Advertisement

Epidermal Growth Factor-Related Peptides in Endocrine Neoplasias

  • David S. Salomon
  • Caterina Bianco
  • Marta De Santis
  • Isabel Martinez-Lacaci
  • Christian Wechselberger
  • Andreas D. Ebert
Part of the Contemporary Endocrinology book series (COE)

Abstract

The development of cancer results from the cumulative acquisition of somatic and/or germline mutations in regulatory genes that control various aspects of cellular proliferation, differentiation, apoptosis, and DNA repair (1–6). Gain or loss of function in protooncogenes or tumor suppressor genes accounts for the majority of these genetic defects (6–8). Generally, gain of function is observed in dominantly transforming oncogenes, which can occur by point mutations, gene amplification, chromosomal translocation, or insertional mutagenesis (6,9,10). Conversely, loss of function, because of the inactivation of tumor suppressor genes, can occur by point mutations or a loss of heterozygosity (LOH) in one allele (11,12). Changes in the expression of these genes can also contribute to the pathogenesis of cancer, and may be caused by environmental stimuli such as viruses, radiation, carcinogens, hormones, and growth factors (GFs) (6–10).

Keywords

Epidermal Growth Factor Receptor Mammary Gland Endometrial Cancer Endometrial Carcinoma erbB Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knudson AG. Anti-oncogenes and human cancer. Proc Natl Acad Sci USA 1993;90:10, 914–10, 921.Google Scholar
  2. 2.
    Levine AJ. The tumor suppressor genes. Ann Rev Biochem 1993; 62: 623–651.PubMedCrossRefGoogle Scholar
  3. 3.
    Carney D, Sikora K, eds. Genes and Cancer. John Wiley, New York, 1990.Google Scholar
  4. 4.
    Vogelstein B, Kinzler KW. The multi-step nature of cancer. Trends Genet 1993; 9: 138–141.PubMedCrossRefGoogle Scholar
  5. 5.
    Eng C, Ponder B. Role of gene mutation in the genesis of familial cancers. Science 1992; 256: 668–670.CrossRefGoogle Scholar
  6. 6.
    Weinberg RA. Oncogenes and the Molecular Origins of Cancer. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989.Google Scholar
  7. 7.
    Kahn P, Graf T, eds. Oncogenes and Growth Control. Springer-Verlag, New York, 1986.Google Scholar
  8. 8.
    Hunter T. Oncogenes and cell proliferation. Curr Opin Genet Dev 1993; 3: 1–4.CrossRefGoogle Scholar
  9. 9.
    Bishop JM. Molecular themes in carcinogenesis. Cell 1991; 64: 235–248.PubMedCrossRefGoogle Scholar
  10. 10.
    Hunter T. Cooperation between oncogenes. Cell 1991; 64: 249–270.PubMedCrossRefGoogle Scholar
  11. 11.
    Marshall CJ. Tumor suppressor genes. Cell 1991; 64: 313–326.PubMedCrossRefGoogle Scholar
  12. 12.
    Harris CC. p53: at the crossroads of molecular carcinogenesis and risk assessment. Science 1993;262: 1980,1981.Google Scholar
  13. 13.
    Goustin AS, Leof EB, Shipley GD, Moses HL. Growth factors and cancer. Cancer Res 1986; 46: 1015–1029.PubMedGoogle Scholar
  14. 14.
    Aaronson SA. Growth factors and cancer. Science 1991; 254: 1146–1153.PubMedCrossRefGoogle Scholar
  15. 15.
    Sporn MB, Roberts AB. Autocrine secretion: 10 years later. Ann Intern Med 1992; 117: 408–414.PubMedGoogle Scholar
  16. 16.
    Pimentel E. Hormones, Growth Factors, and Oncogenes. CRC, Boca Raton, FL, 1987.Google Scholar
  17. 17.
    Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol/Hematol 1995; 19: 183–232.CrossRefGoogle Scholar
  18. 18.
    Campbell ID, Bork P. Epidermal growth factor-like modules. Curr Opin Struct Biol 1993; 3: 385–392.CrossRefGoogle Scholar
  19. 19.
    Perrimon N, Perkins LA. There must be 50 ways to rule the signal: the case of the Drosophila EGF receptor. Cell 1997; 89: 13–16.PubMedCrossRefGoogle Scholar
  20. 20.
    Schweitzer R, Shilo B-Z. A thousand and one roles for the Drosophila EGF receptor. Trends Genet 1997; 13: 191–196.PubMedCrossRefGoogle Scholar
  21. 21.
    Groenen LC, Nice EC, Burgess AW. Structure-function relationships for the EGF/TGF-a family of mitogens. Growth Factors 1994; 11: 235–257.PubMedCrossRefGoogle Scholar
  22. 22.
    Alroy I, Yarden Y. The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combanitorial ligand-receptor interactions. FEBS Lett 1997; 410: 83–86.PubMedCrossRefGoogle Scholar
  23. 23.
    Riese DJ III, Stern DF. Specificity within the EGF family/ErbB receptor family signaling network. Bio Essays 1998; 20: 41–48.Google Scholar
  24. 24.
    Chang H, Riese DJ III, Gilbert W, Stern DF, McMahan UJ. Ligands for ErbB-family receptors encoded by a neuregulin-like gene. Nature 1997; 387: 509–516.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang D, Sliwkowski MX, Mark M, Frantz G, Akita R, Sun Y, et al. Neuregulin-3 (NRG3): a novel neural tissue-enriched protein that binds and activates ErbB4. Proc Natl Acad Sci USA 1997; 94: 9562–9567.PubMedCrossRefGoogle Scholar
  26. 26.
    Massagué J, Pandiella A. Membrane-anchored growth factors. Ann Rev Biochem 1993; 62: 515–541.PubMedCrossRefGoogle Scholar
  27. 27.
    Carpenter G, Cohen S. Epidermal growth factor. J Biol Chem 1990; 265: 7709–7712.PubMedGoogle Scholar
  28. 28.
    Browne CA. Epidermal growth factor and transforming growth factor a. Baillière’s Clin Endocrinol Metab 1991; 5: 553–569.PubMedCrossRefGoogle Scholar
  29. 29.
    Carpenter G. EGF: new tricks for an old growth factor. Curr Opin Cell Biol 1993; 5: 261–264.PubMedCrossRefGoogle Scholar
  30. 30.
    Shoyab M, Plowman GD, McDonald VL, Bradley JG, Todaro GJ. Structure and function of human amphiregulin: a member of the epidermal growth factor family. Science 1989; 243: 1074–1076.PubMedCrossRefGoogle Scholar
  31. 31.
    Higashiyama S, Lau K, Besner GE, Abraham JA, Klagsbrun M Structure of heparin-binding EGF-like growth factor. J Biol Chem 1992; 267: 6205–6212.PubMedGoogle Scholar
  32. 32.
    Holmes WE, Sliwkowski MX, Akita RW, et al. Identification of heregulin, a specific activator of p185 erb B2 Science 1992; 256: 1205–1210.PubMedCrossRefGoogle Scholar
  33. 33.
    Falls DL, Rosen KM, Corfas G, Lane WS, Fischbach GD. ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the Neu ligand family. Cell 1993; 72: 801–815.PubMedCrossRefGoogle Scholar
  34. 34.
    Marchionni MA, Goodearl ADJ, Chen MS, et al. Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 1993; 362: 312–318.PubMedCrossRefGoogle Scholar
  35. 35.
    Peles E, Yarden Y. Neu and its ligands: from an oncogene to neural factors. Bioessays 1993; 15: 815–824.PubMedCrossRefGoogle Scholar
  36. 36.
    Shing Y, Christofori G, Hanahan D, et al. Betacellulin: a mitogen from pancreatic beta cell tumors. Science 1993; 259: 1604–1607.PubMedCrossRefGoogle Scholar
  37. 37.
    Ciccodicola A, Dono R, Obici S, Simeone A, Zollo M, Persico MG. Molecular characterization of a gene of the `EGF family’ expressed in undifferentiated human NTERA2 teratocarcinoma cells. EMBO J 1989; 8: 1987–1991.PubMedGoogle Scholar
  38. 38.
    Brandt R, Normanno N, Gullick WJ, Lin J-H, Harkins R, Schneider D, et al. Identification and biological characterization of an epidermal growth factor-related protein: cripto-1. J Biol Chem 1994;269: 17, 320–17, 328.Google Scholar
  39. 39.
    Kinoshita N, Minshull J, Kirschner MW. The identification of two novel ligands of the FGF receptor by a yeast screening method and their activity in Xenopus development. Cell 1995; 83: 621–630.PubMedCrossRefGoogle Scholar
  40. 40.
    Shen MM, Wang H, Leder P. A differential display strategy identifies Cryptic, a novel EGF-related gene expressed in the axial and lateral mesoderm during mouse gastrulation. Development 1997; 124: 429–442.PubMedGoogle Scholar
  41. 41.
    Zhang J, Talbot WS, Schier AF. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 1998; 92: 241–251.PubMedCrossRefGoogle Scholar
  42. 42.
    Mason S, Gullick WJ. Type 1 growth factor receptors: an overview of recent developments. Breast 1995; 4: 11–18.CrossRefGoogle Scholar
  43. 43.
    Hynes N, Stern DF. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim Biophys Acta 1994; 1198: 165–184.PubMedGoogle Scholar
  44. 44.
    Ullrich A, Coussens L, Hayflick JS, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 1984; 309: 418–425.PubMedCrossRefGoogle Scholar
  45. 45.
    Coussens L, Yang-Feng TL, Liao YC, et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with Neu oncogene. Science 1985; 230: 1132–1139.PubMedCrossRefGoogle Scholar
  46. 46.
    Plowman GD, Whitney GS, Neubauer MG, et al. Molecular cloning and expression of an additional epidermal growth factor receptor-related gene. Proc Natl Acad Sci USA 1990; 87: 4905–4909.PubMedCrossRefGoogle Scholar
  47. 47.
    Kraus MH, Issing W, Miki T, Popescu NC, and Aaronson SA. Isolation and characterization of ERBB3: a third member of the ERBB/epidermal growth factor receptor family: evidence for over-expression in a subset of human mammary tumors. Proc Natl Acad Sci USA 1989; 86: 9193–9197.PubMedCrossRefGoogle Scholar
  48. 48.
    Plowman GD, Culouscou J-M, and Whitney GS, et al. Ligand-specific activation of HER4/p180er’B4 a fourth member of the epidermal growth factor receptor family. Proc Natl Acad Sci USA 1993; 90: 1746–1750.PubMedCrossRefGoogle Scholar
  49. 49.
    Baulida J, Kraus MH, Alimandi M, Di Fiore PP, Carpenter G. All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J Biol Chem 1996; 271: 5251–5257.PubMedCrossRefGoogle Scholar
  50. 50.
    Beerli RR, Hynes NE. Epidermal growth factor-related peptides activate distinct subsets of ErbB receptors and differ in their biological activities. J Biol Chem 1996; 271: 6071–6076.PubMedCrossRefGoogle Scholar
  51. 51.
    Elenius K, Paul S, Allison G, Sun J, Klagsbrun M. Activation of HER4 by heparin-binding EGF-like growth factor stimulates chemotaxis but not proliferation. EMBO J 1997; 16: 1268–1278.PubMedCrossRefGoogle Scholar
  52. 52.
    Alimandi M, Wang L-M, Bottaro D, Lee C-C, Kuo A, Frankel M, et al. Epidermal growth factor and betacellulin mediate signal transduction through co-expressed ErbB2 and ErbB3 receptors. EMBO J 1997; 16: 5608–5617.PubMedCrossRefGoogle Scholar
  53. 53.
    Kannan S, De Santis M, Lohmeyer M, Riese D, Hynes NE, Smith GH, et al. Cripto stimulates the tyrosine phosphorylation of Shc and activates MAP-kinase in mammary epithelial cells. J Biol Chem 1997; 272: 3330–3335.PubMedCrossRefGoogle Scholar
  54. 54.
    Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, Ratzkin BJ, Yarden Y. Hierarchical network of interreceptor interaction determines signal transduction by neu differentiation factor/ neuregulin and epidermal growth factor. Mol Cell Biol 1996; 16: 5276–5287.PubMedGoogle Scholar
  55. 55.
    Karunagaran D, Tzahar E, Beerli RR, Chen X, Graus-Porta D, Ratzkin BJ, et al. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J 1996; 15: 254–264.PubMedGoogle Scholar
  56. 56.
    Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2: the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 1997; 16: 1647–1655.PubMedCrossRefGoogle Scholar
  57. 57.
    Ling-Mei W, Kuo Alimandi M, Veri MC, Lee C-C, Kapoor V, et al. ErbB2 expression increases the spectrum and potency of ligand-mediated signal transduction through ErbB4. Proc Natl Acad Sci USA 1998; 95: 6809–6814.CrossRefGoogle Scholar
  58. 58.
    Tzahar E, Pinkas-Kramarski R, Moyer JD, Klapper LN, Alroy I, Levkowitz G, et al. Bivalence of EGF like ligands drives the ErbB signaling network. EMBO J 1997; 16, 4938–4950.PubMedCrossRefGoogle Scholar
  59. 59.
    Gamett DC, Pearson G, Cerione RA, and Friedberg I. Secondary dimerization between members of the epidermal growth factor receptor family. J Biol Chem 1997;272:12, 052–12, 056.Google Scholar
  60. 60.
    Barnard JA, Graves-Deal R, Pittelkow MR, DuBois R, Cook P, Ramsey GW, et al. Auto-and cross-induction within the mammalian epidermal growth factor-related peptide family. J Biol Chem 1994; 269:22, 817–22, 822.Google Scholar
  61. 61.
    Medina D, Daniel C, eds. Experimental models of development function and neoplasia. J Mammary Gland Biol Neoplasia 1996; 1: 1–135.Google Scholar
  62. 62.
    Dickson RB, Lippman ME. Growth factors in breast cancer. Endocr Rev 1995; 16: 559–589.PubMedGoogle Scholar
  63. 63.
    Borellini F, Oka T. Growth control and differentiation in mammary epithelial cells. Environ Health Perspect 1989; 80: 85–99.PubMedCrossRefGoogle Scholar
  64. 64.
    Oka T, Yoshimura M, Lavandero S, et al. Control of growth and differentiation of the mammary gland by growth factors. J Dairy Sci 1991; 74: 2788–2800.PubMedCrossRefGoogle Scholar
  65. 65.
    Clarke R, Dickson RB, Lippman ME. Hormonal aspects of breast cancer: growth factors, drugs and stromal interactions. Crit Rev Oncol/Hematol 1992; 12: 1–23.CrossRefGoogle Scholar
  66. 66.
    Ethier SP. Growth factor synthesis and human breast cancer progression. J Natl Cancer Inst 1995; 87: 964–973.PubMedCrossRefGoogle Scholar
  67. 67.
    Normanno N, Ciardiello F, Brandt R, Salomon DS. Epidermal growth factor-related peptides in the pathogenesis of human breast cancer. Breast Cancer Res Treat 1994; 29: 11–27.PubMedCrossRefGoogle Scholar
  68. 68.
    Medina D. Mammary gland: a unique organ for the study of development and tumorigenesis. J Mammary Gland Biol Neoplasia 1996; 1: 5–20.PubMedCrossRefGoogle Scholar
  69. 69.
    Cunha GR, Horn YK. Role of mesenchymal-epithelial interactions in mammary gland development. J Mammary Gland Biol Neoplasia 1996; 1: 21–36.PubMedCrossRefGoogle Scholar
  70. 70.
    Imagawa W, Bandyopadhyay GK, Nandi S. Regulation of mammary epithelial cell growth in mice and rats. Endocr Rev 1990; 11: 494–523.PubMedCrossRefGoogle Scholar
  71. 71.
    DiAugustine RP. The epidermal growth factor family in the mammary gland and other target organs for ovarian steroids. In: Lippman ME, Dickson RB, eds. Mammary Tumorigenesis and Malignant Progression. Kluwer, Boston, 1994, pp. 131–160.CrossRefGoogle Scholar
  72. 72.
    Normanno N, Ciardiello F. EGF-related peptides in the pathophysiology of the mammary gland. J Mammary Gland Biol Neoplasia 1997; 2: 143–151.PubMedCrossRefGoogle Scholar
  73. 73.
    DiAugustine RP, Richards RG, Sebastian J. EGF-related peptides and their receptors in mammary gland development. J Mammary Gland Biol Neoplasia 1997; 2: 109–118.PubMedCrossRefGoogle Scholar
  74. 74.
    Liscia DS, Merlo G, Ciardiello F, et al. Transforming growth factor-a messenger RNA localization in the developing adult rat and human mammary gland by in situ hybridization. Dev Biol 1990; 140: 123–131.PubMedCrossRefGoogle Scholar
  75. 75.
    Snedecker SM, Brown CF, DiAugustine RP. Expression and functional properties of TGFa and EGF during mouse mammary gland ductal morphogenesis. Proc Natl Acad Sci USA 1991; 88: 276–280.CrossRefGoogle Scholar
  76. 76.
    Ankrapp DP, Bennett JM, Haslam SZ. Role of epidermal growth factor in the acquisition of ovarian steroid hormone responsiveness in the normal mouse mammary gland. J Cell Physiol 1998; 174: 251–260.PubMedCrossRefGoogle Scholar
  77. 77.
    Yang Y, Spitzer E, Meyer D, et al. Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J Cell Biol 1995; 131: 215–226.PubMedCrossRefGoogle Scholar
  78. 78.
    Schroeder JA, Lee DC. Dynamic expression and activation of ERBB receptors in the developing mouse mammary gland. Cell Growth Differ 1998; 9: 451–464.PubMedGoogle Scholar
  79. 79.
    Vonderhaar BK. Regulation of development of the normal mammary gland by hormones and growth factors. In: Lippman ME, Dickson RB, eds. Breast Cancer: Cellular and Molecular Biology. Kluwer, Boston, 1988, pp. 251–266.CrossRefGoogle Scholar
  80. 80.
    Daniel CW, Silberstein GB. Local effects of growth factors. In: Lippman M, Dickson R, eds.Regulatory Mechanisms in Breast Cancer. Kluwer, Boston, 1991, pp. 79–93.CrossRefGoogle Scholar
  81. 81.
    Kenney NJ, Smith GH, Rosenberg K, Cutler ML, Dickson RB. Induction of ductal morphogenesis and lobular hyperplasia by amphiregulin in the mouse mammary gland. Cell Growth Differ 1996; 7: 1769–1781.PubMedGoogle Scholar
  82. 82.
    Hilakivi-Clarke L, Cho E, Raygada M, et al. Alterations in mammary gland development following neonatal exposure to estradiol, transforming growth factor a, and estrogen receptor antagonist ICI 182,780. J Cell Physiol 1997; 170: 279–289.PubMedCrossRefGoogle Scholar
  83. 83.
    Jones FE, Jerry DJ, Guarino BC, et al. Heregulin induces in vivo proliferation and differentiation of mammary epithelium into secretory lobuloalveoli. Cell Growth Differ 1996; 7: 1031–1038.PubMedGoogle Scholar
  84. 84.
    Kenney NJ, Huang R-P, Johnson GR, et al. Detection and location of amphiregulin and cripto-1 expression in the developing postnatal mouse mammary gland. Mol Reprod Dev 1995; 41: 277–286.PubMedCrossRefGoogle Scholar
  85. 85.
    Kenney NJ, Smith GH, Johnson MD, et al. Cripto-1 activity in the intact and ovariectomized virgin mouse mammary gland. Pathogenesis 1997; 1: 57–71.Google Scholar
  86. 86.
    Xie W, Paterson AJ, Chin E, et al. Targeted expression of a dominant negative epidermal growth factor receptor in the mammary gland of transgenic mice inhibits pubertal mammary duct development. Mol Endocrinol 1997; 11: 1766–1781.PubMedCrossRefGoogle Scholar
  87. 87.
    Spitzer E, Zschiesche W, Binas B, et al. EGF and TGFa modulate structural and functional differentiation of the mammary gland from pregnant mice in vitro: possible role of the arachidonic acid pathway. J Cell Biochem 1995; 57: 495–508.PubMedCrossRefGoogle Scholar
  88. 88.
    Merlo GR, Graus-Porta D, Cella N, et al. Growth differentiation and survival of HC11 mammary epithelial cells: diverse effects of receptor tyrosine kinase-activating peptide growth factors. Eur J Cell Biol 1996; 70: 97–105.PubMedCrossRefGoogle Scholar
  89. 89.
    De Santis ML, Kannan S, Smith GH, et al. Cripto-1 inhibits 13-casein expression in mammary epithelial cells through a p21`as-and phosphatidylinosito1–3 kinase-dependent pathway. Cell Growth Differ 1997; 8: 1257–1266.PubMedGoogle Scholar
  90. 90.
    Kenney NJ, Smith GH, Maroulakou IG, et al. Detection of amphiregulin and Cripto-1 in mammary tumors from transgenic mice. Mol Carcinog 1996; 15: 44–56.PubMedCrossRefGoogle Scholar
  91. 91.
    Martin G, Cricco G, Davio C, et al. Epidermal growth factor in NMU-induced mammary tumors in rats. Breast Cancer Res Treat 1998; 48: 175–185.PubMedCrossRefGoogle Scholar
  92. 92.
    Ethier SP, Langton BC, Dilts CA. Growth factor-independent proliferation of rat mammary carcinoma cells by autocrine secretion of neu-differentiation factor/heregulin and transforming growth factor-a. Mol Carcinog 1996; 15: 134–143.PubMedCrossRefGoogle Scholar
  93. 93.
    Ciardiello F, Dono R, Kim N, Persico MG, and Salomon DS. Expression of cripto, a novel gene of the epidermal growth factor gene family, leads to in vitro transformation of a normal mouse mammary epithelial cell line. Cancer Res 1991; 51: 1051–1054.PubMedGoogle Scholar
  94. 94.
    Ciardiello F, McGeady ML, Kim N, et al. Transforming growth factor-a expression is enhanced in human mammary epithelial cells transformed by an activated c-Ha-ras proto-oncogene and overexpression of the transforming growth factor-a a complementary DNA leads to transformation. Cell Growth Differ 1990; 1: 407–420.PubMedGoogle Scholar
  95. 95.
    Davies BR, Warren JR, Schmidt G, et al. Induction of a variety of preneoplasias and tumours in the mammary glands of transgenic rats. Biochem Soc Symp 1998; 63: 167–184.PubMedGoogle Scholar
  96. 96.
    Krane IM, Leder P. NDF/heregulin induces persistence of terminal end buds and adenocarcinomas in the mammary glands of transgenic mice. Oncogene 1996; 12: 1781–1788.PubMedGoogle Scholar
  97. 97.
    Smith GH, Sharp R, Kordon EC, Jhappan C, Merlino G. Transforming growth factor-a promotes mammary tumorigenesis through selective survival and growth of secretory epithelial cells. Am J Pathol 1995; 147: 1081–1096.PubMedGoogle Scholar
  98. 98.
    Halter SA, Dempsey P, Matsui Y, et al. Distinctive patterns of hyperplasia in transgenic mice with mouse mammary tumor virus transforming growth factor a: characterization of mammary gland and skin proliferations Am J Pathol 1992; 140: 1131–1146.Google Scholar
  99. 99.
    Guy CT, Webster MA, Schaller M, et al. Expression of the neu proto-oncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 1992;89:10, 578–10, 582.Google Scholar
  100. 100.
    Sandgren EP, Schroeder JA, Qui TH, et al. Inhibition of mammary gland involution is associated with transforming growth factor a but not c-myc-induced tumorigenesis in transgenic mice. Cancer Res 1995; 55: 3915–3927.PubMedGoogle Scholar
  101. 101.
    Schroeder JA, Lee DC. Transgenic mice reveal roles for TGFa and EGF receptor in mammary gland development and neoplasia. J Mammary Gland Biol Neoplasia 1997; 2: 119–130.PubMedCrossRefGoogle Scholar
  102. 102.
    Cardiff RD. The biology of mammary transgenes: five rules. J Mammary Gland Biol Neoplasia 1996; 1: 61–74.PubMedCrossRefGoogle Scholar
  103. 103.
    Muller WJ, Arteaga CL, Muthuswamy SK, et al. Synergistic interation of the neu proto-oncogene product and transforming growth factor a in the mammary epithelium of transgenic mice. Mol Cell Biol 1996; 16: 5726–5736.PubMedGoogle Scholar
  104. 104.
    Amundadottir LT, Johnson MD, Merlino G, et al. Synergistic interaction of transforming growth factor a and c-myc in mouse mammary and salivary gland tumorigenesis. Cell Growth Differ 1995; 6: 737–748.PubMedGoogle Scholar
  105. 105.
    Amundadottir LT, Nass SJ, Berchem GJ, et al. Cooperation of TGFa and c-Myc in mouse mammary tumorigenesis: coordinated stimulation of growth and suppression of apoptosis. Oncogene 1996; 13: 757–765.PubMedGoogle Scholar
  106. 106.
    Mincione G, Bianco C, Kannan S, et al. Enhanced expression of heregulin in c-erbB-2 and c-Ha-ras transformed mouse and human mammary epithelial cells. J Cell Biochem 1996; 60: 437–446.PubMedCrossRefGoogle Scholar
  107. 107.
    Salomon DS, Ciardiello F, Valverius EM, Kim N. The role of ras gene expression and transforming growth factor a production in the etiology and progression of rodent and human breast cancer. In: Lippman M, Dickson R, eds. Regulatory Mechanisms in Breast Cancer. Kluwer, Boston, 1991, pp. 107–157.CrossRefGoogle Scholar
  108. 109.
    Ciardiello F, Kim N, Hynes NE, et al. Induction of transforming growth factor a expression in mouse mammary epithelial cells after transformation with a point mutated c-Ha-ras protooncogene. Mol Endocrinol 1988; 2: 1202–1216.PubMedCrossRefGoogle Scholar
  109. 110.
    Martinez-Lacaci I, Saceda M, Plowman G, et al. Estrogen and phorbol esters regulate amphiregulin expression by two separate mechanisms in human breast cancer cells. Endocrinology 1995; 136: 3983–3992.PubMedCrossRefGoogle Scholar
  110. 111.
    Bates SE, Davidson N, Valverius EM, et al. Expression of transforming growth factor a and its messenger ribonucleic acid in human breast cancer: its regulation by estrogen and its possible functional significance. Mol Endocrinol 1988; 2: 543–555.PubMedCrossRefGoogle Scholar
  111. 112.
    Murphy LC, Dotzlaw H. Regulation of transforming growth factor a transforming growth factor 13 messenger ribonucleic acid abundance in T-47D human breast cancer cells. Mol Endocrinol 1989; 3: 611–616.PubMedCrossRefGoogle Scholar
  112. 113.
    Saeki T, Cristiano A, Lynch MJ, et al. Regulation by estrogen through the 5’-flanking region of the transforming growth factor alpha gene. Mol Endocrinol 1991; 5: 1955–1963.PubMedCrossRefGoogle Scholar
  113. 114.
    El-Ashry D, Chrysogelos S, Lippman ME, et al. Estrogen induction of TGF-a is mediated by an estrogen response element composed of two imperfect palindromes. J Steroid Biochem 1996; 59: 261–269.CrossRefGoogle Scholar
  114. 115.
    Kenney N, Saeki T, Gottardis M, et al. Expression of transforming growth factor a (TGFa) antisense mRNA inhibits the estrogen-induced production of TGFa and estrogen-induced proliferation of estrogen-responsive human breast cancer cells. J Cell Physiol 1993; 156: 497–514.PubMedCrossRefGoogle Scholar
  115. 116.
    Ignar-Trowbridge DM, Pimentel M, Teng CT, et al. Cross talk between peptide growth factor and estrogen receptor signaling systems. Environ Health Perspect 1995; 103 (Suppl): 35–38.PubMedGoogle Scholar
  116. 117.
    Murphy LC, Dotzlaw H, Wong MSJ, et al. Epidermal growth factor: receptor and ligand expression in human breast cancer. Semin Cancer Biol 1994; 1: 305–315.Google Scholar
  117. 118.
    Murphy LC, Murphy L.1, Dubik D, Bell GI, Shiu RPC. Epidermal growth factor gene expression in human breast cancer cells: regulation of expression by progestins. Cancer Res 1988; 48: 4555–4560.PubMedGoogle Scholar
  118. 119.
    Normanno N, Selvam P, Qi C-F, et al. Amphiregulin as an autocrine growth factor for c-Ha-ras and c-erbB-2-transformed human mammary epithelial cells. Proc Natl Acad Sci USA 1994; 91: 2790–2794.PubMedCrossRefGoogle Scholar
  119. 120.
    Normanno N, Qi C-F, Gullick WJ, et al. Expression of amphiregulin, cripto-1, and heregulin in human breast cancer cells. Int J Oncol 1993; 2: 903–911.PubMedGoogle Scholar
  120. 121.
    Salomon DS, Normanno N, Ciardiello F, et al. The role of amphiregulin in breast cancer. Breast Cancer Res Treat 1995; 33: 103–114.PubMedCrossRefGoogle Scholar
  121. 122.
    Ram TG, Kokeny K, Dilts CA, et al. Mitogenic activity of neu differentiation factor/heregulin mimics that of epidermal growth factor and insulin-like growth factor I in human mammary epithelial cells. J Cell Physiol 1995; 163: 589–596.PubMedCrossRefGoogle Scholar
  122. 123.
    Ram TG, Dilts CA, Dziubinski ML, et al. Insulin-like growth factor and epidermal growth factor independence in human mammary carcinoma cells with c-erbB-2 gene amplification and progressively elevated levels of tyrosine-phosphorylated p185erbB-2. Mol Carcinog 1996; 15: 227–238.PubMedCrossRefGoogle Scholar
  123. 124.
    Normanno N, Ciardiello F. EGF-related peptides in the pathophysiology of the mammary gland. J Mammary Gland Biol Neoplasia 1997; 2: 143–152.PubMedCrossRefGoogle Scholar
  124. 125.
    Dotzlaw H, Miller T, Karvelas J, Murphy LC. Epidermal growth factor gene expression in human breast cancer biopsy samples: relationship to estrogen and progesterone receptor gene expression. Cancer Res 1990; 50: 4204–4208.PubMedGoogle Scholar
  125. 126.
    Mizukami Y, Nonomura A, Noguchi M, et al. Immunohistochemical study of oncogene product Ras p21, c-Myc and growth factor EGF in breast carcinomas. Anticancer Res 1991; 11: 1485–1494.PubMedGoogle Scholar
  126. 127.
    Pirinen R, Lipponen P, Aaltomaa S, et al. Prognostic value of epidermal growth factor expression in breast cancer. J Cancer Res Clin Oncol 1997; 123: 63–68.PubMedCrossRefGoogle Scholar
  127. 128.
    Murray PA, Barrett-Lee P, Travers M, Luqmani Y, Powles T, Coombes RC. The prognostic significance of transforming growth factors in human breast cancer. Br J Cancer 1993; 67: 1408–1412.PubMedCrossRefGoogle Scholar
  128. 129.
    Ciardiello F, Kim N, Liscia DS, et al. Transforming growth factor a (TGFa) mRNA expression in human breast carcinomas and TGFa activity in the effusions of breast cancer patients. J Natl Cancer Inst 1989; 81: 1165–1171.PubMedCrossRefGoogle Scholar
  129. 130.
    Murray PA, Barrett-Lee PJ, Travers MT, Lugmani Y, Powles T, Coombes RC The prognostic significance of transforming growth factors in breast cancer. Br J Cancer 1993; 67: 1408–1412.PubMedCrossRefGoogle Scholar
  130. 131.
    Dublin EA, Barnes DM, Wang DY, King RJB, Levison DA. TGF alpha and TGF beta expression in mammary carcinoma. J Pathol 1993; 170: 15–22.PubMedCrossRefGoogle Scholar
  131. 132.
    De Jong JS, Van Diest PJ, Van Der Valk P, et al. Expression of growth factors, growth inhibiting factors, and their receptors in invasive breast cancer. I: An inventory in search of autocrine and paracrine loops. J Pathol 1998; 184: 44–52.PubMedCrossRefGoogle Scholar
  132. 133.
    Artagaveytia N, Le Penven S, Falette N, et al. Epidermal growth factor and transforming growth factor alpha mRNA expression in human breast cancer biopsies: analysis in relation to estradiol, progesterone and EGF receptor content. J Steroid Biochem Mol Biol 1997; 60: 221–228.PubMedCrossRefGoogle Scholar
  133. 134.
    Auvinen PK, Lipponen PK, Kataja V, et al. Prognostic significance of TGF-a expression in breast cancer. Acta Oncol 1996; 35: 995–998.PubMedCrossRefGoogle Scholar
  134. 135.
    Castellani R, Visscher DW, Wykes S, et al. Interaction of transforming growth factor-alpha and epidermal growth factor receptor in breast carcinoma. Cancer 1994; 73: 344–349.PubMedCrossRefGoogle Scholar
  135. 136.
    Barrett-Lee P, Travers M, Luqmani Y, Coombes RC. Transcripts for transforming growth factors in human breast cancer: clinical correlates. Br J Cancer 1990; 61: 612–617.PubMedCrossRefGoogle Scholar
  136. 137.
    Qi C, Liscia DS, Normanno N, Merlo G, et al. Expression of transforming growth factor alpha, amphiregulin, and cripto-1 in human breast carcinomas. Br J Cancer 1994; 69: 903–910.PubMedCrossRefGoogle Scholar
  137. 138.
    Umekita Y, Enokizono N, Sagara Y, et al. Immunohistochemical studies on oncogene products (EGFR, c-erbB-2) and growth factors (EGF, TGF-a) in human breast cancer: their relationship to oestrogen receptor status, histological grade, mitotic index and nodal status. Virchows Archiv A Pathol Anat Histopathol 1992; 420: 345–351.CrossRefGoogle Scholar
  138. 139.
    Perroteau I, Salomon DS, Debortoli M, et al. Immunological detection and quantitation of alpha transforming growth factors in human breast carcinoma cells. Breast Cancer Res Treat 1986; 7: 201–210.PubMedCrossRefGoogle Scholar
  139. 140.
    Parkam DH, Jankowski J. Transforming growth factor a in epithelial proliferative diseases of the breast. J Clin Pathol 1992; 45: 513–516.CrossRefGoogle Scholar
  140. 141.
    Macias A, Perez R, Hagerstrom T, Skoog L. Transforming growth factor a in human mammary carcinomas and their metastases. Anticancer Res 1989; 9: 177–182.PubMedGoogle Scholar
  141. 142.
    Lundy J, Scuss A, Stanick D, McCormack ES, Kramer S, Sorvillo JM. Expression of neu protein, EGF and TGFa in breast cancer. Am J Pathol 1991; 138: 1527–1534.PubMedGoogle Scholar
  142. 143.
    Noguchi S, Motomura K, Inaji H, Imaoka S, Koyama H. Down-regulation of transforming growth factor-a by tamoxifen in human breast cancer. Cancer 1993;4096:18, 428–18, 432.Google Scholar
  143. 144.
    Gregory H, Thomas CE, Willshire TR, et al. Epidermal growth factor and transforming growth factor a in patients with breast tumors. Br J Cancer 1989; 59: 605–609.PubMedCrossRefGoogle Scholar
  144. 145.
    Arteaga CL, Hanauske AR, Clark GM, et al. Immunoreactive a transforming growth factor activity in effusions from cancer patients as a marker of tumor burden and patients prognosis. Cancer Res 1988; 48: 5023–5028.PubMedGoogle Scholar
  145. 146.
    Kenney N, Johnson GR, Selvan MP, et al. Transforming growth factor alpha (TGFot) and amphiregulin (AR) as autocrine growth factors in nontransformed, immortalized 184A 1 N4 human mammary epithelial cells. Mol Cell Differ 1993; 1: 163–184.Google Scholar
  146. 147.
    Normanno N, Selvan MP, Qi C, et al. Amphiregulin as an autocrine growth factor for c-Ha-ras and c-erb B-2 transformed human mammary epithelial cells. Proc Natl Acad Sci USA 1994; 91: 2790–2794.PubMedCrossRefGoogle Scholar
  147. 148.
    Li S, Plowman GD, Buckley SD, Shipley GD. Heparin inhibition of autonomous growth implicates amphiregulin as an autocrine growth factor for normal human mammary epithelial cells. J Cell Physiol 1992; 153: 103–111.PubMedCrossRefGoogle Scholar
  148. 149.
    Li W, Park JW, Nuijens A, et al. Heregulin is rapidly translocated to the nucelus and its transport is correlated with c-myc induction in breast cancer cells. Oncogene 1996; 12: 2473–2477.PubMedGoogle Scholar
  149. 150.
    LeJeune S, Leek R, Horak E, Plowman GD, Greenall M, Harris AL. Amphiregulin, epidermal growth factor receptor, and estrogen receptor expression in human primary breast cancer. Cancer Res 1993; 53: 3597–3602.PubMedGoogle Scholar
  150. 151.
    Visscher D, Sarkar FH, Kasunic TC, et al. Clinicopathologic analysis of amphiregulin and heregulin immunostaining in breast neoplasia. Breast Cancer Res Treat 1997; 45: 75–80.PubMedCrossRefGoogle Scholar
  151. 152.
    Peles E, Bacus SS, Koski RA, et al. Isolation of the neu/HER-2 stimulatory ligand: a 44 kd glycoprotein that induces differentiation of mammary tumor cells. Cell 1992; 69: 205–216.PubMedCrossRefGoogle Scholar
  152. 153.
    Holmes WE, Sliwkowski MX, Akita RW, et al. Identification of heregulin, a specific activator of p185 erb B-2. Science 1992; 256: 1205–1210.PubMedCrossRefGoogle Scholar
  153. 154.
    Bacus SS, Gudkov AV, Zelnick CR, et al. Neu differentiation factor (heregulin) induces expression of intercellular adhesion molecule 1: implications for mammary tumors. Cancer Res 1993; 53: 5251–5261.PubMedGoogle Scholar
  154. 155.
    Bacus SS, Zelnick CR, Plowman G, et al. Expression of the erbB-2 family of growth factor receptors and their ligands in breast cancers. Am J Clin Pathol 1994; 102 (Suppl 1): S13 - S24.PubMedGoogle Scholar
  155. 156.
    Normanno N, Kim N, Wen D, et al. Expression of messenger RNA for amphiregulin, heregulin and cripto-1, three new members of the epidermal growth factor family, in human breast carcinomas. Breast Cancer Res Treat 1995; 35: 293–297.PubMedCrossRefGoogle Scholar
  156. 157.
    Tang CK, Perez C, Grunt T, et al. Involvement of heregulin-B2 in the acquisition of the hormone-independent phenotype of breast cancer cells. Cancer Res 1996; 56: 3350–3358.PubMedGoogle Scholar
  157. 158.
    Mueller H, Kueng W, Schoumacher F, et al. Selective regulation of steroid receptor expression in MCF-7 breast cancer cells by a novel member of the heregulin family. Biochem Biophys Res Commun 1995; 26: 1271–1278.CrossRefGoogle Scholar
  158. 159.
    Pietras RJ, Arboleda J, Reese DM, et al. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 1995; 10: 2435–2447.PubMedGoogle Scholar
  159. 160.
    Grunt TW, Saceda M, Martin MB, et al. Bidirectional interactions between the estrogen receptor and the cerbB-2 signaling pathways: heregulin inhibits estrogenic effects in breast cancer cells. IntJ Cancer 1995; 63: 560–567.CrossRefGoogle Scholar
  160. 161.
    Daly JM, Jannot CB, Beerli RR, et al. Neu differentiation factor induces ErbB2 down-regulation and apoptosis of ErbB2-overexpressing breast tumor cells. Cancer Res 1997; 57: 3804–3811.PubMedGoogle Scholar
  161. 162.
    Dublin EA, Bobrow LG, Barnes DM, et al. Amphiregulin and cripto overexpression in breast cancer: relationship with prognosis and clinical and molecular variables. Int J Oncol 1995; 7: 617–622.PubMedGoogle Scholar
  162. 163.
    Panico L, D’Antonio A, Salvatore G, et al. Differential immunohistochemical detection of transforming growth factor a, amphiregulin and cripto in normal and malignant breast tissues. Int J Cancer 1996; 65: 51–56.PubMedCrossRefGoogle Scholar
  163. 164.
    Fox SB, Harris Adrian L. The epidermal growth factor receptor in breast cancer. J Mammary Gland Biol Neoplasia 1997; 2: 131–142.PubMedCrossRefGoogle Scholar
  164. 165.
    Davidson NE, Gelmann EP, Lippman ME, Dickson RB. Epidermal growth factor receptor gene expression in estrogen receptor-positive and negative human breast cancer cell lines. Mol Endocrinol 1987; 1: 216–223.PubMedCrossRefGoogle Scholar
  165. 166.
    Valverius EM, Velu T, Shankar V, Ciardiello F, Kim N, Salomon DS. Over-expression of the epidermal growth factor receptor in human breast cancer cells fails to induce an estrogen-independent phenotype. Int J Cancer 1990; 46: 712–718.PubMedCrossRefGoogle Scholar
  166. 167.
    Klijn JGM, Berns PMJJ, Schmitz PIM, Foekens JA. The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: a review on 5,232 patients. Endocr Rev 1992; 13: 3–17.PubMedGoogle Scholar
  167. 168.
    Harris AL, Nicholson S. Epidermal growth factor receptors in human breast cancer. In: Lippman ME, Dickson RB, eds. Breast Cancer: Cellular and Molecular Biology. Kluwer, Boston, 1987, pp. 93–118.Google Scholar
  168. 169.
    Moscatello DK, Holdago-Madruga M, Godwin A, et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res 1995; 55: 5536–5539.PubMedGoogle Scholar
  169. 170.
    Sainsbury JRC, Farndon JR, Needham GK, Malcolm AJ, Harris AL. Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet 1987; 1: 1398–1402.PubMedGoogle Scholar
  170. 171.
    Nicholson S, Richard J, Sainsbury C, et al. Epidermal growth factor receptor (EGFr); results of a 6 year follow-up study in operable breast cancer with emphasis on the node negative subgroup. Br J Cancer 1991; 63: 146–150.PubMedCrossRefGoogle Scholar
  171. 172.
    Koenders PG, Beex LVAM, Kienhuis CBM, Kloppenborg PWC, Benraad TJ. Epidermal growth factor receptor and prognosis in human breast cancer: a prospective study. Breast Cancer Res Treat 1993; 25: 21–27.PubMedCrossRefGoogle Scholar
  172. 173.
    Harlozinska A, Bar JK, Wenderski R, et al. Relationship between c-erbB-2 oncoprotein, epidermal growth factor receptor, and estrogen receptor expression in patients with ductal breast carcinoma: association with tumor phenotypes. In Vivo 1996; 10: 217–222.PubMedGoogle Scholar
  173. 174.
    Nicholson S, Halcrow P, Sainsbury JRC, et al. Epidermal growth factor receptor (EGFr) status associated with failure of primary endocrine therapy in elderly postmenopausal patients with breast cancer. Br J Cancer 1988; 58: 810–814.PubMedCrossRefGoogle Scholar
  174. 175.
    Nicholson RI, Gee JMW, Jones H, et al. erb B signalling and endocrine sensitivity of human breast cancer. In: Hurbin RN, et al., eds. EGF Receptor in Tumor Growth and Progression. Einstein-Schering Foundation Workshop, Springer-Verlag, Boston, 1997.Google Scholar
  175. 176.
    Nicholson S, Sainsbury JRC, Halcrow P, Chambers P, Farndon JR, Harris AL. Expression of epidermal growth factor receptors associated with lack of response to endocrine therapy in recurrent breast cancer. Lancet 1989; 1: 182–186.PubMedCrossRefGoogle Scholar
  176. 177.
    Gullick WJ. The role of the epidermal growth factor receptor and the c-erbB-2 protein in breast cancer. Int J Cancer 1990; 5 (Suppl): 55–61.CrossRefGoogle Scholar
  177. 178.
    Bargmann CI, Weinberg RA. Oncogenic activation of the neu-encoded receptor protein by point mutation and deletion. EMBO J 1988; 7: 2043–2052.PubMedGoogle Scholar
  178. 179.
    DiFiore PP, Pierce JH, Kraus MH, Segatto O, King CR, Aaronson SA. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science 1987; 237: 178–182.CrossRefGoogle Scholar
  179. 180.
    Hudziak RM, Schlessinger J, Ullrich A. Increased expression of the putative growth factor receptor p185xER2 causes transformation and tumourigenesis of NIH 3T3 cells. Proc Natl Acad Sci USA 1987; 84: 7159–7163.PubMedCrossRefGoogle Scholar
  180. 181.
    Lemoine NR, Staddon S, Dickson C, Barnes DM, Gullick WJ. Absence of activating transmembrane mutations in the c-erbB-2 proto-oncogene in human breast cancer. Oncogene 1989; 5: 237–239.Google Scholar
  181. 182.
    Rilke F, Colnaghi MI, Cascinelli N, et al. Prognostic significance of HER-2/neu expression in breast cancer and its relationship to other prognostic factors. Int J Cancer 1991; 49: 44–49.PubMedCrossRefGoogle Scholar
  182. 183.
    Revillion F, Bonneterre J, Peyrat JP. ERBB2 oncogene in human breast cancer and its clinical significance. Eur J Cancer 1998; 34: 791–808.PubMedCrossRefGoogle Scholar
  183. 184.
    Bacus SS, Chin D, Yarden Y, et al. Type 1 receptor tyrosine kinases are differentially phosphorylated in mammary carcinoma and differentially associated with steroid receptors. Am J Pathol 1996; 148: 549–558.PubMedGoogle Scholar
  184. 185.
    DiGiovanna MP, Carter D, Flynn SD, et al. Functional assay for HER-2/neu demonstrates active signalling in a minority of HER-2/neu-overexpressing invasive human breast tumours. Br J Cancer 1996; 74: 802–806.PubMedCrossRefGoogle Scholar
  185. 186.
    Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.PubMedCrossRefGoogle Scholar
  186. 187.
    Antoniotti S, Maggioar P, Dati C, et al. Tamoxifen up-regulates c-erbB-2 expression in oestrogen-responsive breast cancer cells in vitro. Eur J Cancer 1992; 28: 318–321.PubMedCrossRefGoogle Scholar
  187. 188.
    Yu D, Liu B, Jing T, et al. Overexpression of both p c-erbB2 and p 170md-1 renders breast cancer cells highly resistant to taxol. Oncogene 1998; 16: 2087–2094.PubMedCrossRefGoogle Scholar
  188. 189.
    Gusterson BA, Machin LG, Gullick WJ, et al. c-erbB-2 expression in benign and malignant breast disease. Br J Cancer 1988; 58: 453–457.PubMedCrossRefGoogle Scholar
  189. 190.
    Tsutsumi Y, Naber SP, DeLellis RA, et al. neu oncogene protein and epidermal growth factor receptor are independently expressed in benign and malignant breast tissues. Hum Pathol 1990; 21: 750–758.PubMedCrossRefGoogle Scholar
  190. 191.
    Van De Vijer MJ, Peterse JL, Mooi WJ, et al. Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med 1988; 319: 1239–1242.CrossRefGoogle Scholar
  191. 192.
    Barnes DM, Bartkova J, Camplejohn RS, Gullick WJ, Smith PJ, Millis RR. Overexpression of the c-erbB-2 oncoprotein: why does this occur more frequently in ductal carcinoma in situ than in invasive mammary carcinoma and is this of prognostic significance? Eur J Cancer 1992; 28: 644–648.PubMedCrossRefGoogle Scholar
  192. 193.
    Guerin M, Gabillot M, Mathieu M-C, et al. Structure and expression of c-erbB-2 and EGF receptor genes in inflammatory and non-inflammatory breast cancer: prognostic significance. Int J Cancer 1989; 43: 201–208.PubMedCrossRefGoogle Scholar
  193. 194.
    Garcia I, Dietrich P-Y, Aapro M, Vauthier G, Vadas L, Engel E. Genetic alterations of c-myc c-erbB-2 and c-Ha-ras proto-oncogenes and clinical associations in human breast carcinomas. Cancer Res 1989; 49: 6675–6679.PubMedGoogle Scholar
  194. 195.
    Dati C, Antoniotti S, Taverna D, Perroteau I, De Bortoli M. Inhibition of c-erbB-2 oncogene expression by estrogens in human breast cancer cells. Oncogene 1990; 5: 1001–1006.PubMedGoogle Scholar
  195. 196.
    Gullick WJ, Love SB, Wright C, et al. c-erbB-2 protein overexpression in breast cancer is a risk factor in patients with involved and uninvolved lymph nodes. Br J Cancer 1992; 63: 434–438.CrossRefGoogle Scholar
  196. 197.
    Richter King C, Kraus MH, DiFiore PP, Paik S, Kasprzyk PG. Implications of erbB-2 overexpression for basic science and clinical medicine. Semin Cancer Biol 1990; 1: 329–337.Google Scholar
  197. 198.
    Harris AL, Nicholson S, Sainsbury JRC, Farndon J, Wright C. Epidermal growth factor receptors in breast cancer: association with early relapse and death, poor response to hormones and interactions with neu. J Steroid Biochem 1989; 34: 123–131.PubMedCrossRefGoogle Scholar
  198. 199.
    Osaki A, Toi M, Yamada H, Kawami H, Kuroi K, Toge T. Prognostic significance of co-expression of c-erbB-2 oncoprotein and epidermal growth factor receptor in breast cancer patients. Am J Surg 1992; 164: 323–326.PubMedCrossRefGoogle Scholar
  199. 200.
    Prigent SA, Lemoine NR, Hughes CM, Plowman GD, Selden C, Gullick WJ. Expression of the c-erb B-3 protein in normal human adult and fetal tissues. Oncogene 1992; 7: 1273–1278.PubMedGoogle Scholar
  200. 201.
    Kraus MH, Issing W, Mild T, Popescu NC, Aaronson SA. Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci USA 1989; 86: 9193–9197.PubMedCrossRefGoogle Scholar
  201. 202.
    Lemoine NR, Barnes DM, Hollywood DP, et al. Expression of the ERBB3 gene product in breast cancer. Br J Cancer 1992; 66: 1116–1121.PubMedCrossRefGoogle Scholar
  202. 203.
    Gasparini G, Gullick WJ, Maluta S, et al. c-erbB-3 and c-erbB-2 protein expression in node-negative breast carcinoma: an immunocytochemical study. Eur. J Cancer 1994; 30A: 16–22.CrossRefGoogle Scholar
  203. 204.
    Quinn CM, Ostrowski JL, Lane SA, et al. c-erbB-3 protein expression in human breast cancer: comparison with other tumour variables and survival. Histopathology 1994; 25: 247–252.PubMedCrossRefGoogle Scholar
  204. 205.
    Travis A, Pinder SE, Robertson JFR, Bell JA, Wencyk P, Gullick WJ, et al. C-erbB-3 in human breast carcinoma: expression and relation to prognosis and established prognostic indicators. Br J Cancer 1996; 74: 229–233.PubMedCrossRefGoogle Scholar
  205. 206.
    Carter HB, Coffey D. Magnitude of the problem in the United States. In: Coffey D, Resnick M, Dorr F, eds. A Multidisciplinary Analysis of Controversies in the Management of Prostate Cancer. Plenum, New York, 1988, pp. 1–9.Google Scholar
  206. 207.
    Carter HB, Piantadosi S, Isaacs JT. Clinical evidence for and implications of the multistep development of prostate cancer. J Urol 1990; 143: 742–746.PubMedGoogle Scholar
  207. 208.
    Russell PJ, Bennett S, Stricker P. Growth factor involvement in progression of prostate cancer. Clin Chem 1998; 44: 705–723.PubMedGoogle Scholar
  208. 209.
    Sherwood ER, Lee C. Epidermal growth factor-related peptides and the epidermal growth factor receptor in normal and malignant prostate. World J Urol 1995; 13: 290–296.PubMedCrossRefGoogle Scholar
  209. 210.
    Culig Z, Hobisch A, Cronauer MV. Regulation of prostatic growth and function by peptide growth factors. Prostate 1996; 28: 392–405.PubMedCrossRefGoogle Scholar
  210. 211.
    Ching KZ, Ramsey E, Pettigrew N, et al. Expression of mRNA for epidermal growth factor, transforming growth factor-alpha and their receptor in human prostate tissue and cell lines. Mol Cell Biochem 1993; 126: 151–158.PubMedCrossRefGoogle Scholar
  211. 212.
    Myers RB, Kudlow JE, Grizzle WE. Expression of transforming growth factor-a, epidermal growth factor and epidermal growth factor receptor in adenocarcinoma of the prostate and benign prostatic hyperplasia. Modern Pathol 1993; 6: 733–737.Google Scholar
  212. 213.
    Leav I, McNeal JE, Ziar J, et al. The localization of transforming growth factor alpha and epidermal growth factor receptor in stromal and epithelial compartments of developing human prostate and hyperplastic, dysplastic, and carcinomatous lesions. Hum Pathol 1998; 29: 668–675.PubMedCrossRefGoogle Scholar
  213. 214.
    Hiramatsu M, Kashimata M, Minami N, et al. Androgenic regulation of epidermal growth factor in the mouse ventral prostate. Biochem Int 1988; 17: 311–317.PubMedGoogle Scholar
  214. 215.
    Connolly JM, Rose DP. Production of epidermal growth factor and transforming growth factor a by the adrenogen-responsive LNCaP human prostate cancer cell line. Prostate 1990; 16: 209–218.PubMedCrossRefGoogle Scholar
  215. 216.
    McKeehan WL, Adams PS, Rosser MP. Direct mitogenic effects of insulin, epidermal growth factor, glucocorticoid, cjoleratoxin, unknown pituitary factors and possibly prolactin, but not androgen, on normal rat prostate epithelial cells in serum-free, primary cell culture. Cancer Res 1984; 44: 4998–5010.Google Scholar
  216. 217.
    Peehl DM, Stamey TA. Serum-free growth of adult human prostatic carcinoma. In Vitro Cell Dev Biol 1986; 22: 82–90.PubMedCrossRefGoogle Scholar
  217. 218.
    Schuurmans ALG, Bolt J, Mulder E. Androgens and transforming growth factor modulate the growth response to epidermal growth factor in human prostatic tumor cells. Mol Cell Endocrinol 1988; 60: 101–104.PubMedCrossRefGoogle Scholar
  218. 219.
    Nishi N, Oya H, Matsumoto K, et al. Changes in gene expression of growth factors and their receptors during castration-induced involution and androgen-induced regrowth of rat prostates. The Prostate 1996; 28: 139–152.PubMedCrossRefGoogle Scholar
  219. 220.
    Sehgal I, Bailey J, Hitzemann K, et al. Epidermal growth factor receptor-dependent stimulation of amphiregulin expression in androgen-stimulated human prostate cancer cells. Mol Biol Cell 1994; 5: 339–347.PubMedGoogle Scholar
  220. 221.
    Liu X-H, Wiley HS, Meikle AW. Androgens regulate proliferation of human prostate cancer cells in culture by increasing transforming growth factor-a (TGF-a) and epidermal growth factor (EGF)/TGFa receptor. J Clin Endocrinol Metab 1993; 77: 1472–1478.PubMedCrossRefGoogle Scholar
  221. 222.
    Morris GL, Dodd JG. Epidermal growth factor receptor mRNA levels in human prostatic tumors and cell lines. J Urol 1990; 143: 1272–1274.PubMedGoogle Scholar
  222. 223.
    Wilding GE, Valverius C, Knabbe C, et al. Role of transforming growth factor-alpha in human prostate cancer cell growth. Prostate 1989; 15: 1–12.PubMedCrossRefGoogle Scholar
  223. 224.
    Hofer DR, Sherwood ER, Bromberg WD, et al. Autonomous growth of androgen-independent human prostatic carcinoma cells: role of transforming growth factor a. Cancer Res 1991; 51: 2780–2785.PubMedGoogle Scholar
  224. 225.
    Rubenstein M, Mirochnik Y, Chou P, et al. Antisense oligonucleotide intralesional therapy for human PC-3 prostate tumors carried in athymic nude mice. J Surg Oncol 1996; 62: 194–200.PubMedCrossRefGoogle Scholar
  225. 226.
    Schuurmans AL, Bolt J, Veldscholte J, et al. Regulation of growth of LNCaP human prostate tumor cells by growth factors and steroid hormones. J Steroid Biochem Mol Biol 1991; 40: 193–197.PubMedCrossRefGoogle Scholar
  226. 227.
    Grasso AW, Wen D, Miller CM, et al. ErbB kinases and NDF signaling in human prostate cancer cells. Oncogene 1997; 15: 2705–2716.PubMedCrossRefGoogle Scholar
  227. 228.
    Knabbe C, Kellner U, Schmahl M, et al. Growth factors in human prostate cancer cells: implications for an improved treatment of prostate cancer. J Steroid Biochem Mol Biol 1991; 40: 185–192.PubMedCrossRefGoogle Scholar
  228. 229.
    Kim JH, Sherwood ER, Sutkowski DM, et al. Inhibition of prostatic tumor cell proliferation by suramin: alterations in TGF alpha-mediated autocrine growth regulation and cell cycle distribution. J Urol 1991; 146: 171–176.PubMedGoogle Scholar
  229. 230.
    Yang Y, Chisholm GD, Habib FK. Epidermal growth factor and transforming growth factor a concentrations in BPH and cancer of the prostate: their relationships with tissue androgene levels. Br J Cancer 1993; 67: 152–155.PubMedCrossRefGoogle Scholar
  230. 231.
    Leav I, McNeal JE, Ziar J, et al. The localization of transforming growth factor alpha and epidermal growth factor receptor in stromal and epithelial compartments of developing human prostate and hyperplastic, dysplastic, and carcinomatous lesions. Human Pathol 1998; 29: 668–675.CrossRefGoogle Scholar
  231. 232.
    Leung HY, Weston J, Gullick WJ, et al. A potential autocrine loop between heregulin-alpha and erbB3 receptor in human prostatic adenocarcinoma. Br J Urol 1997; 79: 212–216.PubMedCrossRefGoogle Scholar
  232. 233.
    Myers RB, Srivastava S, Oelschlager DK, et al. Expression of p160erbn-3 and p185erbg-2 in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. J Natl Cancer Inst 1994; 86: 1140–1145.PubMedCrossRefGoogle Scholar
  233. 234.
    Lyne JC, Melhern MF, Finley GG, et al. Tissue expression of neu differentiation factor/heregulin and its receptor complex in prostate cancer and its biologic effects on prostate cancer cells in vitro. Cancer J Sci Am 1997; 3: 21–30.PubMedGoogle Scholar
  234. 235.
    Harper ME, Goddard L, Glynne-Jones E, et al. Epidermal growth factor receptor expression by northern analysis and immunohistochemistry in benign and malignant prostatic tumours. Eur J Cancer 1995; 31A: 1492–1497.CrossRefGoogle Scholar
  235. 236.
    Davies P, Eaton C, France C, et al. Growth factor receptors and oncogene expression in prostate cells. Am J Clin Oncol 1988; 11: 1–6.CrossRefGoogle Scholar
  236. 237.
    Davies P, Eaton CL. Binding of epidermal growth factor by human normal, hypertrophie and carcinomatous prostate. Prostate 1989; 14: 123–132.PubMedCrossRefGoogle Scholar
  237. 238.
    Ibrahim GK, Kerns BM, MacDonald JA, et al. Differential immunoreactivity of epidermal growth factor receptor in benign, dysplastic and malignant prostatic tissues. J Urol 1993; 149: 170–173.PubMedGoogle Scholar
  238. 239.
    McCann A, Dervan PA, Gullick WJ, et al. c-erbB-2 oncoprotein expression in malignant and nonmalignant tissues. Proc Am Assoc Cancer Res 1989; 30: 914 (Abstract).Google Scholar
  239. 240.
    Ware JL, Maygarden SJ, Koontz WW, et al. Differential reactivity with anti-erb-B2 antiserum among human malignant and benign prostatic tissue. Proc Am Assoc Cancer Res 1989; 30: 1737 (Abstract).Google Scholar
  240. 241.
    Zhau HE, Wan DS, Zhou J, et al. Expression of e-erb B-2/neu proto-oncogene in human prostatic cancer tissues and cell lines. Mol Carcinog 1992; 5: 320–327.PubMedCrossRefGoogle Scholar
  241. 242.
    Kuhn EJ, Kurnot RA, Sesterhenn IA, Chang EH, Moul JW. Expression of the c-erbB-2 (HER-2/neu) oncoprotein in human prostatic carcinoma. J Urol 1993; 150: 1427–1433.PubMedGoogle Scholar
  242. 243.
    Schwartz S, Caceres C, Morote J, et al. Over-expression of epidermal growth factor receptor and cerbB2/neu but not of int-2 genes in benign prostatic hyperplasia by means of semi-quantitative PCR. Int J Cancer 1998; 76: 464–467.PubMedCrossRefGoogle Scholar
  243. 244.
    Ross JS, Sheehan C, Hayner-Buchan AM, et al. HER-2/neu gene amplification status in prostate cancer by fluorescence in situ hybridization. Hum Pathol 1997; 28: 827–833.PubMedCrossRefGoogle Scholar
  244. 245.
    Ross JS, Sheehan CE, Hayner-Buchan AM, et al. Prognostic significance of HER-2/neu gene amplification status by fluorescence in situ hybridization of prostate carcinoma. Cancer 1997; 79: 2162–2170.PubMedCrossRefGoogle Scholar
  245. 246.
    Gullick WJ. Inhibitors of growth factor receptors. In: Carney D, Sikora K, eds. Genes and Cancer. Wiley, New York, 1990, pp. 263–273.Google Scholar
  246. 247.
    Powis G, Kozikowski A. Growth factor and oncogene signalling pathways as targets for rational anticancer drug development. Clin Biochem 1991; 24: 385–397.PubMedCrossRefGoogle Scholar
  247. 248.
    Garner A. Therapeutic potential of growth factors and their antagonists. Yale J Biol Med 1992; 65: 715–723.PubMedGoogle Scholar
  248. 249.
    Shepard HM, Lewis GD, Sarup JC, et al. Monoclonal antibody therapy of human cancer: taking the HER2 protooncogene to the clinic. J Clin Immunol 1991; 11: 117–127.PubMedCrossRefGoogle Scholar
  249. 250.
    Stancovski I, Peles E, Ben Levy R, et al. Signal transduction by the neu/erbB-2 receptor: a potential target for anti-tumor therapy. J Steroid Biochem Mol Biol 1992; 43: 95–103.PubMedCrossRefGoogle Scholar
  250. 251.
    Hynes NE. Amplification and overexpression of the erbB-2 gene in human tumors: its involvement in tumor development, significance as a prognostic factor, and potential as a target for cancer therapy. Semin Cancer Biol 1993; 4: 19–26.PubMedGoogle Scholar
  251. 252.
    Baselga J, Mendelsohn J. Type I receptor tyrosine kinase as target for therapy in breast cancer. J Mammary Gland Biol Neoplasia 1997; 2: 165–174.PubMedCrossRefGoogle Scholar
  252. 253.
    Yang D, Wang S. Small molecule antagonsists targeting growth factors/receptors. Curr Pharm Design 1997; 3: 335–354.Google Scholar
  253. 254.
    Rusch V, Mendelsohn J, Dmitrovsky E. The epidermal growth factor receptor and its ligands as therapeutic targets in human tumors. Cytokine Growth Factor Revs 1996; 7: 133–141.CrossRefGoogle Scholar
  254. 255.
    O’Rourke DM, Greene MI. Immunologic approaches to inhibiting cell-surface-residing oncoproteins in human tumors. Immunol Res 1998; 17: 179–189.PubMedCrossRefGoogle Scholar
  255. 256.
    Mori S, Mori Y, Mukaiyama T, et al. In vitro and in vivo release of soluble erbB-2 protein from human carcinoma cells. Jpn J Cancer Res 1990; 81: 489–494.PubMedCrossRefGoogle Scholar
  256. 257.
    Carney WP, Hamer PJ, Petit D, et al. Detection and quantitation of the human neu oncoprotein. J Tumor Marker Oncol 1991; 6: 53–72.Google Scholar
  257. 258.
    Breuer B, Luo J-C, DeVivo I, et al. Detection of elevated c-erbB-2 oncoprotein in the serum and tissue in breast cancer. Med Sci Res 1993; 21: 383, 384.Google Scholar
  258. 259.
    Fleisher M. Prognostic markers other than hormone receptors in breast cancer. J Clin Ligand Assay 1998; 21: 41–46.Google Scholar
  259. 260.
    Brandt-Rauf PW. The c-erbB transmembrane growth factor receptors as serum biomarkers in human cancer studies. Mutation Res 1995; 333: 203–208.PubMedCrossRefGoogle Scholar
  260. 261.
    Müller-Newen G, Köhne C, Heinrich PC. Soluble receptors for cytokines and growth factors. Int Arch Allergy Immunol 1996; 111: 99–106.PubMedCrossRefGoogle Scholar
  261. 262.
    Arai Y, Yoshiki T, Yoshida O. c-erbB-2 oncoprotein: a potential biomarker of advanced prostate cancer. Prostate 1997; 1530: 195–201.CrossRefGoogle Scholar
  262. 263.
    Myers RB, Brown D, Oelschlager DK, et al. Elevated serum levels of p105 (erbB-2) in patients with advanced-stage prostatic adenocarcinoma. Int J Cancer 1996; 69: 398–402.PubMedCrossRefGoogle Scholar
  263. 264.
    Mehta RR, McDermott JH, Hieken TJ, et al. Plasma c-erbB-2 levels in breast cancer patients: prognostic significance in predicting response to chemotherapy. J Clin Oncol 1998; 16: 2409–2416.PubMedGoogle Scholar
  264. 265.
    Torrisi R, Zanardi S, Pensa F, et al. Epidermal growth factor content of breast cyst fluids from women with breast cancer or proliferative disease of the breast. Breast Cancer Res Treat 1995; 33: 219–224.PubMedCrossRefGoogle Scholar
  265. 266.
    Gann P, Chatterton R, Vogelsong K, et al. Mitogenic growth factors in breast fluid obtained from healthy women: evaluation of biological and extraneous sources of variability. Cancer Epidemiol Bio-markers Prey 1997; 6: 421–428.Google Scholar
  266. 267.
    Fabian CJ, Zalles C, Kamel S, et al. Breast cytology and biomarkers obtained by random fine needle aspiration: use in risk assessment and early chemoprevention trials. J Cell Biochem 1997;28/29(Suppl): 101–110.Google Scholar
  267. 268.
    Baselga J, Tripathy J, Mendelsohn J, et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu overexpressing metastatic breast cancer. J Clin Oncol 1996; 14: 737–744.PubMedGoogle Scholar
  268. 269.
    Schroeder W, Biesterfeld S, Zillessenm S, et al. Epidermal growth factor receptor-immunohistochemical detection and clinical significance for treatment of primary breast cancer. Anticancer Res 1997; 17: 2799–2802.PubMedGoogle Scholar
  269. 270.
    Wikstrand CJ, Hale LP, Batra SK, et al. Monoclonal antibodies against EGFRv III are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 1995; 55: 3140–3148.PubMedGoogle Scholar
  270. 271.
    Viloria Petit AM, Rak J, Hung M-C, et al. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo. Am J Pathol 1997; 151: 1523–1530.Google Scholar
  271. 272.
    Di Massimo AM, Di Loreto M, Pacilli A, et al. Immunoconjugates made of an anti-EGF receptor monoclonal antibody and type 1 ribosome-inactivating proteins from Saponaria ocymoides or Vaccaria pyramidata. Br. J Cancer 1997; 75: 822–828.PubMedCrossRefGoogle Scholar
  272. 273.
    McNeil C. Herceptin raises its sights beyond advanced breast cancer. J Natl Cancer Inst 1998; 90: 882, 883.Google Scholar
  273. 274.
    Hancock MC, Langton BC, Chan T. A monoclonal antibody against the c-erbB-2 protein enhances the cytotoxicity of cis-diamminedichloroplatinum against human breast and ovarian tumor cell lines. Cancer Res 1991; 51: 4575–4580.PubMedGoogle Scholar
  274. 275.
    Lan I, Baselga J, Masui H, and Mendelsohn J. Antitumor effect of anti-epidermal growth factor receptor monoclonal antibodies plus cis-diamminedichloroplatinum on well established A431 cell xenografts. Cancer Res 1993; 53: 4637–4642.Google Scholar
  275. 276.
    Baselga J, Norton L, Masui H, et al. Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J Natl Cancer Inst 1998; 85: 1327–1333.CrossRefGoogle Scholar
  276. 277.
    Baselga J, Norton L, Albanell J, et al. Recombinant humanized anti-HER2 antibody (HerceptinTM) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 1998; 58: 2825–2831.PubMedGoogle Scholar
  277. 278.
    Lofts FJ, Hurst HC, Sternberg MJE, Gullick WJ. Specific short transmembrane sequences can inhibit transformation by the mutant neu growth factor receptor in vitro and in vivo. Oncogene 1993; 8: 2813–2820.PubMedGoogle Scholar
  278. 279.
    Theuer CP, Pastan I. Immunotoxin and recombinant toxins in the treatment of solid carcinomas. Am J Surg 1993; 166: 284–288.PubMedCrossRefGoogle Scholar
  279. 280.
    Jeschke M, Wels W, Dengler W, et al. Targeted inhibition of tumor-cell growth by recombinant heregulin-toxin fusion proteins. Int. J Cancer 1995; 60: 730–739.PubMedCrossRefGoogle Scholar
  280. 281.
    Fiddes RJ, Janes PW, Sanderson GM, et al. Heregulin (HRG)-induced mitogenic signaling and cytotoxic activity of a HRG/PE40 ligand toxin in human breast cancer cells. Cell Growth Differ 1995; 6: 1567–1577.PubMedGoogle Scholar
  281. 282.
    Groner B, Wick B, Jeschke M, et al. Intra-tumoral application of a heregulin-exotoxin-a fusion protein causes rapid tumor regression without adverse systemic or local effects. Int J Cancer 1997; 70: 682–687.PubMedCrossRefGoogle Scholar
  282. 283.
    Fominaya J, Uherek C, Wels W. A chimeric fusion protein containing transforming growth factor-alpha mediates gene transfer via binding to the EGF receptor. Gene Ther 1998; 5: 521–530.PubMedCrossRefGoogle Scholar
  283. 284.
    Yang D, Kuan C-T, Payne J. Recombinant heregulin-pseudomonas exotoxin fusion proteins: interactions with the heregulin receptors and antitumor activity in vivo. Clin Cancer Res 1998; 4: 993–1004.PubMedGoogle Scholar
  284. 285.
    Osherov N, Gazit A, Gilon C, Levitzki A. Selective inhibition of the epidermal growth factor and HER2/neu receptors by tyrphostins. J Biol Chem 1993;268:11, 134–11, 142.Google Scholar
  285. 286.
    Fry DW, Nelson JM, Slintak V, et al. Biochemical and antiproliferative properties of 4- [ar(alk)ylamino] pyridopyrimidines, a new chemical class of potent and specific epidermal growth factor receptor tyrosine kinase inhibitor. Biochem Pharmacol 1997; 54: 877–887.PubMedCrossRefGoogle Scholar
  286. 287.
    Kelloff GJ, Fay JR, Steele VE, et al. Epidermal growth factor receptor tyrosine kinase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomarkers Prey 1996; 5: 657–666.Google Scholar
  287. 288.
    Bos M, Mendelsohn J, Kim Y-M, et al. PD153035, a tyrosine kinase inhibitor, prevents epidermal growth factor receptor activation and inhibits growth of cancer cells in a receptor number-dependent manner. Clin Cancer Res 1997; 3: 2099–2106.PubMedGoogle Scholar
  288. 289.
    Lydon NB, Mett H, Mueller M, et al. A potent protein-tyrosine kinase inhibitor which selectively blocks proliferation of epidermal growth factor receptor-expressing tumor cells in vitro and in vivo. Int J Cancer 1998; 76: 154–163.PubMedCrossRefGoogle Scholar
  289. 290.
    Sizeland AM, Burgess AW. Anti-sense transforming growth factor a oligonucleotides inhibit autocrine stimulated proliferation of a colon carcinoma cell line. Mol Biol Cell 1992; 3: 1235–1243.PubMedGoogle Scholar
  290. 291.
    Moroni MC, Willingham MC, Beguinot L. EGF-R antisense RNA blocks expression of the epidermal growth factor receptor and suppresses the transforming phenotype of a human carcinoma cell line. J Biol Chem 1992; 267: 2714–2722.PubMedGoogle Scholar
  291. 292.
    Trojan J, Blossey BK, Johnson TR, et al. Loss of tumorigenicity of rat glioblastoma directed by episome-based antisense cDNA transcription of insulin-like growth factor I. Proc Natl Acad Sci USA 1992; 89: 4874–4878.PubMedCrossRefGoogle Scholar
  292. 293.
    Shaw Y-T, Chang S-H, Chiou S-T, Chang W-C, Lai M-D. Partial reversion of transformed phenotype of B104 cancer cells by antisense nucleic acids. Cancer Lett 1993; 69: 27–32.PubMedCrossRefGoogle Scholar
  293. 294.
    Rubenstein M, Mirochnik Y, Ray V, et al. Lack of toxicity associated with the systemic administration of antisense oligonucleotides for treatment of rats bearing LNCaP prostate tumors. Med Oncol 1997; 14: 131–136.PubMedCrossRefGoogle Scholar
  294. 295.
    Dixit M, Yang J-L, Poirier MC, et al. Abrogation of cisplatin-induced programmed cell death in human breast cancer cells by epidermal growth factor antisense RNA. J Natl Cancer Inst 1997; 89: 365–373.PubMedCrossRefGoogle Scholar
  295. 296.
    Sacco MG, Barbieri O, Piccini D, et al. In vitro and in vivo antisense-mediated growth inhibition of a mammary adenocarcinoma from MMTV-neu transgenic mice. Gene Ther 1998; 5: 388–393.PubMedCrossRefGoogle Scholar
  296. 297.
    Yamazaki H, Kijima H, Ohnishi Y, et al. Inhibition of tumor growth by ribozyme-mediated suppression of aberrant epidermal growth factor receptor gene expression. J Natl Cancer Inst 1998; 90: 581–587.PubMedCrossRefGoogle Scholar
  297. 298.
    Asano T, Kleinerman ES. Liposome-encapsulated MTP-PE: a novel biologic agent for cancer therapy. J Immunother 1993; 14: 286–292.CrossRefGoogle Scholar
  298. 299.
    Moscatello DK, Ramirez G, Wong AJ. A naturally occurring mutant human epidermal growth factor receptor as a target for peptide vaccine immunotherapy of tumors. Cancer Res 1997; 57: 1419–1424.PubMedGoogle Scholar
  299. 300.
    Travis J. Novel anticancer agents move closer to reality. Science 1993; 260: 1877, 1878.Google Scholar
  300. 301.
    Kohl NE, Mosser SD, deSolms SJ, et al. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science 1993; 260: 1934–1936.PubMedCrossRefGoogle Scholar
  301. 302.
    James GL, Goldstein JL, Brown MS, et al. Benzodiazepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells. Science 1993; 260: 1937–1942.PubMedCrossRefGoogle Scholar
  302. 303.
    Kelloff GJ, Lubet RA, Fay JR, et al. Farnesyl protein transferase inhibitors as potential cancer chemopreventives. Cancer Epidermiol Biomarkers Prey 1997; 6: 267–282.Google Scholar
  303. 304.
    Gibbs JB, Oliff A. The potential of farnesyltransferase inhibitors as cancer chemotherapeutics. Ann Rev Pharmacol Toxicol 1997; 37: 143–166.CrossRefGoogle Scholar
  304. 305.
    Mangues R, Corral T, Kohl NE, et al. Antitumor effect of a farnesyl protein transferase inhibitor in mammary and lymphoid tumors overexpressing N-ras in transgenic mice. Cancer Res 1998; 58: 1253–1259.PubMedGoogle Scholar
  305. 306.
    Li N, Batzer A, Daly R, et al. Guanine-nucleotide-releasing factor hSosl binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature 1993; 363: 15–16.CrossRefGoogle Scholar
  306. 307.
    Cannistra SA, Niloff JM. Cancer of the uterine cervix. N Engl J Med 1996; 334: 1030–1038.PubMedCrossRefGoogle Scholar
  307. 308.
    Mosny DS, Herholtz J, Degan W, Bender HG. Immunhistochemical investigations of steroid receptors in normal and neoplastic squamous epithelium of the uterine cervix. Gynecol Oncol 1989; 35: 373–377.PubMedCrossRefGoogle Scholar
  308. 309.
    Ciocca DR, Roig LM. Estrogen receptors in human nontarget tissues: biological and clinical implications. Endocr Rev 1995; 16: 35–62.PubMedGoogle Scholar
  309. 310.
    Soutter WP, Pegoraro RJ, Green-Thompson RW, Naidoo DV, Joubert SM, Philpott RM. Nuclear and cytoplasmatic oestrogen receptors in squamous carcinoma of the cervix. Br J Cancer 1981; 44: 154–159.PubMedCrossRefGoogle Scholar
  310. 311.
    Martin JD, Hahnel R, McCartney AJ, Woodings T. Prognostic value of estrogen receptors in cancer of the uterine cervix. New Engl J Med 1982; 306: 485.PubMedGoogle Scholar
  311. 312.
    Martin JD, Hahnel R, McCartney AJ, DeKlerk N. The influence of estrogen and progesterone receptors on survival in patients with carcinoma of the uterine cervix. Gynecol Oncol 1986; 23: 329–335.PubMedCrossRefGoogle Scholar
  312. 313.
    Darne J, Soutter WP, Ginsberg R, Sharp F. Nuclear and “cytoplasmatic” estrogen and progsterone receptors in squamous cell carcinoma of the cervix. Gynecol Oncol 1990; 38: 216–219.PubMedCrossRefGoogle Scholar
  313. 314.
    Hunter RE, Longcope C, Keough P. Steroid hormone receptors in carcinoma of the cervix. Cancer 1987; 60: 392–396.PubMedCrossRefGoogle Scholar
  314. 315.
    Harding M, McIntosh J, Paul J, Symonds RP, Reed N, Habeshaw T, Stewart M, Leake RE. Oestrogen and progesterone receptors in carcinoma of the cervix. Clin Oncol 1990; 2: 313–317.CrossRefGoogle Scholar
  315. 316.
    Syrjala P, Kontula K, Janne O, Kuppila A, Vihko R. Steroid receptors in normal and neoplastic human uterine tissue. In: Brush MG, King RJB, Taylor R, eds. Endometrial Cancer. Bailliere Tindall, London, 1978, pp. 242–260.Google Scholar
  316. 317.
    Leake R. Cervical cancer: hormones growth factors and cytokines. In: Langdon SP, Miller WR, Berchuck A, eds. Biology of Female Cancer. CRC, Boca Raton, FL, 1997, pp. 245–250.Google Scholar
  317. 318.
    Gao YL, Twiggs LB, Leung BS, Yu WCY, Potish RA, Okagaki T, Adcock LL, Prem KA. Cytoplasmatic estrogen and progesterone receptors in primary cercival carcinoma: clinical and histopathologic correlates. Am J Obstet Gynecol 1983; 146: 299–306.PubMedGoogle Scholar
  318. 319.
    Ghandour FA, Attanoos R, Nahar K, Gee JW, Brigrigg A, Ismail SM. Immunocytochemical localization of oestrogen and progesterone receptors in primary adenocarcinoma of the cervix. Histopathology 1994; 24: 49–55.PubMedCrossRefGoogle Scholar
  319. 320.
    Bhattacharya D, Redkar A, Mittra I, Sutaria U, MacRae KD. Oestrogen increases S-phase fraction and oestrogen and progesterone receptors in human cervical cancer in vitro. Br J Cancer 1997; 75: 554–558.PubMedCrossRefGoogle Scholar
  320. 321.
    Twiggs LB, Potish RA, Leung BS, Carson LF, Adcock LL, Savage JE, Prem JE. Cytosolic estrogen and progesterone receptors as prognostic parameters in stage IB cervical carcinoma. Gynecol Oncol 1987; 28: 156–160.PubMedCrossRefGoogle Scholar
  321. 322.
    Fujimoto J, Fujita H, Hosoda S, Okada H, Tamaya T. Prognosis of cervical cancers with reference to steroid receptors. Nippon Gan Chiryo Gakkai Shi 1989; 24: 21–31.PubMedGoogle Scholar
  322. 323.
    Bates SE, Davidson NE, Valverius EM, Freter CE, Dickson RB, Tam JP, et al. Expression of transforming growth factor alpha and its messenger ribonucleic acid in human breast cancer: its regulation by estrogen and its possible functional significance. Mol Endocrinol 1988; 2: 543–555.PubMedCrossRefGoogle Scholar
  323. 324.
    Salomon DS, Kidwell WR, Kim N, Ciardiello F, Bates SE, Valverius E, et al. Modulation by estrogen and growth factors of transforming growth factor-alpha and epidermal growth factor receptor expression in normal and malignant human mammary epithelial cells. Recent Res Cancer Res 1989; 113: 57–69.CrossRefGoogle Scholar
  324. 325.
    Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995; 19: 83–232.CrossRefGoogle Scholar
  325. 326.
    Martinez-Lacaci I, Saceda M, Plowman GD, Johnson GR, Normanno N, Salomon DS, Dickson RB. Estrogen and phorbol esters regulate amphiregulin expression by two separate mechanisms in human breast cancer cell lines. Endocrinology 1995; 136: 3983–3992.PubMedCrossRefGoogle Scholar
  326. 327.
    Rorke EA. Antisense human papillomavirus (HPV) E6/E7 expression, reduced stability of epidermal growth factor, and diminished growth of HPV-positive tumor cells. J Natl Cancer Inst 1997; 89: 1243–1246.PubMedCrossRefGoogle Scholar
  327. 328.
    Arends MJ, Buckley CH, Wells M. Aetiology, pathogenesis, and pathology of cervical neoplasia. J Clin Pathol 1998; 51: 96–103.PubMedCrossRefGoogle Scholar
  328. 329.
    Stöppler H, Conrad Stöppler M, Schlegel R. Transforming proteins of the papilloma viruses. Inter-virology 1994; 37: 168–179.Google Scholar
  329. 330.
    Kubbutat MHG, Vousden KH. Role of E6 and E7 oncoproteins in HPV-induced anogenital malignancies. Semin Virol 1996; 7: 295–304.CrossRefGoogle Scholar
  330. 331.
    Galloway DA, McDougall JK. The disruption of cell cycle checkpoints by papillomavirus oncoproteins contributes to anogenital neoplasia. Semin Cancer Biol 1996; 7: 309–315.PubMedCrossRefGoogle Scholar
  331. 332.
    Jones DL, Munger K. Interactions of the human papillomavirus E7 protein with cell cycle regulators. Semin Cancer Biol 1996; 7: 327–337.PubMedCrossRefGoogle Scholar
  332. 333.
    Huibregtse JM, Beaudenon SL. Mechanism of HPV E6 proteins in cellular transformation. Semin Cancer Biol 1996; 7: 317–326.PubMedCrossRefGoogle Scholar
  333. 334.
    Leechanachai P, Banks L, Moreau F, Matlashewski G. The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 1992; 7: 19–25.PubMedGoogle Scholar
  334. 335.
    Straight SW, Hinkle PM, Jewers RJ, McCance DJ. The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol 1993; 67: 4521–4532.PubMedGoogle Scholar
  335. 336.
    Maruo T, Yamasaki M, Ladines-Llave CA, Mochizuki M. Immunohistochemical demonstration of elevated expression of epidermal growth factor receptor in the neoplastic changes of cervical squamous epithelium. Cancer 1992; 69: 1182–1187.PubMedCrossRefGoogle Scholar
  336. 337.
    Berchuck A, Rodriguez G, Kamel A, Soper JT, Clark-Pearson DL, Bast RC. Expression of epidermal growth factor receptor and ErbB-2 in normal and neoplastic cervix, vulva and vagina. Obstet Gynecol 1990; 76: 381–387.PubMedGoogle Scholar
  337. 338.
    Berchuck A, Rodriguez G, Kinney RB, Soper JT, Dodge RK, Clarke-Pearson DL, Bast RC Jr. Over-expression of HER-2/neu in endometrial cancer is associated with advanced stage disease. Am J Obstet Gynecol 1991; 164: 15–21.PubMedGoogle Scholar
  338. 339.
    Gullick WJ, Marsden JJ, Whittle N, Ward B, Bobrow L, Waterfield M. Expression of epidermal growth factor receptors on human cervical, ovarian and vulvar carcinomas. Cancer Res 1986; 46: 285–292.PubMedGoogle Scholar
  339. 340.
    Tervahauta A, Syrjanen S, Syrjanen K. Epidermal growth factor receptor, c-berbB-2 proto-oncogene and estrogen receptor expression in human pillomavirus lesions of the uterine cervix. Int J Gynecol Pathol 1994; 13: 234–240.PubMedCrossRefGoogle Scholar
  340. 341.
    Doeberitz M, Gissmann L, Zur Hausen H. Growth-regulating functions of human papillomavirus early gene products in cervical cancer cells acting dominant over enhanced epidermal growth factor receptor expression. Cancer Res 1990; 50: 3730–3736.Google Scholar
  341. 342.
    Woodworth CD, McMullin E, Iglesias M, Plowman GD. Interleukin la and tumor necrosis factor a stimulate autocrine amphiregulin expression and proliferation of human papillomavirus-immortalized and carcinoma-derived cervical epithelial cells. Proc Natl Acad Sci USA 1995; 92: 2840–2844.PubMedCrossRefGoogle Scholar
  342. 343.
    Hu G, Liu W, Mendelsohn J, Ellis LM, Radinsky R, Andreeff M, Deisseroth AB. Expression of epidermal growth factor receptor and human papillomavirus E6/E7 proteins in cervical carcinoma cells. J Natl Cancer Inst 1997; 89: 1271–1276.PubMedCrossRefGoogle Scholar
  343. 344.
    Von Knebel-Doeberitz M, Rittmuller C, zur Hausen H, Durst M. Inhibition of tumorigenicity of cervical cancer cells in nude mice by HPV E6/E7 antisense RNA. Int J Cancer 1992;51:51, 831–51, 834.Google Scholar
  344. 345.
    Hamada K, Sakaue M, Alemany R, Zhang WW, Horio Y, Roth JA, et al. Adenovirus-mediated transfer of HPV 16 E6/E7 antisense RNA to human cervical cancer cells. Gynecol Oncol 1996; 63: 219–227.PubMedCrossRefGoogle Scholar
  345. 346.
    Rusch V, Mendelsohn J, Dmitrovsky E. The epidermal growth factor receptor and its ligands as therapeutic targets in human tumors. Cytokine Growth Factor Rev 1996; 7: 133–141.PubMedCrossRefGoogle Scholar
  346. 347.
    Brunton VG, Carlin S, Workman P. Alterations in EGF-dependent proliferative and phosphorylation events in squamous cell carcinoma cell lines by a tyrosine kinase inhibitor. Anticancer Drug Des 1994; 9: 311–329.PubMedGoogle Scholar
  347. 348.
    Peto M, Tolle-Ersu I, Krysch HG, Klock G. Epidermal growth factor induction of human papillomavirus type 16 E6/E7 mRNA in tumor cells involves two AP-1 binding sites in the viral enhancer. J Gen Virol 1995; 76: 1945–1958.PubMedCrossRefGoogle Scholar
  348. 349.
    Pfeiffer D, Spranger J, Al-Deiri M, Kimmig R, Fisseler-Eckhoff A, Scheidel P, Schatz H, Jensen A, Pfeiffer A. mRNA expression of ligands of the epidermal-growth-factor-receptor in the uterus. Int J Cancer 1997; 72: 581–586.PubMedCrossRefGoogle Scholar
  349. 350.
    Konishi I, Ishikawa Y, Wang S-Y, Wang D-P, Koshiyama M, Mandai M, Komatsu T, Yamamoto S, Mori T. Expression of transforming growth factor-a in the normal cervix and in benign and malignant lesions of the uterine cervix. Br. J Obstet Gynaecol 1994; 101: 325–329.PubMedCrossRefGoogle Scholar
  350. 351.
    Hembree JR, Agarwal C, Eckert RL. Epidermal growth factor suppresses insulin-like growth factor binding protein 3 level in human papillomavirus type 16-immortalized cervical epithelial cells and thereby potentiates the effects of insulin-like growth factor-1. Cancer Res 1994; 54: 3160–3166.PubMedGoogle Scholar
  351. 352.
    Ueda M, Ueki M, Yamada T, Okamoto Y, Maeda T, Sugimoto O, OtsukiY. Scatchard analysis of EGF receptor and effects of EGF on growth and TA-4 production of newly established uterine cervical cancer cell line (OMC-1). Hum Cell 1989; 2: 401–410.PubMedGoogle Scholar
  352. 353.
    Steller MA, Delgado CH, Zou Z. Insulin-like growth factor II mediates epidermal growth factor-induced mitogenesis in cervical cancer cells. Proc Natl Acad Sci USA 1995;92:11, 970–11, 974.Google Scholar
  353. 354.
    Steller MA, Delgado CH, Bartels CJ, Woodworth CD, Zou Z. Overexpression of the insuline-like growth factor-1 receptor and autocrine stimulation in human cervical cancer cells. Cancer Res 1996; 56: 1761–1765.PubMedGoogle Scholar
  354. 355.
    Tonkin KS, Berger M, Ormerod M. Epidermal growth factor status in four carcinoma of the cervix cell lines. Int J Gynecol Cancer 1991; 1: 185–192.CrossRefGoogle Scholar
  355. 356.
    Donato NJ, Gallick GE, Steck PA, Rosenblum MG. Tumor necrosis factor modulates epidermal growth factor receptor phosphorylation and kinase activity in human tumor cells. Correlation with cytotoxicity. J Biol Chem 1989;264:20, 474–20, 481.Google Scholar
  356. 357.
    Nishikawa K, Rosenblum MG, Newman RA, Pandita TK, Hittelman WN, Donato NJ. Resistance of human cervical carcinoma cells to tumor necrosis factor correlates with their increased sensitivity to cisplatin: evidence of a role for DNA repair and epidermal growth factor receptor. Cancer Res 1992; 52: 4758–4765.PubMedGoogle Scholar
  357. 358.
    Donato NJ, Yan DH, Hung MC, Rosenblum MG. Epidermal growth factor receptor expression and function control cytotoxic responsiveness to tumor necrosis factor in ME-180 squamous carcinoma cells. Cell Growth Differ 1993; 4: 411–419.PubMedGoogle Scholar
  358. 359.
    Zheng ZS, Goldsmith LA. Modulation of epidermal growth factor receptors by retinoic acid in ME 180. Cancer Res 1990; 50: 1201–1205.PubMedGoogle Scholar
  359. 360.
    Ueda M, Ueki M, Terai Y, Morimoto A, Fujii H, Yoshizawa K, Yanagihara T. Stimulatory effects of EGF and TGF-a on invasive activity and 5-deoxy-5-fluorouridine sensitivity in uterine cervical-carcinoma SKG-IIIB cells. Int J Cancer 1997; 72: 1027–1033.PubMedCrossRefGoogle Scholar
  360. 361.
    Ueda M, Ueki M, Sugimoto O. Characterization of epidermal growth factor (EGF) receptor and biological effect of EGF on human uterine cervical adenocarcinoma cell line OMC-4. Hum Cell 1993; 6: 218–225.PubMedGoogle Scholar
  361. 362.
    Ozanne B, Richards CS, Hendler F, Burns D, Gusterson B. Overexpression of the EGF receptor is a hall mark of squamous cell carcinomas. J Pathol 1986; 149: 9–14.PubMedCrossRefGoogle Scholar
  362. 363.
    Pfeiffer D, Stellwag B, Pfeiffer A, Borlinghaus P, Meier W, Scheidel P. Clinical implications of the epidermal growth factor receptor in the squamous cell carcinoma of the uterine cervix. Gynecol Oncol 1989; 33: 146–150.PubMedCrossRefGoogle Scholar
  363. 364.
    Kimmig R, Pfeiffer D, Landsmann H, Hepp H. Quantitative determination of the epidermal growth factor receptor in cervical cancer and normal cervical epithelium by 2-color flow cytometry: evidence for downregulation in cervical cancer. Int J Cancer 1997; 74: 365–373.PubMedCrossRefGoogle Scholar
  364. 365.
    Stellwag B, Scheidel P, Pfeiffer D, Hepp H. EGF receptor and EGF-like activity as prognostic factors in cervix cancer. Geburtsh Frauenheilkd 1993; 53: 177–181.CrossRefGoogle Scholar
  365. 366.
    Pfeiffer D, Kimmig R, Herrmann J, Ruge M, Fisseler-Eckhoff A, Scheidel P, et al. Epidermal growth factor receptor correlates negatively with cell density in cervical squamous epithelium and is down-regulated in cancers of the uterus. Int J Cancer 1998; 79: 49–55.PubMedCrossRefGoogle Scholar
  366. 367.
    Hale RJ, Buckley CH, Fox H, Williams J. Prognostic value of c-erbB-2 expression in uterine cervical carcinoma. J Clin Pathol 1992; 45: 594–596.PubMedCrossRefGoogle Scholar
  367. 368.
    Hale RJ, Buckley CH, Gullick WJ, Fox H, Williams J, Wilcox FL. Prognostic value of epidermal growth factor expression in cervical carcinoma. J Clin Pathol 1993; 46: 149–153.PubMedCrossRefGoogle Scholar
  368. 369.
    Hayashi Y, Hachisuga T, Iwasaka T, Fukada K, Okuma Y, Yokoyama M, Sugimori H. Expression of ras oncogene product and EGF receptor in cervical lymph node involvement. Gynecol Oncol 1991; 40: 147–151.PubMedCrossRefGoogle Scholar
  369. 370.
    Pateisky N, Schatten C, Vavra N, Ehrebock P, Angelberger P, Barrada M, Epenetos A. Lymphoscintigraphy using epidermal growth factor as tumour-seeking agent in uterine cervical cancer. Wien Klin Wochenschr 1991; 103: 654–656.PubMedGoogle Scholar
  370. 371.
    Goeppinger A, Wittmaack FM, Wintzer HO, Ikenberg H, Bauknecht T. Localization of human epidermal growth factor receptor in cervical intraepithelial neoplasias. J Cancer Res Clin Oncol 1989; 115: 259–263.CrossRefGoogle Scholar
  371. 372.
    Kim JW, Kim YT, Kim DK, Song CH, Lee JW. Expression of epidermal growth factor receptor in carcinoma of the cervix. Gynecol Oncol 1996; 60: 283–287.PubMedCrossRefGoogle Scholar
  372. 373.
    Costa MJ, Walls J, Trelford JD. c-erbB-2 oncoprotein overexpression in uterine cervix carcinoma with glandular differentiation. A frequent event but not an independent prognostic marker because it occurs late in the disease. Am J Clin Pathol 1995; 104: 634–642.PubMedGoogle Scholar
  373. 374.
    Langlois NE, Skinner L, Miller ID. C-erbB-2 in cervical carcinoma. Am J Clin Pathol 1996; 106: 556, 557.Google Scholar
  374. 375.
    Mitra AB, Murty VV, Pratap M, Sodhani P, Chaganti RS. ErbB2 (HER2/neu) oncogene is frequently amplified in squamous cell carcinoma of the uterine cervix. Cancer Res 1994; 54: 637–639.PubMedGoogle Scholar
  375. 376.
    Kihana T, Tsuda H, Teshima S, Nomoto K, Tsugane S, Sonoda T, Matsuura S, Hirohashi S. Prognostic significance of the overexpression of c-erbB-2 protein in adenocarcinoma of uterine cervix. Cancer 1994; 73: 148–153.PubMedCrossRefGoogle Scholar
  376. 377.
    Brumm C, Riviere A, Wilckens C, Loning T. Immunohistochemical investigation and northern blot analysis of c-erbB-2 expression in normal, premalignant and malignant tissues of the corpus and cervix uteri. Virchows Arch A Pathol Anat Histopathol 1990; 417: 477–484.PubMedCrossRefGoogle Scholar
  377. 378.
    Ndubisi B, Sanz S, Lu L, Podczaski E, Benrubi G, Masood S. The prognostic value of HER-2/neu oncogene in cervical cancer. Ann Clin Lab Sci 1997; 27: 396–401.PubMedGoogle Scholar
  378. 379.
    Lakshmi S, Balaraman Nair M, Jayaprakash PG, Rajalekshmy TN, Krishnan Nair M, Radhakrishna Pillai M. c-erbB-2 oncoprotein and epidermal growth factor receptor in cervical lesions. Pathobiology 1997; 65: 163–168.PubMedCrossRefGoogle Scholar
  379. 380.
    Altavilla G, Castellan L, Wabersich J, Marchetti M, Onnis A. Prognostic significance of epidermal growth factor receptor (EGFR) and c-erbB-2 protein, overexpression in adenocarcinoma of the uterine cervix. Eur J Gynaecol Oncol 1996; XVII: 267–270.Google Scholar
  380. 381.
    Kristensen GB, Holm R, Abeler VM, Trope CG. Evaluation of the prognostic significance of cathepsin D epidermal growth factor receptor, and c-erbB-2 in early cervical squamous cell carcinoma. Cancer 1996; 78: 433–440.PubMedCrossRefGoogle Scholar
  381. 382.
    Nakano T, Oka K, Ishikawa A, Morita S. Correlation of cervical carcinoma c-erbB-2 oncogene with cell proliferation parameters in patients treated with radiation therapy for cervical carcinoma. Cancer 1997; 79: 513–520.PubMedCrossRefGoogle Scholar
  382. 383.
    DiSaia PJ, Creasman WT. Clinical Gynecologic Oncology. Mosby, St. Louis, 1997.Google Scholar
  383. 384.
    Nelson KG, Takahashi T, Bossert NL, Walmer DK, McLachlan JA. Epidermal growth factor replaces estrogen in the stimulation of female genital tract growth and differentiation. Proc Natl Acad Sci USA 1991; 88: 21–25.PubMedCrossRefGoogle Scholar
  384. 385.
    Horowitz GM, Scott RT, Drews MR, Mavot D, Hofmann GE. Immunohistochemical localization of transforming growth factor a in human endometrium, decidua, and trophoblast. J Clin Endocrinol Metab 1993; 76: 786–792.PubMedCrossRefGoogle Scholar
  385. 386.
    Konopka B, Sasko E, Kluska A, Goluda M, Janiec-Jankowska A, Paszko Z, Ujec M. Changes in the concentrations of receptors of insuline-like growth factor-1, epithelial growth factor, oestrogens and progestagens in adenomyosis foci, endometrium and myometrium of women during menstrual cycle. Eur J Gynaecol Oncol 1998; 19: 93–97.PubMedGoogle Scholar
  386. 387.
    Horn YK, Young P, Wiesen JF, Miettinen PJ, Derynck R, Werb Z, Cunha GR. Uterine and vaginal organ growth requires epidermal growth factor receptor signaling from stroma. Endocrinology 1998; 139: 913–921.CrossRefGoogle Scholar
  387. 388.
    Miturski R, Semczuk A, Jakowicki JA. C-erbB-2 expression in human proliferative and hyperplastic endometrium. Int J Gynecol Obstet 1998; 61: 73, 74.Google Scholar
  388. 389.
    Rasty G, Murray R, Lu L, Kubilis P, Benrubi G, Masood S. Expression of HER-2/neu oncogene in normal, hyperplastic and malignant endometrium. Ann Clin Lab Science 1998; 28: 138–143.Google Scholar
  389. 390.
    Pearl ML, Talavera F, Gretz HF, Roberts JA, Menon KM. Mitogenic activity of growth factors in the human endometrial adenocarcinoma cell lines HEC-1-A and KLE. Gynecol Oncol 1993; 49: 325–332.PubMedCrossRefGoogle Scholar
  390. 391.
    Lelle RJ, Talavera F, Gretz H, Roberts JA, Menon KM. Epidermal growth factor receptor expression in three different human endometrial cancer cell lines. Cancer 1993; 72: 519–525.PubMedCrossRefGoogle Scholar
  391. 392.
    Watson H, Franks S, Bonney RC. The epidermal growth factor receptor in the human endometrial adenocarcinoma cell line HEC-1-B. J Steroid Biochem Mol Biol 1994; 51: 41–45.PubMedCrossRefGoogle Scholar
  392. 393.
    Connor P, Talavera F, Kang JS, Burke J, Roberts J, Menon KM. Epidermal growth factor activates protein kinase C in the human endometrial cancer cell line HEC-1A. Gynecol Oncol 1997; 67: 46–50.PubMedCrossRefGoogle Scholar
  393. 394.
    Gretz HF, Talavera F, Connor P, Pearl M, Lelle RJ, Roberts JA, Menon KM. Protein kinase C-dependent and -independent pathways mediate epidermal growth factor (EGF) effects in human endometrial adenocarcinoma cell line KLE. Gynecol Oncol 1994; 53: 228–233.PubMedCrossRefGoogle Scholar
  394. 395.
    Krasilnikov MA, Shatskaya VA, Kuzmina ZV, Barinov VV, Letyagin VP, Bassalyk LS. Regulation of phospholipid turnover by steroid hormones in endometrial carcinoma and breast cancer cells. Acta Endocrinol 1993; 128: 543–548.Google Scholar
  395. 396.
    Gershtein ES, Shatskaya VA, Kostyleva OI, Ermilova VD, Kushlinsky NE, Krasilnikov MA. Comparative analysis of the sensitivity of endometrial cancer cells to epidermal growth factor and steroid hormones. Cancer 1995; 76: 2524–2529.PubMedCrossRefGoogle Scholar
  396. 397.
    Ueda M, Fujii H, Yoshizawa K, Abe F, Ueki M. Effects of sex steroids and growth factors on migration and invasion of endometrial adenocarcinoma SNG-M cells in vitro. Jpn J Cancer Res 1996; 87: 524–533.PubMedCrossRefGoogle Scholar
  397. 398.
    Somkuti SG, Yuan L, Fritz MA, Lessey BA. Epidermal growth factor and sex steroids dynamically regulate a marker of endometrial receptivity in Ishikawa cells. J Clin Endocrinol Metab 1997; 82: 2192–2197.PubMedCrossRefGoogle Scholar
  398. 399.
    Burke JJ, Talavera F, Menon KM. Regulation of PTP 1 D mRNA by peptide growth factors in the human endometrial cell line HEC-1-A. J Soc Gynecol Investig 1997; 4: 310–315.PubMedCrossRefGoogle Scholar
  399. 400.
    Bolufer P, Lluch A, Molina R, Alberola V, Vazquez C, Padilla J, et al. Epidermal growth factor in human breast cancer, endometrial carcinoma and lung cancer. Its rela-tionship to epidermal growth factor receptor estradiol receptor, and tumor TNM. Clin Chim Acta 1993; 215: 51–61.PubMedCrossRefGoogle Scholar
  400. 401.
    Bauknecht T, Kohler M, Janz I, Pfleiderer A. The occurrence of epidermal growth factor receptors and the characterization of EGF-like factors in human ovarian endometrial, cervical and breast cancer. EGF receptors and factors in gynecological carcinomas. J Cancer Res Clin Oncol 1989; 115: 193–199.PubMedCrossRefGoogle Scholar
  401. 402.
    Adachi K, Kurachi H, Homma H, Adachi H, Imai T, Sakata M, et al. Estrogen induces epidermal growth factor (EGF) receptor and its ligands in human Fallopian tube: involvement of EGF but not transforming growth factor-a in estrogen-induced tubal cell growth in vitro. Endocrinology 1995; 136: 2110–2119.PubMedCrossRefGoogle Scholar
  402. 403.
    Adachi K, Kurachi H, Adachi H, Imai T, Sakata M, Homma H, et al. Menstrual cycle specific expression of epidermal growth factor receptors in human fallopian tube epithelium. J Endocrinol 1995; 147: 553–563.PubMedCrossRefGoogle Scholar
  403. 404.
    Niikura H, Sasano N, Kaga K, Sato S, Yajima A. Expression of epidermal growth factor family proteins and epidermal growth factor receptor in human endometrium. Hum Pathol 1996; 27: 282–289.PubMedCrossRefGoogle Scholar
  404. 405.
    Jasonni VM, Amadori A, Santini D, Ceccarelli C, Naldi S, Flamigni C. Epidermal growth factor receptor (EGF-R) and transforming growth factor alpha (TGFA) expression in different endometrial cancers. Anticancer Res 1995; 15: 1327–1332.PubMedGoogle Scholar
  405. 406.
    Reinartz JJ, George E, Lindgren BR, Niehans GA. Expression of p53, transforming growth factor alpha, epidermal growth factor receptor, and c-erbB-2 in endometrial carcinoma and correlation with survival and known predictors of survival. Hum Pathol 1994; 25: 1075–1083.PubMedCrossRefGoogle Scholar
  406. 407.
    Nyholm HC, Nielsen AL, Ottesen B. Expression of epidermal growth factor receptors in human endometrial carcinomas. Int J Gynecol Pathol 1993; 12: 241–245.PubMedCrossRefGoogle Scholar
  407. 408.
    Jasonni VM, Santini D, Amadori A, Ceccarelli C, Naldi S. Epidermal growth factor receptor expression and endometrial cancer histotypes. Ann NY Acad Sci 1994; 734: 298–305.PubMedCrossRefGoogle Scholar
  408. 409.
    Lamharzi N, Halmos G, Armatis P, Schally AV. Expression of mRNA for luteinizing hormone-releasing hormone receptors and epidermal growth factor receptors in human cancer cell lines. Int J Oncol 1998; 12: 671–675.PubMedGoogle Scholar
  409. 410.
    Emons G, Muller V, Ortmann O, Schultz KD. Effects of LHRH-analogues on mitogenic signal transduction in cancer cells. J Steroid Biochem Mol Biol 1998; 65: 199–206.PubMedCrossRefGoogle Scholar
  410. 411.
    Reynolds RK, Owens CA, Roberts JA. Cultured endometrial cancer cells exhibit autocrine growth factor stimulation that is not observed in cultured normal endometrial cells. Gynecol Oncol 1996; 60: 380–386.PubMedCrossRefGoogle Scholar
  411. 412.
    Haining RE, Cameron IT, van Papendorp C, Davenport AP, Prentice A, Thomas EJ, Smith SK. Epidermal growth factor in human endometrium: proliferative effects in culture and immunocytochemical localization in normal and endometriotic tissues. Hum Reprod 1991; 6: 1200–1205.PubMedGoogle Scholar
  412. 413.
    Fujimoto J, Ichigo S, Hori M, Morishita S, Tamaya T. Estrogen induces c-Ha-ras expression via activation of tyrosine kinase in uterine endometrial fibroblasts and cancer cells. J Steroid Biochem Mol Biol 1995; 55: 25–33.PubMedCrossRefGoogle Scholar
  413. 414.
    Kato K, Ueoka Y, Kato K, Tamura T, Nishida J, Wake N. Oncogenic Ras modulates epidermal growth factor responsiveness in endometrial carcinomas. Eur J Cancer 1998; 34: 737–744.PubMedCrossRefGoogle Scholar
  414. 415.
    Sallot M, Ordener C, Lascombe I, Propper A, Adessi GL, Jouvenot M. Differential EGF action on nuclear proto-oncogenes in human endometrial carcinoma RL95–2 cells. Anticancer Res 1996; 16: 401–406.PubMedGoogle Scholar
  415. 416.
    Anzai Y, Gong Y, Holinka CF, Murphy LJ, Murphy LC, Kuramoto H, Gurpide E. Effects of transforming growth factors and regulation of their mRNA levels in two human endometrial adenocarcinoma cell lines. J Steroid Biochem Mol Biol 1992; 42: 449–455.PubMedCrossRefGoogle Scholar
  416. 417.
    Yokoyama Y, Takahashi Y, Hashimoto M, Morishita S, Tamaya T. Immunhistochemical study of estradiol, epidermal growth factor, transforming growth factor alpha and epidermal growth factor receptor in endometrial neoplasia. Jpn J Clin Oncol 1996; 26: 411–416.PubMedCrossRefGoogle Scholar
  417. 418.
    Murphy LC, Dotzlaw H, Alkhalaf M, Coutts A, Miller T, Wong MS, Gong Y, Murphy LJ. Mechanisms of growth inhibition by antiestrogens and progestins in human breast and endometrial cancer cells. J Steroid Biochem Mol Biol 1992; 43: 117–121.PubMedCrossRefGoogle Scholar
  418. 419.
    Murphy LJ, Gong Y, Murphy LC. Regulation of transforming growth factor gene expression in human endometrial adenocarcinoma cells. J Steroid Biochem Mol Biol 1992; 41: 309–314.PubMedCrossRefGoogle Scholar
  419. 420.
    Ignar-Trowbridge DM, Nelson KG, Bidwell MC, Curtis SW, Washburn TF, McLachlan JA, Korach KS. Coupling of dual signalingpathways: epidermal growth factor action involves the estrogen receptor. Proc Natl Acad Sci USA 1992; 89: 4658–4662.PubMedCrossRefGoogle Scholar
  420. 421.
    Ignar-Trowbridge DM, Pimentel M, Teng CT, Korach KS, McLachlan JA. Cross talk between peptide growth factor and estrogen receptor signaling systems. Environ Health Perspect 1995; 103 (Suppl 7): 35–38.PubMedCrossRefGoogle Scholar
  421. 422.
    Ignar-Trowbridge DM, Pimentel M, Parker MG, McLachlan JA, Korach KS. Peptide growth factor cross-talk with the estrogen receptor requires the A/B domain and occurs independently of protein kinase C or estradiol. Endocrinology 1996; 137: 1735–1744.PubMedCrossRefGoogle Scholar
  422. 423.
    Gong Y, Anzai Y, Murphy LC, Ballejo G, Holinka CF, Gurpide E, Murphy LJ. Transforming growth factor gene expression in human endometrial adenocarcinoma cells: regulation by progestins. Cancer Res 1991; 51: 5476–5481.PubMedGoogle Scholar
  423. 424.
    Xynos FP, Klos DJ, Hamilton PD, Schuette V, Fernandez-Pol JA. Expression of transforming growth factor alpha mRNA in benign and malignant tissues derived from gynecologic patients with various proliferative conditions. Anticancer Res 1992; 12: 1115–1120.PubMedGoogle Scholar
  424. 425.
    Van Dam PA, Lowe G, Watson JV, James M, Chard T, Hudson CN, Shepherd JH. Multiparameter flowcytometric quantitation of epidermal growth factor receptor and c-erbB-2 oncoprotein in normal and neoplastic tissues of the female genital tract. Gynecol Oncol 1991; 42: 256–264.PubMedCrossRefGoogle Scholar
  425. 426.
    Esteller M, Garcia A, Martinez I, Palones JM, Cabero A, Reventos J. Detection of c-erbB-2/neu and fibroblast growth factor-3/INT-2 but not epidermal growth factor gene amplification in endometrial cancer by differential polymerase chain reaction. Cancer 1995; 75: 2139–2146.PubMedCrossRefGoogle Scholar
  426. 427.
    Costa MJ, Walls J. Epidermal growth factor receptor and c-erbB-2 oncoprotein expression in female genital tract carcinosarcomas (malignant mixed mullerian tumors). Clinicopathologic study of 82 cases. Cancer 1995; 77: 533–542.CrossRefGoogle Scholar
  427. 428.
    Hetzel DJ, Wilson TO, Keeney GL, Roche PC, Cha SS, Podratz KC. HER-2/neu expression: a major prognostic factor in endometrial cancer. Gynecol Oncol 1992; 47: 179–185.PubMedCrossRefGoogle Scholar
  428. 429.
    Kohlberger P, Loesch A, Koelbl H, Breitenecker G, Kainz C, Gitsch G. Prognostic value of immunohistochemically detected HER-2/neu oncoprotein in endometrial cancer. Cancer Lett 1996; 98: 151–155.PubMedGoogle Scholar
  429. 430.
    Seki A, Nakamura K, Kodama J, Miyagi Y, Yoshinouchi M, Kudo T. A close correlation between cerbB-2 gene amplification and local progression in endometrial adenocarcinoma. Eur J Gynaecol Oncol 1998; 19: 90–92.PubMedGoogle Scholar
  430. 431.
    Ayhan A, Tuncer ZS, Ruacan S, Ayhan A, Yasui W, Tahara E. Abnormal expression of cripto and p53 protein in endometrial carcinoma and its precursor lesions. Eur J Gynaecol Oncol 1998; 19: 316–318.PubMedGoogle Scholar
  431. 432.
    Berchuck A, Kohler MF, Bast RC. Oncogenes in ovarian cancer. Hematol Oncol Clin North Am 1992; 6: 813–827.PubMedGoogle Scholar
  432. 433.
    Bauknecht T, Janz I, Kohler M, Pfleiderer A. Human ovarian carcinomas: correlation of malignancy and survival with the expression of epidermal growth factor receptors (EGF-R) and EGF-like faktors (EGF-F). Med Oncol Tumor Pharmacother 1989; 6: 121–127.PubMedGoogle Scholar
  433. 434.
    Bauknecht T, Angel P, Kohler M, Kommoss F, Birmelin G, Pfleiderer A, Wagner E. Gene structure and expression analysis of the epidermal growth factor receptor, transforming growth factor-alpha, myc, jun, and metallothionein in human ovarian carcinomas. Classification of malignant phenotypes. Cancer 1993; 71: 419–429.PubMedCrossRefGoogle Scholar
  434. 435.
    Bauknecht T, Birmelin G, Kommoss F. Clinical significance of oncogenes and growth factors in ovarian carcinomas. J Steroid Biochem Mol Biol 1990; 37: 855–862.PubMedCrossRefGoogle Scholar
  435. 436.
    Bauknecht T, Kommoss F, Birmelin G, von Kleist S, Kohler M, Pfleiderer A. Expression analysis of EGF-R and TGF-a in human ovarian carcinomas. Anticancer Res 1991; 11: 1523–1528.PubMedGoogle Scholar
  436. 437.
    Berchuck A, Kamel A, Whitaker R, Kerns B, Olt G, Kinney R, et al. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res 1990; 50: 4087–4091.PubMedGoogle Scholar
  437. 438.
    Berchuck A, Olt GJ, Everitt L, Soisson AP, Bast RC, Boyer CM. Role of peptide growth factors in epithelial ovarian cancer. Obstet Gynecol 1990; 75: 255–262.PubMedGoogle Scholar
  438. 439.
    Westermann AM, Beijnen JH, Moolenaar WH, Rodenhuis S. Growth factors in human ovarian cancer. Cancer Treat Rev 1997; 23: 113–131.PubMedCrossRefGoogle Scholar
  439. 440.
    Niikura H, Sasano H, Sato S, Yajima A. Expression of epidermal growth factor-related proteins and epidermal growth factor receptor in common epithelial ovarian tumors. Int J Gynecol Pathol 1997; 16: 60–68.PubMedCrossRefGoogle Scholar
  440. 441.
    Morishige K, Kurachi H, Amemiya K, Adachi H, Inoue M, Miyake A, Tanizawa O, Sakoyama Y. Involvement of transforming growth factor alpha/epidermal growth factor receptor autocrine growth mechanism in an ovarian cancer cell line in vitro. Cancer Res 1991; 51: 5951–5955.PubMedGoogle Scholar
  441. 442.
    Stromberg K, Johnson GR, O’Connor DM, Sorensen CM, Gullick WJ, Kannan B. Frequent immunohistochemical detection of EGF supergene family members in ovarians carcinogenesis. Int J Gynecol Pathol 1994; 13: 342–347.PubMedCrossRefGoogle Scholar
  442. 443.
    Crew AJ, Langdon SP, Miller EP, Miller WR. Mitogenic effects of epidermal growth factor and transforming growth factor-alpha on EGF-receptor positive human ovarian carcinoma cell lines. Eur J Cancer 1992; 28: 337–341.PubMedCrossRefGoogle Scholar
  443. 444.
    Shoyab M, McDonald VL, Bradley JG, Todaro GJ. Amphiregulin: a bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7. Proc Natl Acad Sci USA 1988; 85: 6528–6532.PubMedCrossRefGoogle Scholar
  444. 445.
    Zhou L, Leung BS. Growth regulation of ovarian cancer cells by epidermal growth factor and transforming growth factors alpha and beta 1. Biochim Biophys Acta 1992; 1180: 130–136.PubMedCrossRefGoogle Scholar
  445. 446.
    Morishige K, Kurachi H, Amemiya K, Fujita Y, Yamamoto T, Miyake A, Tanizawa O. Evidence for the involvement of transforming growth factor alpha and epidermal growth factor receptor autocrine growth mechanism in primary human ovarian cancers in vitro. Cancer Res 1991; 51: 5322–5328.PubMedGoogle Scholar
  446. 447.
    Kurachi H, Morishige K, Amemiya K, Adachi H, Hirota K, Miyake A, Tanizawa O. Importance of transforming growth factor alpha/epidermal growth factor receptor autocrine growth mechanism in an ovarian cancer cell line in vivo. Cancer Res 1991; 51: 5956–5959.PubMedGoogle Scholar
  447. 448.
    Kurachi H, Morishige K, Adachi H, Adachi K, Tasaka K, Sawada M, Miyake A. Implantation and growth of epidermal growth factor (EGF) receptor expressing human ovarian xenografts in nude mice is dependent on EGF. Cancer 1994; 74: 2984–2990.PubMedCrossRefGoogle Scholar
  448. 449.
    Gordon AW, Pegues JC, Johnson GR, Kannan B, Auersperg N, Stromberg K. mRNA phenotyping of the major ligands and receptors of the EGF supergene family in human ovarian epithelial cells. Cancer Lett 1995; 89: 63–71.PubMedGoogle Scholar
  449. 450.
    Owens OJ, Stewart C, Leake RE. Growth factors in ovarian cancer. Br J Cancer 1991; 64: 1177–1181.PubMedCrossRefGoogle Scholar
  450. 451.
    Marth C, Lang T, Cronauer MV, Doppler W, Zeimet AG, Bachmair F, Ullrich A, Daxenbichler G. Epidermal growth factor reduces HER-2 protein level in human ovarian carcinoma cells. Int J Cancer 1992; 52: 311–316.PubMedCrossRefGoogle Scholar
  451. 452.
    Kacinski BM, Mayer AG, King BL, Carter D, Chambers SK. NEU protein overexpression in benign, borderline, and malignant ovarian neoplasms. Gynecol Oncol 1992; 44: 245–253.PubMedCrossRefGoogle Scholar
  452. 453.
    Tamura M, Sasano H, Suzuki T, Fukaya T, Funayama Y, Takayama K, Takaya R, Yajima A. Expression of epidermal growth factors and epidermal growth factor receptor in normal cycling human ovaries. Hum Reprod 1995; 10: 1891–1896.PubMedGoogle Scholar
  453. 454.
    Kommoss F, Bauknecht T, Birmelin G, Kohler M, Tesch H, Pfleiderer A. Oncogene and growth factor expression in ovarian cancer. Acta Obstet Gynecol Scand 1992; 155: 19–24.Google Scholar
  454. 455.
    Kommoss F, Wintzer HO, von Kleist S, Kohler M, Walker R, Langdon B, van Tran K, Pfleiderer A. In situ distribution of transforming growth factor alpha in normal tissues and malignant tumours of the ovary. J Pathol 1992; 162: 223–228.CrossRefGoogle Scholar
  455. 456.
    Kohler M, Bauknecht T, Grimm M, Birmelin G, Kommoss F, Wagner E. Epidermal growth factor receptor and transforming growth factor alpha expression in human ovarian carcinomas. Eur J Cancer 1992; 28A: 1432–1437.CrossRefGoogle Scholar
  456. 457.
    Owens OJ, Leake RE. Growth factor content in normal and benign ovarian tumours. Eur J Obstet Gynecol Reprod Biol 1992; 47: 223–228.PubMedCrossRefGoogle Scholar
  457. 458.
    Bartlett JM, Langdon SP, Simpson BJ, Stewart M, Katsaros D, Sismondi P, et al. Prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer. Br J Cancer 1996; 73: 301–306.PubMedCrossRefGoogle Scholar
  458. 459.
    Yeh J, Yeh YC. Transforming growth factor-alpha and human cancer. Biomed Pharmacother 1989; 43: 651–659.PubMedCrossRefGoogle Scholar
  459. 460.
    Ferrandina G, Scambia G, Benedetti-Pancini P, Bonanno G, De Vincenzo R, Rumi C, et al. Effects of dexamethasone on the growth and epidermal growth factor expression of the OVCA 433 ovarian cancer cells. Mol Cell Endocrinol 1992; 83: 183–193.PubMedCrossRefGoogle Scholar
  460. 461.
    Lewis GD, Lofgren JA, McMurtrey AE, Nuijens A, Fendly BM, Bauer KD, Sliwkowski MX. Growth regulation of human breast and ovarian tumor cells by heregulin: evidence for the requirement of ErbB2 as a critical component in mediating heregulin responsiveness. Cancer Res 1996; 56: 1457–1465.PubMedGoogle Scholar
  461. 462.
    Simpson BJ, Langdon SP, Rabiasz GJ, Macleod KG, Hirst GL, Bartlett JM, et al. Estrogen regulation of transforming growth factor-alpha in ovarian cancer. J Steroid Biochem Mol Biol 1998; 64: 137–145.PubMedCrossRefGoogle Scholar
  462. 463.
    Ridderheim M, Stendahl U, Backstrom T. Progesterone and estradiol stimulate release of epidermal growth factor/transforming growth factor alpha by ovarian tumours in vitro. Anticancer Res 1994; 14: 2763–2768.PubMedGoogle Scholar
  463. 464.
    Wimalasena J, Dostal R, Meehan D. Gonadotropins, estradiol, and growth factors regulate epithelial ovarian cancer cell growth. Gynecol Oncol 1992; 46: 345–350.PubMedCrossRefGoogle Scholar
  464. 465.
    Wimalasena J, Meehan D, Dostal R, Foster JS, Cameron M, Smith M. Growth factors interact with estradiol and gonadotropins in the regulation of ovarian cancer cell growth and growth factor receptors. Oncol Res 1993; 5: 325–337.PubMedGoogle Scholar
  465. 466.
    Ridderheim M, Cajander S, Tavelin B, Stendahl U, Bachstrom T. EGF/TGF-alpha and progesterone in urine of ovarian cancer patients. Anticancer Res 1994; 14: 2119–2123.PubMedGoogle Scholar
  466. 467.
    Feldkamper M, Enderle-Schmitt U, Hackenberg R, Schulz KD. Urinary excretion of growth factors in patients with ovarian cancer. Eur J Cancer 1994; 30A: 1851–1858.CrossRefGoogle Scholar
  467. 468.
    Shah NG, Bhatavdekar JM, Doctor SS, Suthar TP, Balar DB, Dave RS. Circulating epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) in patients with epithelial ovarian carcinoma. Neoplasma 1994; 41: 241–243.PubMedGoogle Scholar
  468. 469.
    Kurachi H, Adachi H, Morishige K, Adachi K, Takeda T, Homma H, Yamamoto T, Miyake A. Transforming growth factor-alpha promotes tumor markers secretion from human ovarian cancers in vitro. Cancer 1996; 78: 1049–1054.PubMedCrossRefGoogle Scholar
  469. 470.
    Brader KR, Wolf JK, Chakrabarty S, Price JE. Epidermal growth factor receptor (EGFR) antisense transfection reduces the expression of EGFR and suppresses the malignant phenotype of a human ovarian cancer cell line. Oncol Rep 1998; 5: 1269–1274.PubMedGoogle Scholar
  470. 471.
    Rodriguez GC, Berchuck A, Whitaker RS, Schlossman D, Clarke-Pearson DL, Bast RC. Epidermal growth factor receptor expression in normal ovarian epithelium and ovarian cancer. II. Relationship between receptor expression and response to epidermal growth factor. Am J Obstet Gynecol 1991; 164: 745–750.PubMedGoogle Scholar
  471. 472.
    Ottensmeier C, Swanson L, Strobel T, Druker B, Niloff J, Cannistra SA. Absence of constitutive EGF receptor activation in ovarian cancer cell lines. Br J Cancer 1996; 74: 446–452.PubMedCrossRefGoogle Scholar
  472. 473.
    Lang T, Daxenbichler G, Merth C. Effects of cytostatic agents on the expression of epidermal growth factor receptor in ovarian cancer cells. Anticancer Res 1994; 14: 1871–1874.PubMedGoogle Scholar
  473. 474.
    Christen RD, Horn DK, Porter DC, Andrews PA, MacLeod CL, Hafstrom L, Howell SB. Epidermal growth factor regulates the in vitro sensitivity of human ovarian carcinoma cells to cisplatin. J Clin Invest 1990; 86: 1632–1640.PubMedCrossRefGoogle Scholar
  474. 475.
    Kohler M, Janz I, Wintzer HO, Wagner E, Bauknecht T. The expression of EGF receptors, EGF-like factors and c-myc in ovarian and cervical carcinomas and their potential clinical significance. Anticancer Res 1989; 9: 1537–1547.PubMedGoogle Scholar
  475. 476.
    Berns EM, Klijn JG, Henzen-Logmans SC, Rodenburg CJ, van der Burg ME, Foekens JA. Receptors for hormones and growth factors and (onco)-gene amplification in human ovarian cancer. Int J Cancer 1992; 52: 218–224.PubMedCrossRefGoogle Scholar
  476. 477.
    Henzen-Logmans SC, van der Burg ME, Foekens JA, Berns PM, Brussee R, Fieret JH, et al. Occurrence of epidermal growth factor receptors in benign and malignant ovarian tumors and normal ovarian tissues: an immunohistochemical study. J Cancer Res Clin Oncol 1992; 118: 303–307.PubMedCrossRefGoogle Scholar
  477. 478.
    Scambia G, Benedetti-Panici P, Battaglia F, Ferrandin G, Baiocchi G, Greggi S, De Vincenzo R, Mancuso S. Significance of epidermal growth factor receptor in advanced ovarian cancer. J Clin Oncol 1992; 10: 529–535.PubMedGoogle Scholar
  478. 479.
    Stewart CJ, Owens OJ, Richmond JA, McNicol AM. Expression of epidermal growth factor receptor in normal ovary and in ovarian tumors. Int J Gynecol Pathol 1992; 11: 266–272.PubMedCrossRefGoogle Scholar
  479. 480.
    Van der Burg ME, Henzen-Logmans SC, Foekens JA, Berns EM, Rodenburg CJ, van Putten WL, Klijn JG. The prognostic value of epidermal growth factor receptors, determined by both immunohistochemistry and ligand binding assays, in primary epi thelial ovarian cancer: a pilot study. Eur J Cancer 1993; 29A: 1951–1957.CrossRefGoogle Scholar
  480. 481.
    Simpson BJ, Phillips HA, Lessells AM, Lamgdon SP, Miller WR. C-erbB growth-factor-receptor proteins in ovarian tumours. Int J Cancer 1995; 64: 202–206.PubMedCrossRefGoogle Scholar
  481. 482.
    Minguillon C, Schönborn I, Reles A, Bartel U, Lichtenegger W. EGF-R and PCNA expression in ovarian carcinomas: correlation with classic prognostic factors. Gen Diagn Pathol 1996; 141: 197–201.PubMedGoogle Scholar
  482. 483.
    Janinis J, Nakopoulou L, Panagos G, Davaris P. Immunohistochemical expression of EGF-R in malignant surface epithelial ovarian neoplasms (SEON). Eur J Gynaecol Oncol 1994; 15: 19–23.PubMedGoogle Scholar
  483. 484.
    Meden H, Marx D, Raab T, Kron M, Schauer A, Kuhn W. EGF-R and overexpression of the oncogene c-erbB-2 in ovarian cancer: immunohistochemical findings and prognostic value. J Obstet Gynecol 1995; 21: 167–178.Google Scholar
  484. 485.
    Brandt B, Vogt U, Schlotter CM, Jakisch C, Werkmeister R, Thomas M, et al. Prognostic relevance of abberations in the c-erbB oncogenes from breast, ovarian, oral and lung cancers: double-differential polymerase chain reaction (ddPCR) for clinical diagnosis. Gene 1995; 159: 35–42.PubMedCrossRefGoogle Scholar
  485. 486.
    Scoccia B, Lee YM, Niederberger C, Ilekis JV. Expression of the ErbB family of receptors in ovarian cancer. J Soc Gynecol Invest 1998; 5: 161–165.CrossRefGoogle Scholar
  486. 487.
    Ilekis JV, Connor JP, Prins GS, Ferrer K, Niederberger C, Scoccia B. Expression of epidermal growth factor and androgen receptors in ovarian cancer. Gynecol Oncol 1997; 66: 250–254.PubMedCrossRefGoogle Scholar
  487. 488.
    Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–712.PubMedCrossRefGoogle Scholar
  488. 489.
    Meden H, Kuhn W. Overexpression of the oncogene c-erbB-2 (HER2/neu) in ovarian cancer: a new prognostic factor. Eur J Obstet Gynecol Reprod Biol 1997; 71: 173–179.PubMedCrossRefGoogle Scholar
  489. 490.
    Mileo AM, Fanuele M, Battaglia F, Scambia G, Benedetti-Panici C, Mattei E, Mancuso S, Delpino A. Preliminary evaluation of HER-2/neu oncogene and epidermal growth factor receptor expression in normal and neoplastic human ovaries. Int J Biol Markers 1992; 7: 114–118.PubMedGoogle Scholar
  490. 491.
    Rubin SC, Finstad CL, Wong GY, Almadrones L, Plante M, Lloyd KO. Prognostic significance of HER-2/neu expression in advanced epithelial ovarian cancer: a multivariate analysis. Am J Obstet Gynecol 1993; 168: 162–169.PubMedGoogle Scholar
  491. 492.
    Rubin SC, Finstad CL, Federici MG, Scheiner L, Lloyd KO, Hoskins WJ. Prevalence and significance of HER-2/neu expression in early epithelial ovarian cancer. Cancer 1994; 73: 1456–1459.PubMedCrossRefGoogle Scholar
  492. 493.
    Haldane JS, Hird V, Hughes CM, Gullick WJ. C-erbB-2 oncogene expression in ovarian cancer. J Pathol 1990; 162: 231–237.PubMedCrossRefGoogle Scholar
  493. 494.
    Singleton TP, Perrone T, Oakley G, Niehans GA, Carson L, Cha SS, Strickler JG. Activation of c-erbB2 and prognosis in ovarian carcinoma. Cancer 1994; 73: 1460–1466.PubMedCrossRefGoogle Scholar
  494. 495.
    Felip E, Del Campo JM, Rubio D, Vidal MT, Colomer R, Bermejo B. Overexpression of c-erbB-2 in epithelial ovarian cancer. Cancer 1995; 75: 2147–2152.PubMedCrossRefGoogle Scholar
  495. 496.
    Seidman JD, Frisman DM, Norris HJ. Expression of the HER-2/neu proto-oncogene in serous ovarian neoplasms. Cancer 1992; 70: 2857–2860.PubMedCrossRefGoogle Scholar
  496. 497.
    Harlozinska A, Bar JK, Sobanska E, Goluda M. Epidermal growth factor receptor and c-erbB-2 oncoproteins in tissue and tumor effusion cells of histopathologically different ovarian neoplasms. Tumor Biol 1998; 19: 364–373.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • David S. Salomon
  • Caterina Bianco
  • Marta De Santis
  • Isabel Martinez-Lacaci
  • Christian Wechselberger
  • Andreas D. Ebert

There are no affiliations available

Personalised recommendations