

  115. Sallusto F, Cella M, Danieli C, et al. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by GM-CSF plus IL-4 and down regulated by tumor necrosis factor-a, J. Exp. Med., 179 (1994) 1109–1118.

    Article  PubMed  CAS  Google Scholar 

  116. Romani N, Gruner S, and Brang D. Proliferating dendritic cell progenitors in human blood, J. Exp. Med., 180 (1994) 83–93.

    Article  CAS  Google Scholar 

  117. Gitlitz B, Roth M, Kiertscher S, et al. In-vivo generation of dendritic cells by the combination of interleukin-4 and granulocyte macrophage colony stimulating factor in patients with metastatic cancer-a phase I trial, Proc. Am. Soc. Clin. Oncol., 17 (1998) 429.

    Google Scholar 

  118. Gitlitz, B, Hinkel A, Mulders P, et al. Multi-antigen loaded dendritic cell (DC) vaccine for the treatment of metastatic renal cell carcinoma-in vitro correlates, Proc. Am. Urol. Assoc., 161 (1999) 137.

    Google Scholar 

  119. Hotl L, Rieser C, Papesh C, et al. Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells, J. Urol., 161 (1999) 777–782.

    Article  Google Scholar 

  120. Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells, Nature Med., 2 (1996) 52–80.

    Article  PubMed  CAS  Google Scholar 

  121. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide or tumor lysatepulsed dendritic cells, Nature Med., 4 (1998) 328–332.

    Article  PubMed  CAS  Google Scholar 

  122. Tjoa BA, Simmons SJ, Bowes VA, et al. Evaluation of phase I/II clinical trials in prostate cancer with dendritic cells and PSMA peptides, The Prostate, 36 (1998) 39–44.

    Article  PubMed  CAS  Google Scholar 

  123. Fields RC, Shimizu K, and Mule JJ. Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo, Proc. Natl. Acad. Sci. USA, 95 (1998) 9482–9487.

    Article  PubMed  CAS  Google Scholar 

  124. Gilboa E, Nair SK, and Lyerly HK. Immunotherapy of cancer with dendritic-cell-based vaccines, Cancer Immunol. Immunother., 46 (1998) 82–87.

    Article  PubMed  CAS  Google Scholar 

  125. Gitlitz BJ, Mulders P, Tso CL, et al. Specific anti-tumor response against human renal cell carcinoma by dendritic cells loaded with tumor antigens, Proc. Am. Assoc. Cancer Res., 38 (1997) 345.

    Google Scholar 

  126. Rosenberg SA. The immunotherapy of solid cancers based on cloning the genes encoding tumor-rejection antigens, Annu. Rev. Med., 46 (1996) 481–491.

    Article  Google Scholar 

  127. Neumann E, Engelsberg A, Decker J, et al. Heterogeneous expression of the tumor-associated antigens RAGE-1, PRAME, and glycoprotein 75 in human renal cell carcinoma: candidates for T-cell-based immunotherapies? Cancer Res., 58 (1998) 4090–4095.

    PubMed  CAS  Google Scholar 

  128. Oosterwijk E, de Weijert M, van Bokhoven, et al. Molecular characterization of the renal cell carcinoma-associated antigen G250, Proc. Am. Assoc. Cancer Res., 37 (1996) A3147.

    Google Scholar 

  129. Steffens MG, Boerman OC, Oosterwijk-Wakka JC, et al. Targeting of renal cell carcinoma with iodine131-labeled chimeric monoclonal antibody G250, J. Clin. Oncol., 15 (1997) 1529–1537.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gitlitz, B.J., Belldegrun, A.S., Figlin, R.A. (2000). Adoptive Immunotherapy in Renal Cell Carcinoma. In: Bukowski, R.M., Novick, A.C. (eds) Renal Cell Carcinoma. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-229-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-229-6_23

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6401-7

  • Online ISBN: 978-1-59259-229-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics