Skip to main content

Studying Bacterial Adhesion to Respiratory Mucosa

  • Chapter
Handbook of Bacterial Adhesion

Abstract

Adhesion to host tissues enables human pathogens to withstand host defense mechanisms such as removal by fluid flow, mucociliary clearance, and other physical processes. Adhesion is therefore an essential prerequisite for successful colonization of epithelial surfaces and is recognized as a virulence factor for bacterial, viral and fungal pathogens. However, adhesion alone is rarely, if ever, responsible for inducing disease. Most frequently, the combination of adhesion, pathogen growth in the lining epithelial cells, and toxin production or adhesion, penetration, and growth within mucosal epithelial cells determines the course of human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almagor M, Kahane I, Wiesel JM, et al: Human ciliated epithelial cells from nasal polyps as an experimental model for Mycoplasma pneumoniae infection. Infect Immun 48: 552–5, 1985

    PubMed  CAS  Google Scholar 

  2. Amano A, Nakamura T, Kimura S, et al: Molecular interactions of Porphyromonas gingivalis fimbriae with host proteins: kinetic analyses based on surface plasmon resonance. Infect Immun 67: 2399–2405, 1999

    PubMed  CAS  Google Scholar 

  3. Anderson JM, Balda MS, Fanning AS: The structure and regulation of tight junctions. Curr Opin Cell Biol 5: 772–8, 1993

    PubMed  CAS  Google Scholar 

  4. Athama A, Ofek I: Enzyme-linked immunosorbent assay for quantitation of attachment and ingestion stages of bacterial phagocytosis. Infect Immun 26: 62–6, 1988

    Google Scholar 

  5. Audié JP, Janin A, Porchet N, et al: Expression of human mucin genes in respiratory, digestive, and reproductive tracts ascertained by in situ hybridization. J Histochem Cytochem 41: 1479–85, 1993

    PubMed  Google Scholar 

  6. Baker NR, Marcus H: Adherence of clinical isolates of Pseudomonas aeruginosa to hamster tracheal epithelium in vitro. Curr Microbiol 7: 35–40, 1982

    Google Scholar 

  7. Barsum W, Wilson R, Read RC, et al: Interaction of fimbriated and nonfimbriated strains of unencapsulated Haemophikus influenzae with human respiratory tract mucus in vitro. Eur Respir J 8: 709–14, 1995

    CAS  Google Scholar 

  8. Barthelson R, Mobasseri A, Zope D, et al: Adherence of Streptococcus pneumoniae to respiratory epithelial cells is inhibited by syalylated oligosaccharides. Infect Immun 66: 1439–44, 1998

    PubMed  CAS  Google Scholar 

  9. Benali R, Dupuit F, Jacquot J, et al: Growth and characterization of isolated bovine tracheal gland cells in culture. Influence of a reconstituted basement membrane matrix. Biol Cell 66: 263–70, 1989

    PubMed  CAS  Google Scholar 

  10. Beuth J, Ko HL, Schroten H, et al: Lectin mediated adhesion of Streptococcus pneumoniae and its specific inhibition in vitro and in vivo. Zbl Bakt Hyg A 265: 160–8, 1987

    CAS  Google Scholar 

  11. Carnoy C, Scharfman A, Van Brussel E, et al: Pseudomonas aeruginosa outer membrane adhesins for human respiratory mucus glycoprotein. Infect Immun 62: 1896–1900, 1994

    PubMed  CAS  Google Scholar 

  12. Cereijido M, Gonzales-Mariscal L, Contreras RG, et al: Epithelial tight junctions. Am Rev RespirDis 138: S17–21, 1988

    CAS  Google Scholar 

  13. Chevillard M, Hinnrasky J, Zahm JM, et al: Proliferation, differentiation and ciliary beating frequency of human respiratory ciliated cells in different conditions of primary culture. Cell Tiss Res 264: 49–55, 1991

    CAS  Google Scholar 

  14. Colliot G, de Bentzmann S, Plotkowski MC, et al: Quantitative analysis and cartography in scanning electron microscopy: application to the study of bacterial adhesion to respiratory epithelium. Microsc Res Tech 24: 527–36, 1993

    PubMed  CAS  Google Scholar 

  15. Cowan MM: Kinetic analysis of microbial adhesion. Method Enzymol 253: 179–89, 1995

    CAS  Google Scholar 

  16. Cozens AL, Yezzi MJ, Yamada M, et al: Transformed human epithelial cell line that retains tight junctions post crisis. In Vitro Cell Dev Biol 28A: 735–744, 1992.

    Google Scholar 

  17. Davies J, Carlstedt I, Nilsson AK, et al: Binding of Haemophilus influenzae to purified mucins from the human respiratory tract. Infect Immun 63: 2485–92, 1995.

    PubMed  CAS  Google Scholar 

  18. De Bentzmann S, Bajolet-Laudinat O, Plotkowski MC, et al. Digital stereology to quantify the filling rate of bacterial aggregates of Pseudomonas aeruginosa. J Microbiol Meth 17: 193–8, 1993

    Google Scholar 

  19. De Bentzmann S, Roger P, Bajolet-Laudinat O, et al: Asialo GMI is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelium. Infect Immun 64: 1582–8, 1996

    PubMed  Google Scholar 

  20. De Bentzmann S, Plotkowski MC, Puchelle E: Receptors in the Pseudomonas aeruginosa adherence to injured and repairing airway epithelium. Am J Respir Crit Care Med 154: 515–562, 1996

    Google Scholar 

  21. DiMango E, Zar Hi, Bryan R, et al: Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8. J Clin Invest 96: 2204–10, 1995

    PubMed  CAS  Google Scholar 

  22. DiMango E, Ratner Ai, Bryan R, et al: Activation of NF-kB by adherent Pseudomonas aeruginosa in normal and cystic fibrosis respiratory epithelial cells. J Clin Invest 101: 2598–2606, 1998

    PubMed  CAS  Google Scholar 

  23. Doig P, Todd T, Sastry PA, et al: Role of pili in adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells. Infect Immun 56: 1641–6, 1988

    PubMed  CAS  Google Scholar 

  24. Doig P, Sastry PA, Hodges RS, et al. Inhibition of pili-mediated adhesion of Pseudomonas aeruginosa to human buccal epithelial cells by monoclonal antibodies directed against pili. Infect Immun 58: 124–30, 1990

    PubMed  CAS  Google Scholar 

  25. Drevets D, Campbell PA: Macrophage phagocytosis: use of fluorescence to distinguish between extracellular and intracellular bacteria. J Immunol Meth 142: 31–8, 1991

    CAS  Google Scholar 

  26. Dupuit F, Gaillard D, Hinnrasky J, et al: Differentiated and functional human airway epithelium regeneration in tracheal xenografts. Am J Physiol Submitted, 1999

    Google Scholar 

  27. Engelhardt JF, Yankaskas JR, Wilson JM: In vitro retroviral gene transfer into human bronchial epithelia xenografts. J Clin Invest 90: 2598–2607, 1992

    PubMed  CAS  Google Scholar 

  28. Fakih MG, Murphy TF, Pattoli MA, et al: Specific binding of Haemophilus influenzae to minor gangliosides of human respiratory epithelial cells. Infect Immun 65: 1695–700, 1997

    PubMed  CAS  Google Scholar 

  29. Falk P, Bóren T, Haslam D et al: Bacterial adhesion and colonization assays. In: Russell DG, ed. Microbes As Tools For Cell Biology. Academic Press, San Diego, CA, 1994: 165–92

    Google Scholar 

  30. Falk P, Roth KA, Gordon JI: Lectins are sensitive tools for defining the differentiation programs of epithelial cell lineages in the development of adult mouse gastrointestinal tract. Am J Physiol 266: G987–1003, 1994

    PubMed  CAS  Google Scholar 

  31. Farley MM, Stephens DS, Mulks MH, et al: Pathogenesis of IgA, protease-producing and non-producing Haemophilus influenzae in human nasopharyngeal organ cultures. J Infect Dis 154: 752–9, 1986

    PubMed  CAS  Google Scholar 

  32. Finlay BB, Heffron F, Falkow S: Epithelial cell surfaces induce Salmonella protein required for bacterial adherence and invasion. Science 243: 940–3, 1989

    PubMed  CAS  Google Scholar 

  33. Franklin AL, Todd T, Gurman G, et al: Adherence of Pseudomonas aeruginosa to cilia of human tracheal epithelial cells. Infect Immun 55: 1523–5, 1987

    PubMed  CAS  Google Scholar 

  34. Funnell SGP, Robinson A: A novel adherence assay for Bordetella pertussis using tracheal organ cultures. FEMS Microbiol Lett 110: 197–204, 1993

    PubMed  CAS  Google Scholar 

  35. Gaillard D, Plotkowski MC: Changes in airway structure after airway infection. In: Chrétien J, Dusser D, eds: Environmental Impact on the Airways. M. Dekker, New York, 1996: 471–505

    Google Scholar 

  36. Geuijen CAW, Willems RJL, Mooi FR: The major fimbrial subunit of Bordetella pertussis binds to sulfated sugars. Infect Immun 64: 2657–65, 1996

    PubMed  CAS  Google Scholar 

  37. Girod S, Zahm JM, Plotkowski MC, et al: Role of the physicochemical properties of mucus in the protection of the respiratory epithelium. Eur Respir J 5: 477–87, 1992

    PubMed  CAS  Google Scholar 

  38. Goldman MJ, Wilson JM: Expression of avb5 integrin is necessary for efficient adenovirusmediated gene transfer in the human airway. J Virol 69: 5951–8, 1995

    PubMed  CAS  Google Scholar 

  39. Goldman MJ, Lee PS, Yang JS, et al: Lentiviral vectors for gene therapy of cystic fibrosis. Hum Gene Ther 8: 2261–8, 1997

    PubMed  CAS  Google Scholar 

  40. Gruenert DC, Finkbeiner WE, Widdicombe JH: Culture and transformation of human airway epithelial cells. Am J Physiol 268: L347–60, 1995

    PubMed  CAS  Google Scholar 

  41. Hed J: The extinction of fluorescence by crystal violet and its use to differentiate between attached and ingested microorganisms in phagocytosis. FEMS Lett 1: 357–61, 1977

    Google Scholar 

  42. Herard AL, Zahm JM, Pierrot D, et al: Epithelial barrier integrity during in vitro wound repair of the airway epithelium. Am J Respir Cell Mol Biol 15: 624–32, 1996

    PubMed  CAS  Google Scholar 

  43. Hoepelman AIM, Tuomanen EI: Consequences of microbial attachment: directing host cell functions with adhesins. Infect Immun 60: 1729–33, 1992

    PubMed  CAS  Google Scholar 

  44. Irvin RT, Doig P, Lee KK, et al: Characterization of the Pseudomonas aeruginosa pilus adhesin: confirmation that the pilin structural protein subunit contains a human epithelial cell-binding domain. Infect Immun 57: 3720–6, 1989

    PubMed  CAS  Google Scholar 

  45. Isberg R: Discrimination between intracellular uptake and surface adhesion of bacterial pathogens. Science 252: 934–8, 1991

    PubMed  CAS  Google Scholar 

  46. Jackson AD, Cole PJ, Wilson R: Comparison of Haemophilus influenza type b interaction with respiratory mucosa organ cultures maintained with an a air interface or immersed in medium. Infect Immun 64: 2353–5, 1996

    PubMed  CAS  Google Scholar 

  47. Jeffery PK: Morphology of airway surface epithelial cells and glands. Am Rev Respir Dis 128: S14–20, 1983

    PubMed  CAS  Google Scholar 

  48. Jiang Z, Nagata N, Molina E, et al: Fimbria-mediated enhanced attachment of nontypable Haemophilus influenzae to respiratory syncytial virus-infected respiratory epithelial cells. Infect Immun 67: 187–92, 1999

    PubMed  CAS  Google Scholar 

  49. Jones GW, Isaacson RE. Proteinaceous bacterial adhesins and their receptors. CRC Crit Rev Microbiol 10: 229–60, 1983

    CAS  Google Scholar 

  50. Karlsson KA: Animal glycosphingolipids as membrane attachment sites for bacteria. Annu Rev Biochem 58: 309–50, 1988

    Google Scholar 

  51. Keenan KP, Combs JW, Mc Dowell EM: Regeneration of hamster tracheal epithelium after mechanical injury. Virchows Arch B Cell Pathol 41: 193–214, 1982

    CAS  Google Scholar 

  52. Keenan KP, Wilson TS, McDowell EM: Regeneration of hamster tracheal epithelium after mechanical injury. IV: Histochemical, immunocytochemical and ultrastructural studies. Virchows Arch B Cell Pathol 43: 213–40, 1983

    CAS  Google Scholar 

  53. Kishore R: Radiolabeled microorganisms: comparison of different radioisotopic labels. Rev Infect Dis 3: 1179–85, 1981

    PubMed  CAS  Google Scholar 

  54. Knutton S: Electron microscopical methods in adhesion. Meth Enzymol 253: 145–58, 1995

    PubMed  CAS  Google Scholar 

  55. Liu j, Nettesheim P, Randell SH: Growth and differentiation of tracheal progenitor cells. Am J Physiol 266 (Lung Cell Mol Physiol) 10: L296–307, 1994

    Google Scholar 

  56. Loveless RW, Feizi T: Sialo-oligosaccharide receptors for Mycoplasma pneumoniae and related oligosaccharides of poly-N-acetyllactosamine series are polarized at the cilia and apical-microvillar domains of the ciliated cells in human bronchial epithelium. Infect Immun 57: 1285–9, 1989

    PubMed  CAS  Google Scholar 

  57. Marty N, Pasquier C, Dournes JL, et al: Effects of characterised Pseudomonas aeruginosa exopolysaccharide on adherence to human tracheal cells. J Med Microbiol 47: 129–34, 1998

    PubMed  CAS  Google Scholar 

  58. Matsumara H, Setoguti T: Freeze-fracture replica studies of tight junctions in normal human bronchial epithelium. Acta Anat 134: 219–26, 1989

    Google Scholar 

  59. McDowell EM, Becci PJ, Schurch W, et al: The respiratory epithelium: Epidermoid metaplasia of hamster tracheal epithelium during regeneration following mechanical injury. J Natl Cancer Inst 62: 995–1008, 1979

    PubMed  CAS  Google Scholar 

  60. Miller JF, Mekalanos JJ, Falkow S: Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243: 916–22, 1989

    PubMed  CAS  Google Scholar 

  61. Muse KE, Collier AM, Baseman JB: Scanning electron microscopic study of hamster tracheal organ cultures infected with Bordetella pertussis. J Infect Dis 136: 786–77, 1977

    Google Scholar 

  62. Myszka DG: Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr Opin Biotechnol 8: 50–7, 1997

    PubMed  CAS  Google Scholar 

  63. Niederman MS, Rafferty TD, Sasaki CT, et al: Comparison of bacterial adherence to ciliated and squamous epithelial cells obtained from the human respiratory tract. Am Rev Respir Dis 127: 85–90, 1983

    PubMed  CAS  Google Scholar 

  64. Ofek I, Doyle RJ, eds: Bacterial Adhesion To Cells And Tissues. Chapman & Hall, New York, 1994

    Google Scholar 

  65. Ofek I: Enzyme-linked immunosorbent-based adhesion assays. Meth Enzymol 253: 528–36, 1995

    PubMed  CAS  Google Scholar 

  66. Patrone LM, Cook JR, Crute BE, et al: Differentiation of epithelial cells on microporous membranes. J Tiss Cult Meth 14: 225–34, 1992

    Google Scholar 

  67. Pereira SHM, Cervante MP, de Bentzmann S, et al: Pseudomonas aeruginosa entry into Caco-2 cells is enhanced in repairing wounded monolayers. Microb Path 23: 249–55, 1997

    CAS  Google Scholar 

  68. Philippon S, Streckert HJ, Morgenroth K: In vitro study of the bronchial mucosa during Pseudomonas aeruginosa infection. Virchows Archiv A Pathol Anat 423: 39–43, 1993

    CAS  Google Scholar 

  69. Plotkowski MC, Puchelle E, Beck G, et al: Adherence of type I Sreptococcus pneumoniae to tracheal epithelium of mice infected with influenza A/PR8 virus. Am Rev Respir Dis 134: 1040–4, 1986

    PubMed  CAS  Google Scholar 

  70. Plotkowski MC, Beck G, Tournier JM, et al: Adherence of Pseudomonas aeruginosa to respiratory epithelium and the effect of leococyte elastase. J Med Microbiol 30: 285–93, 1989

    PubMed  CAS  Google Scholar 

  71. Plotkowski MC, Beck G, Bernardo Filho M, et al: Evaluation of the 99m Technetium labelling effect on Pseudomonas aeruginosa surface properties. Ann Inst Pasteur/Microbiol 138: 415–26, 1987

    CAS  Google Scholar 

  72. Plotkowski MC, Chevillard M, Pierrot D, et al: Differential adhesion of Pseudomonas aeruginosa to human epithelial respiratory cells in primary culture. J Clin Invest 87: 201–828, 1991

    Google Scholar 

  73. Plotkowski MC, Chevillard M, Pierrot D, et al: Epithelial respiratory cells from cystic fibrosis patients do not possess specific Pseudomonas aeruginosa adhesive properties. J Med Microbiol 36: 104–11, 1992

    PubMed  CAS  Google Scholar 

  74. Plotkowski MC, Bajolet-Laudinat O, Puchelle E: Cellular and molecular mechanisms of bacterial adhesion to respiratory mucosa. Eur Respir J 6: 903–16, 1993

    PubMed  CAS  Google Scholar 

  75. Plotkowski MC, Tournier JM, Puchelle E: Pseudomonas aeruginosa possess specific adhesins for laminin. Infec Immun 64: 600–5, 1996

    CAS  Google Scholar 

  76. Plotkowski MC, de Bentzmann S, Pereira SHM et al: Pseudomonas aeruginosa internalization by human epithelial respiratory cells depends on cell differentiation, polarity, and junctional complex integrity. Am J Respir Cell Mol Biol 20: 880–90, 1999

    PubMed  CAS  Google Scholar 

  77. Pucciarelli MG, Finlay BB: Polarized epithelial monolayers: model systems to study bacterial interaction with host epithelial cells. Methods Enzymol 236: 438–47, 1994

    PubMed  CAS  Google Scholar 

  78. Puchelle E, Zahm JM: Repair processes of the airway epithelium. In: Chrétien J, Dusser D, eds. Environmental Impact on the Airways. From Injury To Repair. M. Dekker, New York, 1996: 157–82

    Google Scholar 

  79. Puchelle E, Zahm JM, Tournier TM, et al: Airway epithelial injury and repair. Eur Respir Rev 7: 136–41, 1997.

    Google Scholar 

  80. Ramphal R, Small PM, Shands Jr JW, et al: Adherence of Pseudomonas aeruginosa to tracheal cells injured by influenza infection or by endotracheal intubation. Infect Immun 27: 614–9, 1980

    PubMed  CAS  Google Scholar 

  81. Ramphal R, Pyle M: Adherence of mucoid and nonmucoid Pseudomonas aeruginosa to acid-injured tracheal epithelium. Infect Immun 41: 345–51, 1983

    PubMed  CAS  Google Scholar 

  82. Ramphal R, Pyle M: Evidences for mucins and sialic acid as receptors for Pseudomonas aeruginosa in the lower respiratory tract. Infect Immun 41: 339–44, 1983

    PubMed  CAS  Google Scholar 

  83. Ramphal R, Guay C, Pier G: Pseudomonas aeruginosa adhesins for tracheobronchial mucin. Infect Immun 55: 600–3, 1987

    PubMed  CAS  Google Scholar 

  84. Ramphal R, Houdret N, Koo L, et al: Differences in adhesion of Pseudomonas aeruginosa to mucin glycopeptides from sputa of patients with cystic fibrosis and chronic bronchitis. Infect Immun 57: 66–71, 1989

    Google Scholar 

  85. Rampahl R, Koo L, Ishimoto K, et al: Adhesion of Pseudomonas aeruginosa pilin-deficient mutants to mucin. Infect Immun 59: 1307–11, 1991

    Google Scholar 

  86. Ramphal R, Carnoy C, Fievre E, et al: Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Gal 31–3G1CNAc) or type 2 (Gal (31–4G1cNAc) disaccharide units. Infect Immun 59: 700–4, 1991

    PubMed  CAS  Google Scholar 

  87. Rayner CFJ, Jackson AD, Rutman A, et al: Interaction of pneumolysin-sufficient and —deficient isogenic variants of Streptococcus pneumoniae with human respiratory mucosa. Infect Immun 63: 442–7, 1995

    PubMed  CAS  Google Scholar 

  88. Read RC, Wilson W, Rutman A, et al: Interaction of nontypable Haemophilus influenzae with human respiratory mucosa in vitro. J Infect Dis 163: 549–58, 1991

    CAS  Google Scholar 

  89. Read RC, Rutman A, Jeffery PK, et al: Interaction of capsulated Haemophilus influenzae with human airway mucosa in vitro. Infect Immun 60: 3244–52, 1992

    CAS  Google Scholar 

  90. Reynolds HY: Respiratory host defense-surface immunity. Immunobiol 191: 402–12, 1994

    CAS  Google Scholar 

  91. Roberts DD: Interactions of respiratory pathogens with host cell surface and extracellular matrix components. Am J Respir Cell Mol Biol 3: 181–6, 1990

    PubMed  CAS  Google Scholar 

  92. Roger P, Puchelle E, Bajolet-Laudinat O, et al: Fibronectin and a5ß1 integrin mediate binding of Pseudomonas aeruginosa to repairing airway epithelium. Eur Respir J 13: 1301–9, 1999

    PubMed  CAS  Google Scholar 

  93. Rose MC: Mucins: structure, function and role in pulmonary diseases. Am J Physiol 263: L413–29, 1992

    PubMed  CAS  Google Scholar 

  94. Roussel P, Lamblin G, Lhermitte M, et al: The complexity of mucins. Biochimie 70: 1471–82, 1988

    PubMed  CAS  Google Scholar 

  95. Roussel P, Ramphal R, Lamblin G: Bacterial infection and airways epithelium. In: Chrétien J, Dusser D, eds. Environmental Impact on the Airways. From Injury To Repair. M. Dekker, New York, 1996: 437–9

    Google Scholar 

  96. Saiman L, Prince A: Pseudomonas aeruginosa pili bind to asialo GM1 which is increased on the surface of cystic fibrosis epithelial cells. J Clin Invest 92: 1875–0, 1993

    PubMed  CAS  Google Scholar 

  97. Sajjan US, Coey M, Karmali MA, et al: Binding of Pseudomonas cepacia to normal human intestinal mucin and reapiratory mucin from patients with cystic fibrosis. J Clin Invest 89: 648–56, 1992

    PubMed  CAS  Google Scholar 

  98. Sajjan U, Doig RP, Irvin RT, et al: Binding of nonmucoid Pseudomonas aeruginosa to normal human intestinal mucin and respiratory mucin from patients with cystic fibrosis. J Clin Invest 89: 657–65, 1992

    PubMed  CAS  Google Scholar 

  99. Sajjan US, Forstner JF, et al: Identification of the mucin-binding adhesin of Pseudomonas cepacia isolated from patients with cystic fibrosis. Infect Immun 60: 1434–40, 1992

    PubMed  CAS  Google Scholar 

  100. Salyers AA, Whitt DD: Experimental approaches to investigating the host-bacterium interaction. In: Salyers AA, Whitt DD, eds. Bacterial Pathogenesis. A Molecular Approach. ASM Press, Washington, DC, 1994, 73–89

    Google Scholar 

  101. Sanford BA, Thomas VL, Ramsay M: Binding of staphylococci to mucus in vivo and in vitro. Infect Immun 57: 3735–42, 1989

    CAS  Google Scholar 

  102. Scharfman A, van Brussel E, Houdret N, et al: Interactions between glycoconjugates from human respiratory airways and Pseudomonas aeruginosa. Am J Respir Crit Care Med 154: S163–9, 1996

    CAS  Google Scholar 

  103. Scharfman A, Kroczynski H, Carnoy C, et al: Adhesion of Pseudomonas aeruginosa to respiratory mucins and expression of mucin-binding proteins are increased by limiting iron during growth. Infect Immun 64: 5417–20, 1996

    PubMed  CAS  Google Scholar 

  104. Sekiya K, Flutaesaku Y, Nakase Y: Electron microscopic observations on ciliated epithelium of tracheal organ cultures infected with Bordetella bronchiseptica. Microbiol Immunol 33: 111–21, 1989

    CAS  Google Scholar 

  105. Sharon N. Bacterial lectins, cell-cell recognition and infectious disease. FEBS Lett 217: 145–57, 1987

    PubMed  CAS  Google Scholar 

  106. Simpson DA, Ramphal R, Lory S: Genetic analysis of Pseudomonas aeruginosa adherence: distinct genetic loci control attachment to epithelial cells and mucins. Infect Immun 60: 3771–9, 1992

    PubMed  CAS  Google Scholar 

  107. Shimizu T, Nettesheim P, Ramaekers FCS, et al: Expression of “cell-type-specific” markers during rat tracheal epithelial regeneration. Am J Respir Cell Mol Biol 7: 30–41, 1992

    PubMed  CAS  Google Scholar 

  108. Shimizu T, Nishihara M, Kawaguchi S, et al: Expression of phenotypic markers during regeneration of rat tracheal epithelium following mechanical injury. Am J Respir Cell Mol Biol 11: 85–94, 1994

    PubMed  CAS  Google Scholar 

  109. Shuter J, Hatcher VB, Lowy FD: Staphylococcus aureus binding to human nasal mucin. Infect Immun 64: 310–8, 1996

    PubMed  CAS  Google Scholar 

  110. Sleigh MA, Blake JR, Liron N: The propulsion of mucus by cilia. Am Rev Respir Dis 137: 726–41, 1988

    PubMed  CAS  Google Scholar 

  111. St. Gerne JW III, Falkow S: Haemophilus influenzae adheres to and enters cultured human epithelial cells. Infect Immun 58: 403–44, 1990

    Google Scholar 

  112. St. Gerne JW III: The HMW1 adhesin of nontypable Haemophilus influenzae recognizes sialylated glycoprotein receptors on cultured human epithelial cells. Infect Immun 62: 388–19, 1994

    Google Scholar 

  113. Sterk LM, Alphen LV, Den Broek GV, et al: Differential binding of Haemophilus influenzae to human tissue by fimbriae. J Med Microbiol 35: 129–38, 1991

    PubMed  CAS  Google Scholar 

  114. Tang P, Foubister V, Pucciarelli MC, et al: Methods to study bacterial invasion. J Microbiol Methods 18: 227–40, 1993

    Google Scholar 

  115. Temple LM, Weiss AA, Walker KE, et al: Bordetella avium virulence measured in vivo and in vitro. Infect Immun 66: 5244–51, 1998

    CAS  Google Scholar 

  116. Tirouvanziam R, Desternes M, Saari A, et al: Bioelectric properties of human cystic fibrosis and non-cystic fibrosis fetal tracheal xenografts in SCID mice. Am J Physiol Cell Physiol 43: C875–82, 1998

    Google Scholar 

  117. Tirouvanziam R, De Bentzmann S, Hinnraski J, et al: Native inflammatory imbalance in CF human airway xenografts leads to exacerbation of Pseudomonas aeruginosa primoinfection. Abstract from the Inflammation Meeting, Paris, June 27–30, 1999

    Google Scholar 

  118. Tsang KWT, Rutman A, Tanaka E, et al: Interaction of Pseudomonas aeruginosa with human respiratory mucosa in vitro. Eur Respir J 7: 1746–53, 1994

    CAS  Google Scholar 

  119. Ulrich M, Herbert S, Berger J, et al: Localization of Staphylococcus aureus in infected airways of patients with cystic fibrosis in a cell culture model of S. aureus adherence. Am J Respir Cell Mol Biol 19: 83–91, 1998

    PubMed  CAS  Google Scholar 

  120. Van den Berg BM, Beekhuizen H, Willems RJL, et al: Role of Bordetella pertussis factors in adherence to epithelial cell lines derived from the human respiratory tract. Infect Immun 67: 1056–62, 1999

    PubMed  Google Scholar 

  121. Vishwanath S, Ramphal R: Adherence of Pseudomonas aeruginosa to human tracheobronchial mucin. Infect Immun 45: 197–02, 1984

    PubMed  CAS  Google Scholar 

  122. Welsh MJ: Electrolyte transport by airway epithelia. Physiol Rev 67: 1143–84, 1987

    PubMed  CAS  Google Scholar 

  123. Wolter JM, McCormack JG: The effect of subinhibitory concentrations of antibiotics on adherence of Pseudomonas aeruginosa to cystic fibrosis (CF) and non-CF affected tracheal epithelial cells. J Infect 37: 217–23, 1998

    PubMed  CAS  Google Scholar 

  124. Woods DE, Starus DC, Johanson WG, et al: Role of pili in adherence of Pseudomonas aeruginosa to mammalian buccal epithelial cells. Infect Immun 29: 1146–51, 1980

    PubMed  CAS  Google Scholar 

  125. Zahm JM, Puchelle E: Wound repair of human surface respiratory epithelium. Am Rev Respir Cell Mol Biol 5: 242–9, 1991

    CAS  Google Scholar 

  126. Zahm JM, Kaplan H, Herard AL, et al: Cell migration and proliferation during the in vitro wound repair of the respiratory epithelium. Cell Motil Cytoskeleton 37: 33–43, 1997

    PubMed  CAS  Google Scholar 

  127. Zhang Q,Young TF, Ross RF: Glycolipid receptors for attachment of Mycoplasma hyopneumoniae to porcine respiratory ciliated cells. Infect Immun 62: 4367–73, 1994

    PubMed  CAS  Google Scholar 

  128. Zoutman DE, Hulbert WC, Pasloske BL, et al: The role of polar pili in the adherence of Pseudomonas aeruginosa to injured canine tracheal cells: a semiquantitative morphologic study. Scanning Microsc 5: 109–26, 1991

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Plotkowski, M.C., de Bentzmann, S., Puchelle, E. (2000). Studying Bacterial Adhesion to Respiratory Mucosa. In: An, Y.H., Friedman, R.J. (eds) Handbook of Bacterial Adhesion. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-224-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-224-1_29

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-192-9

  • Online ISBN: 978-1-59259-224-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics