Skip to main content

Laboratory Culture and Analysis of Microbial Biofilms

  • Chapter
  • 733 Accesses

Abstract

Microbial biofilms develop when bacteria adhere to a substratum and grow inside a secreted extracellular matrix. They can be defined as “matrix-embedded microbial populations adherent to each other and/or to surfaces of interfaces”.31 This is the growth mode for most bacteria. Biofilms are important in human health and disease; for example, the body’s normal flora resists pathogen invasion but can itself turn pathogenic. Biofilm infections are a major problem, especially of prosthetic devices, as 1 to 3% of all orthopedic implant patients experience severe infection following surgery as the probable result of biofilm formation.2 Biofilm formation within a tube can increase frictional resistance over 200%.23 Antibacterial agents, antibiotics, phagocytic white blood cells, and other biocides are much less effective against the bacteria within a biofilm than against planktonic bacteria.52

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison C, Watson GK, Singleton S, et al: Modulation of physiological responses and population structure of mixed culture oral biofilms grown in vitro. Adv Dent Res 11: 191, 1997

    Google Scholar 

  2. An YH, Friedman RJ: Prevention of sepsis in total joint arthroplasty. J Hosp Infect 33: 93–108, 1996

    Article  PubMed  CAS  Google Scholar 

  3. An YH, Friedman RJ, Draughn RA, et al: Bacterial adhesion to biomaterial surfaces. In: Wise DE, ed: Human Biomaterials Applications. Humana Press, Totowa, NJ, 1996: 19–57

    Google Scholar 

  4. Bakke R, Olsson PQ: Biofilm thickness measurements by light microscopy. J Microbiol Meth 5: 93–8, 1986

    Article  Google Scholar 

  5. Blanchard AP, Bird MR, Wright SJL: Biofilm disinfection with peroxygens. In: Wimpenny JWT, Handley PS, Gilbert P, et al, eds: Biofilms: Community Interactions and Control. Bioline, Cardiff, UK, 1997: 235–44

    Google Scholar 

  6. Blenkinsopp SA, Costerton JW: Understanding bacterial biofilm. Tebtech 9: 138–142, 1991

    Article  Google Scholar 

  7. Bowden GH: Which bacteria are cariogenic in humans? In: Johnson NW, ed: Risk Markers for Oral Diseases. Volume 1. Dental Caries. Cambridge University Press, Cambridge, UK, 1991: 266–86

    Google Scholar 

  8. Bowden GHW, Li YH: Nutritional influences on biofilm development. Adv Dent Res 11: 81–99, 1997

    Article  PubMed  CAS  Google Scholar 

  9. Boyar RM, Thylstrup A, Kolmen L, et al: The microflora associated with the development of initial enamel decalcification below orthodontic bands in vivo in children living in a fluoridated area. J Dent Res 68: 1734–8, 1989

    Article  PubMed  CAS  Google Scholar 

  10. Bradshaw DJ, Marsh PD, Watson GK, et al: Inter-species interactions in microbial communities. In: Wimpenny JWT, Handley PS, Gilbert P, et al., eds: Biofilms: Community Interactions and Control. Bioline, Cardiff, UK, 1997: 63–71

    Google Scholar 

  11. Bradshaw DJ, McKee AS, Marsh PD: Effects of carbohydrate pulses and pH on population shifts within oral microbial communities in vitro. J Dent Res 68: 1298–1302, 1989

    Article  CAS  Google Scholar 

  12. Brecx M, Ronstrom A, Theilade J, et al: Early formation of dental plaque on plastic films. 2. Electron microscopic observations. J Periodont Res 16: 213–27, 1981

    Article  PubMed  CAS  Google Scholar 

  13. Bryers J, Characklis W: Early fouling biofilm formation in a turbulent flow system: Overall kinetics. Water Res 15: 483–91, 1981

    Article  Google Scholar 

  14. Buret A, Ward KH, Olson ME, et al: An in vivo model to study the pathobiology of infectious biofilms on biomaterial surfaces. J Biomed Mater Res 25: 865–74, 1991

    Article  PubMed  CAS  Google Scholar 

  15. Burlage RS: Emerging technologies: bioreporters, biosensors, and microprobes. In: Hurst CJ, Knudsen GR, McInerney MJ, et al, eds: Manual of Environmental Microbiology. ASM Press, Washington, DC, 1997: 115–23

    Google Scholar 

  16. Burne RA, Chen Y-YM, Penders JEC: Analysis of gene expression in Streptococcus mutans in biofilms in vitro. Adv Dent Res 11: 100–9, 1997

    Article  CAS  Google Scholar 

  17. Caldwell DE, Atuku E, Wilkie DC, et al: Germ theory versus community theory in understanding and controlling the proliferation of biofilms. Adv Dent Res 11: 4–13, 1997

    Article  PubMed  CAS  Google Scholar 

  18. Caldwell DE, Lawrence JR: Study of attached cells in continuous-flow slide culture. In: Wimpenny JWT, ed: CRC Handbook of Laboratory Model Systems for Microbial Ecosystems. CRC Press Inc., Boca Raton, FL, 1988: 117–38

    Google Scholar 

  19. Caldwell DE, Wolfaardt GM, Korber DR, et al: Cultivation of microbial consortia and communities. In: Hurst CJ, Knudsen GR, McInerney MJ, et al, eds: Manual of Environmental Microbiology. ASM Press, Washington, DC, 1997: 79–90

    Google Scholar 

  20. Carlsson J: Bacterial metabolism in dental biofilms. Adv Dent Res 11: 75–80, 1997

    Article  PubMed  CAS  Google Scholar 

  21. Chang CC, Merritt K: Microbial adherence on poly(methyl methacrylate) (PMMA) surfaces. J Biomed Mater Res 26: 197–207, 1992

    Article  PubMed  CAS  Google Scholar 

  22. Characklis WG: Laboratory biofilm reactors. In: Characklis WG, ed: Biofilms. Wiley, New York, 1990: 55–89

    Google Scholar 

  23. Characklis WG: Microbial fouling. In: Characklis WG, ed: Biofilms. Wiley, New York, 1990: 523–84

    Google Scholar 

  24. Characklis WG, Mcfeters GA, Marshall KC: Physiological ecology in biofilm systems. In: Characklis WG, ed: Biofilms. Wiley, New York, 1990: 341–94

    Google Scholar 

  25. Characklis WG, Tirakhia MH, Zelver N: Transport and interfacial transfer phenomena. In: Characklis WG, ed: Biofilms. Wiley, New York, 1990: 265–340

    Google Scholar 

  26. Chestnutt IG, Macfarlane TW, Stephen KW: The dissolution of mineral substrates in the determination of the cariogenic potential of Streptococcus mutons. Microb Ecol Health Dis 7: 145–52, 1994

    Article  Google Scholar 

  27. Christensen BE, Characklis WG: Physical and chemical properties of biofilms. In: Characklis WG, ed: Biofilms. Wiley, New York, 1990: 93–130

    Google Scholar 

  28. Christensen GD, Simpson WA, Bisno AL, et al: Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 37: 318–26, 1982

    PubMed  CAS  Google Scholar 

  29. Christensen GD, Simpson WA, Bisno AL, et al: Experimental foreign body infections in mice challenged with slime-producing Staphylococcus epidermidis. Infect Immun 40: 407–10, 1983

    CAS  Google Scholar 

  30. Costerton J, Lewandowski Z: Overview–The biofilm lifestyle. Adv Dent Res 11: 192–5, 1997

    Article  Google Scholar 

  31. Costerton JW, Lewandowski Z, Caldwell DE, et al: Microbial biofilms. Ann Rev Microbiol 49: 711–45, 1995

    Article  CAS  Google Scholar 

  32. Cummins D, Moss MC, Jones CL, et al: Confocal microscopy of dental plaque development. Binary 4: 86–91, 1992

    Google Scholar 

  33. Cutress TW, Sissons CH, Pearce EIF, et al: Effects of fluoride-supplemented sucrose on experimental dental caries and dental plaque pH. Adv Dent Res 9: 14–20, 1995

    Article  PubMed  CAS  Google Scholar 

  34. Davenport DS, Massanari RM, Pfaller MA, et al: Usefulness of a test for slime production as a marker for clinically significant infections with coagulase-negative staphylococci. J Infect Dis 153: 332–9, 1986

    Article  PubMed  CAS  Google Scholar 

  35. Dawes C, Macpherson LMD: The distribution of saliva and sucrose around the mouth during the use of chewing gum and the implications for the site-specificity of caries and calculus formation. J Dent Res 72: 852–7, 1993

    Article  PubMed  CAS  Google Scholar 

  36. Delwart EL, Shpaer EG, Louwagie J, et al: Genetic relationships determined by a DNA heteroduplex mobility assay: analysis of HIV-1 env genes. Science 262: 1257–61, 1993

    Article  PubMed  CAS  Google Scholar 

  37. Dibdin GH: Diffusion of sugars and carboxylic acids through human dental plaque in vitro. Arch Oral Biol 26: 515–23, 1981

    Article  CAS  Google Scholar 

  38. Dibdin GH: Mathematical modeling. Adv Dent Res 11: 127–32, 1997

    Article  PubMed  CAS  Google Scholar 

  39. Dibdin GH, Shellis RP, Wilson CM: An apparatus for the continuous culture of microorganisms on solid surfaces with special reference to dental plaque. J Appl Bacteriol 40: 261–8, 1976

    Article  PubMed  CAS  Google Scholar 

  40. Drew SW: Liquid culture. In: Gerhardt P, Murray RGE, Costilow RN, et al., eds: Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, DC, 1981: 151–78

    Google Scholar 

  41. Dworkin M: Multiculturalism versus the single microbe. In: Shapiro JA, Dworkin M, eds: Bacteria as Multicellular Organisms. Oxford University Press, Oxford, UK, 1997: 3–13

    Google Scholar 

  42. Evans RC, Holmes CJ: Effect of vancomycin hydrochloride on Staphylococcus epidermidis biofilm associated with silicone elastomer. Antimicrob Agents Chemother 31: 889–94, 1987

    Article  PubMed  CAS  Google Scholar 

  43. Fletcher M, Floodgate GD: An electron-microscopic demonstration of an acidic polysaccharide involved in the adhesion of a marine bacterium to solid surfaces. J Gen Microbiol 74: 325–34, 1973

    Article  CAS  Google Scholar 

  44. Freeman DJ, Falkiner FR, Keane CT: New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol 42: 872–4, 1989

    Article  PubMed  CAS  Google Scholar 

  45. Fry NK, Raskin L, Sharp R, et al: In situ analyses of microbial populations with molecular probes. In: Shapiro JA, Dworkin M, eds: Bacteria as Multicellular Organisms. Oxford University Press, Oxford, UK, 1997: 292–336

    Google Scholar 

  46. Fuhrman JA: Community structure: bacteria and archaea. In: Hurst CJ, Knudsen GR, McInerney MJ, et al., eds: Manual of Environmental Microbiology. ASM Press, Washington, DC, 1997: 278–83

    Google Scholar 

  47. Gallimore B, Gagnon RF, Subang R, et al: Natural history of chronic Staphylococcus epidermidis foreign body infection in a mouse model. J Infect Dis 164: 1220–3, 1991

    Article  PubMed  CAS  Google Scholar 

  48. Ganderton L, Chawla J, Winters C, et al: Scanning electron microscopy of bacterial biofilms on indwelling bladder catheters. Eur J Clin Microbiol Infect Dis 11: 789–96, 1992

    Article  PubMed  CAS  Google Scholar 

  49. Garland JL: Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol Biochem 28: 213–21, 1996

    Article  CAS  Google Scholar 

  50. Gilbert P, Allison DG: Laboratory methods for biofilm production. In: Denyer SP, Gorman SP, Sussman M, eds: Microbial Biofilms: Formation and Control. Blackwell Scientific, London, 1993: 29–49

    Google Scholar 

  51. Gilbert P, Allison DG, Evans DJ, et al: Growth rate control of adherent bacterial populations. Appl Environ Microbiol 55: 1308–11, 1989

    PubMed  CAS  Google Scholar 

  52. Gilbert P, Das J, Foley I: Biofilm susceptibility to antimicrobials. Adv Dent Res 11: 160–7, 1997

    Article  PubMed  CAS  Google Scholar 

  53. Giridhar G, Kreger AS, Myrvik QN, et al: Inhibition of Staphylococcus adherence to biomaterials by extracellular slime of S. epidermidis RP12. J Biomed Mater Res 28: 1289–94, 1994

    Article  PubMed  CAS  Google Scholar 

  54. Glenister DA, Salamon KE, Smith K, et al: Enhanced growth of complex communities of dental plaque bacteria in mucin-limited continuous culture. Microb Ecol Hlth Dis 1: 31–8, 1988

    Article  Google Scholar 

  55. Gristina AG, Costerton JW: Bacterial adherence and the glycocalyx and their role in musculoskeletal infection. Orthop Clin North Am 15: 517–35, 1984

    PubMed  CAS  Google Scholar 

  56. Gristina AG, Costerton JW: Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. J Bone Joint Surg 67: 264–73, 1985

    PubMed  CAS  Google Scholar 

  57. Gristina AG, Hobgood CD, Barth E: Biomaterial specificity, molecular mechanisms, and clinical relevance of S. epidermidis and S. aureus infections in surgery. In: Pulverer G, ed: Pathogenesis and Clinical Significance of Coagulase-negative Staphylococci. Fisher Verlag, Stuttgart, Germany, 1987: 143–57

    Google Scholar 

  58. Haack SK, Garchow H, Klug MJ, et al: Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Appl Environ Microbiol 61: 1458–68, 1995

    PubMed  CAS  Google Scholar 

  59. Helmstetter CE, Cummings DJ: Bacterial synchronization by selection of cells at division. Proc Nat Acad Sci 50: 767–74, 1963

    Article  PubMed  CAS  Google Scholar 

  60. Herles S, Olsen S, Afflitto J, et al: Chemostat flow cell system: An in vitro model for the evaluation of antiplaque agents. J Dent Res 73: 1748–55, 1994

    PubMed  CAS  Google Scholar 

  61. Hodgson AE, Nelson SM, Brown MRW, et al: A simple in vitro model for growth control of bacterial biofilms. J Appl Bacteriol 79: 87–93, 1995

    Article  PubMed  CAS  Google Scholar 

  62. Hoehn RC, Ray AD: Effects of thickness on bacterial film. J Water Poll Control Fed 45: 2302–20, 1973

    CAS  Google Scholar 

  63. Holmes CJ, Evans RC, Vonesh E: Application of an empirically derived growth curve model to characterize Staphylococcus epidermidis biofilm development on silicone elastomer. Biomaterials 10: 625–9, 1989

    Article  PubMed  CAS  Google Scholar 

  64. Hudson DE, Donoghue HD, Perrons CJ: A laboratory microcosm (artificial mouth) for the culture and continuous pH measurement of oral bacteria on surfaces. J Appl Bacteriol 60: 301–10, 1986

    Article  PubMed  CAS  Google Scholar 

  65. Hussain M, Collins C, Hastings JG, et al: Radiochemical assay to measure the biofilm produced by coagulase-negative staphylococci on solid surfaces and its use to quantitate the effects of various antibacterial compounds on the formation of the biofilm. J Med Microbiol 34: 62–9, 1992

    Article  Google Scholar 

  66. Hussain M, Hastings JG, White Pk Isolation and composition of the extracellular slime made by coagulase-negative staphylococci in a chemically defined medium. J Infect Dis 163: 534–41, 1991

    Article  PubMed  CAS  Google Scholar 

  67. Igarashi K, Lee IK, Schachtele CF: Effect of dental plaque age and bacterial composition on the pH of artificial fissures in human volunteers. Caries Res 24: 52–9, 1990

    Article  PubMed  CAS  Google Scholar 

  68. Isiklar ZU, Darouiche RO, Landon GC, et al: Efficacy of antibiotics alone for orthopaedic device related infections. Clin Orthop 332: 184–9, 1996

    Article  PubMed  Google Scholar 

  69. Iwaoka T, Griffiths PR, Kitasako JT, et al: Copper-coated cylindrical internal reflection elements for investigating interfacial phenomena. Appl Spectrosc 40: 1062–5, 1986

    Article  CAS  Google Scholar 

  70. Jolley JG, Geesey GG, Hankins MR, et al: In situ, real-time FT-IR/CIR/ATR study of the biocorrosion of copper by gum arabic, alginic acid, bacterial culture supernatant and Pseudomonas atlantica exopolymer. Appl Spectrosc 43: 1062–7, 1989

    Article  CAS  Google Scholar 

  71. Keevil CW, Bradshaw DJ, Dowsett AB, et al: Microbial film formation: dental plaque deposition on acrylic tiles using continuous culture techniques. JAppl Bacteriol 62: 129–38, 1987

    Article  CAS  Google Scholar 

  72. Khardori N, Rosenbaum B, Bodey GP: Evaluation of in vitro markers for clinically significant infections with coagulase-negative staphylococci. Clin Res 35: 20A, 1987

    Google Scholar 

  73. Kinniment SL, Wimpenny JWT, Adams D, et al: Development of a steady-state oral microbial biofilm community using the constant-depth film fermenter. Microbiol 142: 631–8, 1996

    Article  CAS  Google Scholar 

  74. Kleinberg I: Biochemistry of the dental plaque. In: Staple PH, ed: Advances in Oral Biology. Academic Press, New York, NY, 1970: 43–90

    Google Scholar 

  75. Kotilainen P, Maki J, Oksman P, et al: Immunochemical analysis of the extracellular slime substance of Staphylococcus epidermidis. Eur J Clin Microbiol Infect Dis 9: 262–70, 1990

    Article  CAS  Google Scholar 

  76. Ladd TI, Costerton JW: Methods for studying biofilm bacteria. Meth Microbiol 22: 287307, 1990

    Google Scholar 

  77. Ladd TI, Schmiel D, Nickel JC, et al: The use of a radiorespirometric assay for testing the antibiotic sensitivity of catheter-associated bacteria. J Urol 138: 1451–6, 1987

    PubMed  CAS  Google Scholar 

  78. Levin IM, Lau CN, Socransky SS, et al: Cultivable and uncultivable species on or in gingival epithelial cells. J Dent Res 78: 453, 1999

    Google Scholar 

  79. Li YH, Bowden GH: Characteristics of accumulation of oral Gram-positive bacteria on mucin-conditioned glass surfaces in a model system. Oral Microbiol Immunol 9: 1–11, 1994

    Article  PubMed  Google Scholar 

  80. Li YH, Bowden GH: The effect of environmental pH and fluoride from the substratum on the development of biofilms of selected oral bacteria. J Dent Res 73: 1615–26, 1994

    PubMed  CAS  Google Scholar 

  81. Liljemark WF, Bloomquist CG, Coulter MC, et al: Utilization of a continuous streptococcal surface to measure interbacterial adherence in vitro and in vivo. J Dent Res 67: 1445–60, 1988

    Google Scholar 

  82. Locci R, Peters G, Pulverer G: Microbial colonization of prosthetic devices. I. Micro-topographical characteristics of intravenous catheters as detected by scanning electron microscopy. Zentralbl Bakteriol Mikrobiol Hyg [B] 173: 285–92, 1981

    CAS  Google Scholar 

  83. London J, Kolenbrander P: Coaggregation: enhancing colonization in a fluctuating environment. In: Fletcher M, ed: Bacterial Adhesion: Molecular and Ecological Diversity. Wiley-Liss, New York, 1996: 249–79

    Google Scholar 

  84. Luoma H, Alakuijala P, Korhonen A, et al: Enamel dissolution in relation to fluoride concentrations in the fluid of dental plaque-like layers of precultured Streptococcus sobrinus. Arch Oral Biol 39: 177–84, 1994

    Article  CAS  Google Scholar 

  85. Macfarlane S, McBain AJ, Macfarlane GT: Consequences of biofilm and sessile growth in the large intestine. Adv Dent Res 11:59–68, 1997

    Google Scholar 

  86. Macpherson LMD, Chen WY, Dawes C: Effects of salivary bicarbonate content and film velocity on pH changes in an artificial plaque containing Streptococcus oralis, after exposure to sucrose. J Dent Res 70: 1235–8, 1991

    Article  PubMed  CAS  Google Scholar 

  87. Macpherson LMD, Dawes C: Effects of salivary film velocity on pH changes in an artificial plaque containing Streptococcus oralis, after exposure to sucrose. J Dent Res 70: 1230–4, 1991

    Article  PubMed  CAS  Google Scholar 

  88. Macpherson LMD, Dawes C: Urea concentration in minor mucous gland secretions and the effect of salivary film velocity on urea metabolism by Streptoccocus vestibularis in an artificial plaque. J Periodont Res 26: 395–401, 1991

    Article  PubMed  CAS  Google Scholar 

  89. Macpherson LMD, Macfarlane TW, Stephen KW: An in situ microbiological study of the early colonization of human enamel surfaces. Microb Ecol Hlth Dis 4: 39–46, 1991

    Article  Google Scholar 

  90. Main C, Geddes DAM, McNee SG, et al: Instrumentation for measurement of dental plaque thickness in situ. J Biomed Eng 6: 151–4, 1984

    Article  CAS  Google Scholar 

  91. Marsh PD: The significance of maintaining the stability of the natural microflora of the mouth. Brit Dent J 171: 174–7, 1991

    Article  PubMed  CAS  Google Scholar 

  92. Marsh PD: The role of microbiology in models of dental caries. Adv Dent Res 9: 244–54, 1995

    PubMed  CAS  Google Scholar 

  93. Marsh PD, Bradshaw DJ: Physiological approaches to the control of oral biofilms. Adv Dent Res 11: 176–85, 1997

    Article  PubMed  CAS  Google Scholar 

  94. Marsh PD, Martin MV: Oral Microbiology. Chapman and Hall, London, UK, 1992

    Google Scholar 

  95. Matsushita M: Formation of colony patterns by a bacterial cell population. In: Shapiro JA, Dworkin M, eds: Bacteria as Multicellular Organisms. Oxford University Press, Oxford, UK, 1997: 366–93

    Google Scholar 

  96. Mayberry-Carson KJ, Tober-Meyer B, Lambe DW, et al: Osteomyelitis experimentally induced with Bacteroides thetaiotaomicron and Staphylococcus epidermidis. Influence of a foreign-body implant. Clin Orthop 280: 289–99, 1992

    PubMed  Google Scholar 

  97. McCabe RM, Keyes PH, Howell A: An in vitro method for assessing the plaque forming ability of the oral bacteria. Arch Oral Biol 12: 1653–6, 1967

    Article  PubMed  CAS  Google Scholar 

  98. McCoy WF, Bryers JD, Robbins J, et al: Observations of fouling biofilm formation. Can J Microbiol 27: 910–7, 1981

    Article  PubMed  CAS  Google Scholar 

  99. McDermid AS, McKee AS, Ellwood DC, et al: The effect of lowering the pH on the composition and metabolism of a community of nine bacteria grown in a chemostat. J Gen Microbiol 132: 1205–14, 1986

    PubMed  CAS  Google Scholar 

  100. McFeters GA, Bazin MJ, Bryers JD: Biofilm development and its consequences. In: Marshall KC, ed: Microbial Adhesion and Aggregation. Springer-Verlag, Berlin, 1984: 109–24, 1984

    Google Scholar 

  101. McGlohorn J, An YH, Friedman RJ: A simple flow chamber for producing bacterial biofilm on biomaterial surfaces. Trans Soc Biomater 21: 484, 1998

    Google Scholar 

  102. McGlohorn JB, Bednarski BK, An YH, et al: Cultivation of biofilm on titanium surface using a new continuous flow system. MUSC Orthop J 2: 20–3, 1999

    Google Scholar 

  103. Mikkelsen L: Influence of sucrose intake on saliva and number of microorganisms and acidogenic potential in early dental plaque. Microb Ecol Hlth Dis 6: 253–64, 1993

    Article  Google Scholar 

  104. Molin G, Nilsson I: Degradation of phenol by Pseudomonas putida ATCC 11172 in continuous culture at different ratios of biofilm surface to culture volume. Appl Environ Microbiol 50: 946–50, 1985

    PubMed  CAS  Google Scholar 

  105. Moore WEC, Moore LVH: The bacteria of periodontal diseases. Periodontology 5: 66–77, 1994

    Article  CAS  Google Scholar 

  106. Naylor PT, Myrvik QN, Gristina A: Antibiotic resistance of biomaterial-adherent coagulase-negative and coagulase-positive staphylococci. Clin Orthop 261: 126–33, 1990

    PubMed  Google Scholar 

  107. Newman HN: Plaque and chronic inflammatory periodontal disease. A question of ecology. J Clin Periodontol 17: 533–41, 1990

    Article  PubMed  CAS  Google Scholar 

  108. Nickel JC, Ruseska I, Wright JB, et al: Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27: 619–24, 1985

    Article  PubMed  CAS  Google Scholar 

  109. Noorda WD, Purdell-Lewis DJ, de Koning W, et al: A new apparatus for continuous cultivation of bacterial plaque on solid surfaces and human dental enamel. J Appl Bacteriol 58: 563–9, 1985

    Article  PubMed  CAS  Google Scholar 

  110. Noorda WD, van Montfort AMAP, Purdell-Lewis DJ, et al: Developmental and metabolic aspects of a monobacterial plaque of Streptococcus mutans C67–1 grown on human enamel slabs in an artificial mouth model. I. Plaque data. Caries Res 20: 300–7, 1986

    Article  PubMed  CAS  Google Scholar 

  111. Nyvad B, Fejerskov O: Structure of dental plaque and the plaque-enamel interface in human experimental caries. Caries Res 23: 151–8, 1989

    Article  PubMed  CAS  Google Scholar 

  112. Nyvad B, Kilian M: Microbiology of the early clonization of human enamel and root surfaces in vivo. Scand J Dent Res 95: 369–80, 1987

    CAS  Google Scholar 

  113. Nyvad B, Kilian M: Microflora associated with experimental root surface caries in humans. Infect Immun 58: 1628–33, 1990

    PubMed  CAS  Google Scholar 

  114. Palmer RJ, Almeida JS, Ringelberg DB, et al: Phospholipid-bound fatty-acid profiles reveal community structure of oral biofilms. Adv Dent Res 11:187, 1996

    Google Scholar 

  115. Palmer RJ, Wong L, Sissons CH: Community structure and enzyme activity in microcosm dental plaques. J Dent Res 77: 988, 1998

    Google Scholar 

  116. Pearce EIF, Dibdin GH: The diffusion and enzymic hydrolysis of monofluorophosphate and dental plaque. J Dent Res 74: 691–7, 1995

    Article  PubMed  CAS  Google Scholar 

  117. Pearce EIF, Wakefield JSJ, Sissons CH: Therapeutic mineral enrichment of dental plaque visualized by transmission electron microscopy. J Dent Res 70: 90–4, 1991

    Article  PubMed  CAS  Google Scholar 

  118. Peters A, Wimpenny JWT: A constant-depth laboratory model film fermenter. In: Wimpenny JWT, ed: CRC Handbook of Laboratory Model Systems for Microbial Ecosystems. CRC Press, Boca Raton, FL, 1988: 175–195

    Google Scholar 

  119. Peterson GL: A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83: 346–56, 1977

    Article  PubMed  CAS  Google Scholar 

  120. Pfaller M, Davenport D, Bale M, et al: Development of the quantitative micro-test for slime production by coagulase-negative staphylococci. Eur J Clin Microbiol Infect Dis 7: 30–3, 1988

    Article  PubMed  CAS  Google Scholar 

  121. Prosser BL, Taylor D, Dix BA, et al: Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrob Agents Chemother 31: 1502–6, 1987

    Article  PubMed  CAS  Google Scholar 

  122. Qian Z, Sagers RD, Pitt WG: The effect of ultrasonic frequency upon enhanced killing of P. aeruginosa biofilms. Ann Biomed Eng 25: 69–76, 1997

    Article  PubMed  CAS  Google Scholar 

  123. Reid G, Denstedt JD, Kang YS, et al: Microbial adhesion and biofilm formation on ureteral stents in vitro and in vivo. J Urol 148: 1592–4, 1992

    CAS  Google Scholar 

  124. Robinson C, Kirkham J, Shore RC, et al: A quantitative site-specific study of plaque biofilms formed in vivo. J Dent Res 75: 232, 1996

    Google Scholar 

  125. Russell C, Coulter WA: Continuous monitoring of pH and Eh in bacterial plaque grown on a tooth in an artificial mouth. Appl Microbiol 29: 141–4, 1975

    PubMed  CAS  Google Scholar 

  126. Shapiro JA: Multicellularity: the rule, not the exception: Lessons from Escherichia coli colonies. In: Shapiro JA, Dworkin M, eds: Bacteria as Multicellular Organisms. Oxford University Press, Oxford, UK, 1997: 14–49

    Google Scholar 

  127. Shu M, Sissons CH, Miller JH, et al: Cariogenicity of monoculture and consortia caries pathogen plaque biofilms in an artificial mouth. J Dent Res 75: 35, 1996

    Google Scholar 

  128. Shu M, Wong L, Miller JH, et al: Development of multi-species consortia biofilms of oral bacteria as an enamel and root caries model system. Arch Oral Biol: Submitted, 1999

    Google Scholar 

  129. Simmonds RS, Naidoo J, Jones CL, et al: The streptococcal bacteriocin-like inhibitory substance, Zoocin A, reduces the proportion of Streptococcus mutans in an artificial plaque. Microb Ecol Hlth Dis 8: 281–92, 1995

    Article  Google Scholar 

  130. Singleton S, Treloar R, Warren P, et al: Methods of microscopic characterization of oral biofilms: analysis of colonization, microstructure, and molecular transport phenomena. Adv Dent Res 11: 133–49, 1997

    Article  PubMed  CAS  Google Scholar 

  131. Sissons CH: Artifical dental plaque biofilm model systems. Adv Dent Res 11: 110–26, 1997

    Article  PubMed  CAS  Google Scholar 

  132. Sissons CH, Cutress TW: In vitro urea-dependent pH-changes by human salivary bacteria and dispersed, artificial-mouth, bacterial plaques. Arch Oral Biol 32: 181–9, 1987

    Article  PubMed  CAS  Google Scholar 

  133. Sissons CH, Cutress TW, Faulds G, et al: pH responses to sucrose and the formation of pH gradients in thick “artificial mouth” microcosm plaques. Arch Oral Biol 37: 913–22, 1992

    Article  PubMed  CAS  Google Scholar 

  134. Sissons CH, Cutress TW, Hoffman MP, et al: A multi-station dental plaque microcosm (artificial mouth) for the study of plaque growth, metabolism, pH, and mineralization. J Dent Res 70: 1409–16, 1991

    Article  PubMed  CAS  Google Scholar 

  135. Sissons CH, Cutress TW, Wong L, et al: Effect of urea on pH in artificial mouth microcosm plaques. Caries Res 27: Abstract # 69: 226, 1993

    Google Scholar 

  136. Sissons CH, Hancock EM, Perinpanayagam HER, et al: A procedure for urease and protein extraction from staphylococci. JAppl Bacteriol 67: 433–40, 1989

    Article  CAS  Google Scholar 

  137. Sissons CH, Wong L, Cutress TW: Patterns and rates of growth of microcosm dental plaque biofilms. Oral Microbiol Immunol 10: 160–7, 1995

    Article  PubMed  CAS  Google Scholar 

  138. Sissons CH, Wong L, Cutress TW: Regulation of urease levels in microcosm dental plaque. Microb Ecol Hlth Dis 8: 219–24, 1995

    Article  Google Scholar 

  139. Sissons CH, Wong L, Cutress TW: Inhibition by ethanol of the growth of biofilm and dispersed microcosm dental plaques. Arch Oral Biol 41: 27–34, 1996

    Article  PubMed  CAS  Google Scholar 

  140. Sissons CH, Wong L, Hancock EM, et al: pH gradients induced by urea metabolism in “artificial mouth” microcosm plaques. Arch Oral Biol 39: 507–11, 1994

    Article  PubMed  CAS  Google Scholar 

  141. Sissons CH, Wong L, Hancock EM, et al: The pH response to urea and the effect of liquid flow in “artificial mouth” microcosm plaques. Arch Oral Biol 39: 497–505, 1994

    Article  PubMed  CAS  Google Scholar 

  142. Sissons CH, Wong L, Shu M: Factors affecting the resting pH of in vitro human microcosm plaque and Streptococcus mutans biofilms. Arch Oral Biol 43: 93–102, 1998

    Article  PubMed  CAS  Google Scholar 

  143. Socransky SS, Haffajee AD, Cugini MA, et al: Microbial complexes in subgingival plaque. J Clin Periodontol 25: 134–44, 1998

    Article  PubMed  CAS  Google Scholar 

  144. Socransky SS, Manganiello AD, Propas D, et al: Bacteriological studies of developing supragingival dental plaque. J Periodont Res 12: 90–106, 1977

    Article  PubMed  CAS  Google Scholar 

  145. Socransky SS, Smith C, Martin L, et al: “Checkerboard” DNA-DNA hybridization. Biotechniques 17: 788–92, 1994

    PubMed  CAS  Google Scholar 

  146. Spratt DA, Weightman AJ, Wade WG: Diversity of oral asaccharolytic Eubacterium species in periodontitis — identification of novel phylotypes representing uncultivated taxa. Oral Microbiol Immunol 14: 56–9, 1999

    Article  PubMed  CAS  Google Scholar 

  147. Stahl DA: Molecular approaches for the measurement of density, diversity, and phylogeny. In: Hurst CJ, Knudsen GR, McInerney MJ, et al., eds: Manual of Environmental Microbiology. ASM Press, Washington, DC, 1997: 102–14

    Google Scholar 

  148. Stoodley P, Boyle JD, Dodds I, et al: Consensus model of biofilm structure. In: Wimpenny JWT, Handley PS, Gilbert P, et al., eds: Biofilms: Community Interactions and Control. Bioline, Cardiff, UK, 1997: 1–9

    Google Scholar 

  149. Straskrabova V: The effect of substrate shock on populations of starving aquatic bacteria. JAppl Bacteriol 54: 217–24, 1983

    Article  Google Scholar 

  150. Sudo S, Gutfleisch JR, Schotzko NK, et al: Model system for studying colonization and growth of bacteria on a hydroxyapatite surface. Infect Immun 12: 576–85, 1975

    PubMed  CAS  Google Scholar 

  151. Sutton NA, Hughes N, Handley PS: A comparison of conventional SEM techniques, low temperature SEM and the electroscan wet scanning electron microscope to study the structure of a biofilm of Streptococcus crista CR3. J Appl Bacteriol 76: 448–54, 1994

    Article  PubMed  CAS  Google Scholar 

  152. Tatevossian A: Film fermenters in dental research. In: Wimpenny JWT, ed: CRC Handbook of Laboratory Model Systems for Microbial Ecosystems. CRC Press Inc., Boca Raton, FL, 1988: 197–227

    Google Scholar 

  153. Tilman D, Downing JA: Biodiversity and stability in grasslands. Nature 367: 363–5, 1994

    Article  Google Scholar 

  154. Torsvik V, Daae FL, Sandaa RA, et al: Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol 64: 53–62, 1998

    Article  PubMed  CAS  Google Scholar 

  155. Torsvik V, Goksoyr J, Daae FL: High diversity in DNA of soil bacteria. Appl Environ Microbiol 56: 782–7, 1990

    PubMed  CAS  Google Scholar 

  156. Trulear MG, Characklis WG: Dynamics of biofilm processes. J Water Poll Control Fed 54: 1288–1301, 1982

    CAS  Google Scholar 

  157. Tsai CL, Schurman DJ, Smith RL: Quantitation of glycocalyx production in coagulasenegative Staphylococcus. J Orthop Res 6: 666–70, 1988

    Article  CAS  Google Scholar 

  158. Van Pett K, Schurman DJ, Smith RL: Quantitation and relative distribution of extracellular matrix in Staphylococcus epidermidis biofilm. J Orthop Res 8: 321–27, 1990

    Article  PubMed  Google Scholar 

  159. Vrahopoulos TP, Barber PM, Newman HN: The apical border plaque in severe periodontitis. An ultrastructural study. J Periodontol 66: 113–24, 1995

    Article  PubMed  CAS  Google Scholar 

  160. Wade WG, Harper-Owen R, Dymock D, et al: Associations between “not-yet-cultivable” bacterial phylotypes with periodontal health and disease. J Dent Res 77: 918, 1998

    Google Scholar 

  161. Watve MG, Gangal RM: Problems in measuring bacterial diversity and a possible solution. Appl Environ Microbiol 62: 4299–301, 1996

    PubMed  CAS  Google Scholar 

  162. Weiger R, von Ohle C, Decker E, et al: Vital microorganisms in early supragingival dental plaque and in stimulated human saliva. J Periodont Res 32: 233–40, 1997

    Article  PubMed  CAS  Google Scholar 

  163. White DC, Pinkart HC, Ringelberg DB: Biomass measurements: biochemical appproaches. In: Hurst CJ, Knudsen GR, McInerney MJ, et al., eds: Manual of Environmental Microbiology. ASM Press, Washington, DC, 1997: 91–101

    Google Scholar 

  164. Wimpenny JWT: The bacterial colony. In: Wimpenny JWT, ed: CRC Handbook of Laboratory Model Systems for Microbial Ecosystems. CRC Press, Boca Raton, FL, 1988: 109–39

    Google Scholar 

  165. Wimpenny JWT: Introduction. In: Wimpenny JWT, ed: CRC Handbook of Laboratory Model Systems for Microbial Ecosystems. CRC Press, Boca Raton, FL, 1988: 1–17

    Google Scholar 

  166. Wimpenny JWT: On the nature and validity of models. In: Wimpenny J, Handley PS, Gilbert P, et al., eds: The Life and Death of Biofilm. Bioline, Cardiff, UK, 1995: 1–8

    Google Scholar 

  167. Wimpenny JWT: The validity of models. Adv Dent Res 11:150–9 1997

    Google Scholar 

  168. Wimpenny JWT: Email communication to Bionet Microbiology Biofilms Newsgroup, September 1998

    Google Scholar 

  169. Wimpenny JWT, Colasanti R: A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol Ecol 22: 1–16, 1997

    Article  CAS  Google Scholar 

  170. Wimpenny JWT, Kinniment SL, Scourfield MA: The physiology and biochemistry of biofilm. In: Denyer SP, Gorman SP Sussman M, eds: Microbial Biofilms: Formation and Control. Blackwell Scientific Publications, London, 1993: 51–94

    Google Scholar 

  171. Wong L, Sissons CH, Cutress TW: Characterization of calcium phosphate deposited in mineralised microcosm dental plaques. J Dent Res 75: 1077, 1996

    Google Scholar 

  172. Wong L, Sissons CH, Cutress TW: Control of a multiple dental plaque culture system and long-term, continuous, plaque pH measurement using Lab VIEW®. Binary 6: 173–80, 1994

    Google Scholar 

  173. Yaari A, Bibby BG: Production of plaques and initiation of caries in vitro. J Dent Res 55: 30–6, 1976

    Article  PubMed  CAS  Google Scholar 

  174. Zak JC, Willig MR, Moorhead DL, et al: Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26: 1101–8, 1994

    Article  Google Scholar 

  175. Zampatti O, Roques C, Michel G: An in vitro mouth model to test antiplaque agents: Preliminary studies using a toothpaste containing chlorhexidine. Caries Res 28: 35–42, 1994

    Article  PubMed  CAS  Google Scholar 

  176. Zero DT: In situ caries models. Adv Dent Res 9: 214–30, 1995

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sissons, C.H., Wong, L., An, Y.H. (2000). Laboratory Culture and Analysis of Microbial Biofilms. In: An, Y.H., Friedman, R.J. (eds) Handbook of Bacterial Adhesion. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-224-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-224-1_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-192-9

  • Online ISBN: 978-1-59259-224-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics