Steroid Receptors in Prostate Cancer Development and Progression

  • Marco Marcelli
  • Nancy L. Weigel
  • Dolores J. Lamb
Part of the Contemporary Endocrinology book series (COE)


The steroid receptor superfamily plays an important role in the development and maintenance of differentiated function in the prostate. Notably, androgens are required for the development of the prostate, the normal function of the prostate in the adult, and may play a role in the development of prostate cancer (PC) and progression of the disease. Nevertheless, other steroid receptors have also been implicated in the development and progression of PC.


Prostate Cancer Androgen Receptor LNCaP Cell Steroid Receptor Human Prostate Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O’Malley BO. Steroid receptor superfamily: more excitement predicted for the future. Mol Endocrinol 1990; 4: 363–369.PubMedCrossRefGoogle Scholar
  2. 2.
    Evans RM. The steroid and thyroid hormone receptor superfamily. Science 1988; 240: 889–895.PubMedCrossRefGoogle Scholar
  3. 3.
    Chang CS, Kokontis J, Liao ST. Molecular cloning of human and rat complementary DNA encoding androgen receptor. Science 1988; 240: 324–326.PubMedCrossRefGoogle Scholar
  4. 4.
    Lubahn DB, Joseph DR, Sar M, et al. Cloning of human androgen receptor complementary DNA and localization of the X chromosome. Science 1988; 240: 327–330.PubMedCrossRefGoogle Scholar
  5. 5.
    Wilding G. The importance of steroid hormones in prostate cancer. Cancer Sury 1992; 14: 113–130.Google Scholar
  6. 6.
    Nomura AM, Kolonel LN. Prostate cancer: a current perspective. Epidemiol Rev 1991; 13: 200–227.PubMedGoogle Scholar
  7. 7.
    Schroeder F. Does testosterone treatment increase the risk or induction of progression of occult cancer of the prostate? In: Bhasin S, Gabelnick H, Spieler J, Swerdloff R, Wang C, eds. Pharmacology, Biology, and Clinical Applications of Androgens. Wiley-Liss, New York, 1996, pp. 137–141.Google Scholar
  8. 8.
    Cunningham G. Overview of androgens on the normal and abnormal prostate. In: Bhasin S, Gabelnick H, Spieler J, Swerdloff R, Wang C, eds. Pharmacology, Biology, and Clinical Applications of Androgens. Wiley-Liss, New York, 1996, pp. 79–93.Google Scholar
  9. 9.
    Geller J. Androgen inhibition and BPH. Bhasin S, Gabelnick H, Spieler J, Swerdloff R, Wang C, eds. Pharmacology, Biology, and Clinical Applications of Androgens. Wiley-Liss, New York, 1996, pp. 103–110.Google Scholar
  10. 10.
    Landis S, Murray T, Bolden S, Wingo P. Cancer statistics 1999. CA Cancer J Clin 1999; 49: 8–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Santen RJ. Endocrine treatment of prostate cancer. J Clin Endocrinol Metab 1992; 75: 685–689.PubMedCrossRefGoogle Scholar
  12. 12.
    Kyprianou N, English H, Isaacs J. Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation. Cancer Res 1990; 50: 3748–3753.PubMedGoogle Scholar
  13. 13.
    Isaacs J, Coffey D. Adaptation vs. selection as the mechanism responsible for the relapse of prostatic cancer to androgen ablation as studied in the Dunning R-3327 H adenocarcinoma. Cancer Res 1981; 41: 5070–5075.PubMedGoogle Scholar
  14. 14.
    Isaacs J, Lundmo P, Berges R, Martikainen P, Kyprianou N, English H. Androgen regulation of programmed cell death of normal and malignant prostatic cells. J Androl 1992; 13: 457–464.PubMedGoogle Scholar
  15. 15.
    Van-der-Kwast T, Tetu B. Androgen receptors in untreated and treated prostatic intraepithelial neoplasia. Eur Urol 1996; 30: 265–268.PubMedGoogle Scholar
  16. 16.
    Sadi MV, Walsh PC, Barrack ER. Immunohistochemical study of androgen receptors in metastatic prostate cancer. Cancer 1991;67:30, 547–30, 557.Google Scholar
  17. 17.
    Tilley WD, Lim-Tio SS, Horsfall DJ. Aspinall JO, Marshall VR, Skinner JM. Detection of discrete androgen receptor epitopes in prostate cancer by immuno-staining: measurement by color video image analysis. Cancer Res 1994; 54: 4096–4102.PubMedGoogle Scholar
  18. 18.
    Hobisch A, Culig Z, Radmayr C, Bartsch G, Klocker H, Hittmair A. Androgen receptor status of lymph node metastases from prostate cancer. Prostate 1996; 28: 129–135.PubMedCrossRefGoogle Scholar
  19. 19.
    Hobisch A, Culig Z, Radmayr C, Bartsch G, Klocker H, Hittmair A. Distant metastases from prostatic carcinoma express androgen receptor protein. Cancer Res 1995; 55: 3068–3072.PubMedGoogle Scholar
  20. 20.
    Van-der-Kwast TH, Schalken J, Ruizeveld-de-Winter JA, Van-Vroonhoven CCJ, Mulder E, Boersma W, Trapman J. Androgen receptors in endocrine-therapy resistant human prostate cancer. Int J Can 1991; 48: 189–193.CrossRefGoogle Scholar
  21. 21.
    Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C, et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995; 9: 401–406.PubMedCrossRefGoogle Scholar
  22. 22.
    Koivisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J, et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 1997; 57: 314–319.PubMedGoogle Scholar
  23. 23.
    Chang CS, Kokontis J, Liao ST. Structural analysis of complementary DNA and amino acid sequences of human and rat androgen receptors. Proc Natl Acad Sci USA 1988; 85: 7211–7215.PubMedCrossRefGoogle Scholar
  24. 24.
    Chang CS, Kokontis J, Liao ST. Molecular cloning of human and rat complementary DNA encoding androgen receptors. Science 1988; 240: 324–326.PubMedCrossRefGoogle Scholar
  25. 25.
    Lubahn DB, Joseph DR, Sullivan PM, Willard HF, French FS, Wilson EM. Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 1988; 240: 327–330.PubMedCrossRefGoogle Scholar
  26. 26.
    Lubahn DB, Joseph DR, Sar M, Tan J, Higgs HN, Larson RE, French FS, Wilson EM. The human androgen receptor: complementary deoxyribonucleic acid cloning, sequence analysis and gene expression in the prostate. Mol Endocrinol 1988; 2: 1265–1275.PubMedCrossRefGoogle Scholar
  27. 27.
    Trapman J, Klaassen P, Kuiper GG, van der Korput JA, Faber PW, van Rooij HC, et al. Cloning, structure and expression of a cDNA encoding the human androgen receptor. Biochem Biophys Res Commun 1988; 153: 241–248.PubMedCrossRefGoogle Scholar
  28. 28.
    Tilley WD, Marcelli M, Wilson JD, McPhaul JM. Characterization and cloning of a cDNA encoding the human androgen receptor. Proc Natl Acad Sci USA 1989; 86: 327–331.PubMedCrossRefGoogle Scholar
  29. 29.
    Tilley W, Buchanan G, Hickey T, Bentel J. Mutations of the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin Cancer Res 1996; 2: 277–285.PubMedGoogle Scholar
  30. 30.
    Taplin ME, Bubley GJ, Shuster T, Frantz M, Spooner A, Ogata G, Keer H, Balk S. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 1995; 332: 1393–1398.PubMedCrossRefGoogle Scholar
  31. 31.
    Gaddipati JP, McLeod DG, Heidenberg HB, Sesterhenn IA, Finger MJ, Moul JW, Srivastava S. Frequent detection of codon 877 mutation in the androgen receptor gene in advanced prostate cancers. Cancer Res 1994; 54: 2861–2864.PubMedGoogle Scholar
  32. 32.
    Newmark JR, Hardy DO, Tonb DC, Carter BS, EpsteinJI, Isaacs WB, Brown TR, Barrack ER. Androgen receptor gene mutations in human prostate cancer. Proc Natl Acad Sci USA 1992; 89: 6319–6323.PubMedCrossRefGoogle Scholar
  33. 33.
    Suzuki H, Sato N, Watabe Y, Masai M, Seino S, Shimazaki J. Androgen receptor gene mutations in human prostate cancer. J Steroid Biochem Mol Biol 1993; 46: 759–765.PubMedCrossRefGoogle Scholar
  34. 34.
    Castagnaro M, Yandell DW, Dockhorn-Dworniczak B, Wolfe HJ, Poremba C. [Androgen receptor gene mutations and p53 gene analysis in advanced prostate cancer]. Verh Dtsch Ges Pathol 1993; 77: 119–123.PubMedGoogle Scholar
  35. 35.
    Shoenberg MP, Hakimi JM, Wang SP, Bova GS, Fischbeck KH, Isaacs WB, Walsh PC, Barrack ER. Microsatellite mutation (Cag(24–18)) in the androgen receptor gene inhuman prostate cancer. Biochem Biophys Res Commun 1994; 198: 74–80.CrossRefGoogle Scholar
  36. 36.
    Ruizeveld-de-Winter JA, Janssen PJA, Sleddens HMEB, Verleun-Moojman MCT, Trapman J, Brinkmann AO, et al. Androgen receptor status in localized and locally progressive hormone refractory human prostate cancer. Am J Pathol 1994; 144: 735–746.PubMedGoogle Scholar
  37. 37.
    Elo JP, Kvist L, Leinonen K, Isomaa V, Henttu P, Lukkarinen O, Vihko P. Mutated human androgen receptor gene detected in a prostatic cancer patient is also activated by estradiol. J Clin Endocrinol Metab 1995; 80: 3494–3500.PubMedCrossRefGoogle Scholar
  38. 38.
    Suzuki H, Akakura K, Komiya A, Aida S, Akimoto S, Shimazaki J. Codon 877 mutation in the androgen receptor gene in advanced prostate cancer: relation to antiandrogen withdrawal syndrome. Prostate 1996; 29: 153–158.PubMedCrossRefGoogle Scholar
  39. 39.
    Evans BA, Harper ME, Daniels CE, Watts CE,Matenhelia S, Green J, Griffiths K. Low incidence of androgen receptor gene mutations in human prostatic tumors using single strand conformation polymorphism analysis. Prostate 1996; 28: 162–171.PubMedCrossRefGoogle Scholar
  40. 40.
    Paz A, Lindner A, Zisman A, Siegel Y. A genetic sequence change in the 3’-noncoding region of the androgen receptor gene in prostate carcinoma. Eur Urol 1997; 31: 209–215.PubMedGoogle Scholar
  41. 41.
    Watanabe M, Ushijima T, Shiraishi T, Yatani R, Shimazaki J, Kotake T, Sugimura T, Nagao M. Genetic alterations of androgen receptor gene in Japanese human prostate cancer. Jpn J Clin Oncol 1997; 27: 389–393.PubMedCrossRefGoogle Scholar
  42. 42.
    Wang C, Uchida T. [Androgen receptor gene mutations in prostate cancer]. Nippon Hinyokika Gakkai Zasshi 1997; 88: 550–556.PubMedGoogle Scholar
  43. 43.
    Culig Z, Hobisch A, Cronauer MV, Cato ACB, Hittmair A, Radmayr C, et al. Mutant androgen receptor detected in an advanced stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol 1993; 7: 1541–1550.PubMedCrossRefGoogle Scholar
  44. 44.
    de Vere White R, Meyers F, Chi SG, Chamberlain S, Siders D, Lee F, Stewart S, Gumerlock PH. Human androgen receptor expression in prostate cancer following androgen ablation. Eur Urol 1997; 31: 1–6.Google Scholar
  45. 45.
    Hakimi J, Ahmed R, Isaacs W, Bova W, Barrack E. Mutational analysis of the androgen receptor gene in hormone refractory metastases of prostate cancer. Eighty-ninth Annual Meeting of the American Association for Cancer Research. New Orleans, 1998, pp. 3754.Google Scholar
  46. 46.
    Taplin ME, Rajeshkumar B, Small E, Bubley G, Ko Y-K, Upton M, Balk S. Selection for androgen receptor mutations specifically in prostate cancers treated with flutamide. In: New Research Approaches in the Prevention and Cure of Prostate Cancer. Indian Wells, CA, 1998, pp. A-33.Google Scholar
  47. 47.
    Shiao YH, Buzard G, Weghorst C, Rice J. DNA template as a source of artifact in the detection of p53 gene mutations using archived tissue. Bio-Techniques 1997; 22: 608–612.Google Scholar
  48. 48.
    Peterziel H, Culig Z, Stober J, Hobisch A, Radmayr C, Bartsch G, Klocker H, Cato AC. Mutant androgen receptors in prostatic tumors distinguish between amino-acid-sequence requirements for transactivation and ligand binding. Int J Cancer 1995; 63: 544–550.PubMedCrossRefGoogle Scholar
  49. 49.
    Tan J, Sharief Y, Hamil KG, Gregory CW, Zang DY, Sar M, et al. Dehydroepiandrosterone activates mutant androgen receptors expressed in the androgen-dependent human prostate cancer xenograft CWR22 and LNCaP cells. Mol Endocrinol 1997; 11: 450–459.PubMedCrossRefGoogle Scholar
  50. 50.
    Fenton MA, Shuster TD, Fertig AM, Taplin ME, Kolvenbag G, Bubley GJ, Balk SP. Functional characterization of mutant androgen receptors from androgen-independent prostate cancer. Clin Cancer Res 1997; 3: 1383–1388.PubMedGoogle Scholar
  51. 51.
    Tilley W, Pickering M, Buchanan G, Freeman N, Holds D, Bentel J, Marshall V. Functional analysis of androgen receptor gene mutations in human prostate cancer. Eighty-ninth Annual Meeting of the American Association for Cancer Research. New Orleans, LA, 1998, p. 84.Google Scholar
  52. 52.
    Hardy DO, Scher HI, Bogenreider T, Sabbatini P, Zhang ZF, Nanus DM, Catterall JF. Androgen receptor CAG repeat lengths in prostate cancer: correlation with age of onset. J Clin Endocrinol Metab 1996; 81: 4400–4405.PubMedCrossRefGoogle Scholar
  53. 53.
    Stanford JL, Just JJ, Gibbs M, Wicklund KG, Neal CL, Blumenstein BA, Ostrander EA. Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk. Cancer Res 1997; 57: 1194–1198.PubMedGoogle Scholar
  54. 54.
    Giovannucci E, Stampfer MJ, Krithivas K, Brown M, Dahl D, Brufsky A, et al. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer [published erratum appears in Proc Natl Acad Sci USA 1997;94:8272], Proc Natl Acad Sci USA 1997; 94: 3320–3323.PubMedCrossRefGoogle Scholar
  55. 55.
    Hakimi JM, Schoenberg MP, Rondinelli RH, Piantadosi S, Barrack ER. Androgen receptor variants with short glutamine or glycine repeats may identify unique sub-populations of men with prostate cancer. Clin Cancer Res 1997; 3: 1599–1608.PubMedGoogle Scholar
  56. 56.
    Irvine RA, Yu MC, Ross RK, Coetzee GA. The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res 1995; 55: 1937–1940.PubMedGoogle Scholar
  57. 57.
    Ingles SA, Ross RK, Yu MC, Irvine RA, La Pera G, Haile RW, Coetzee GA. Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst 1997; 89: 166–170.PubMedCrossRefGoogle Scholar
  58. 58.
    Wilson J. The promiscuous receptor. Prostate cancer comes of age. New Engl J Med 1995; 332: 1440, 1441.Google Scholar
  59. 59.
    Veldscholte J, Ris-Stalpers C, Kuiper GGJM, Jentser G, Berrevoets C, Claassen E, et al. A mutation in the ligand binding domain of the androgen receptor of LnCAP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun 1990; 173: 534–540.PubMedCrossRefGoogle Scholar
  60. 60.
    Veldscholte J, Berrevoets CA, Brinkmann AO, Grootegoed JA, Mulder E. Anti-androgens and the mutated androgen receptor of LNCaP cells: differential effects on binding affinity, heat-shock protein interaction, and transcription activation. Biochemistry 1992; 31: 2393–2399.PubMedCrossRefGoogle Scholar
  61. 61.
    Scher H, Kelly W. Flutamide withdrawal syndrome: its impact on clinical trials in hormone-refractory prostate cancer. J Clin Oncol 1993; 11: 1566–1572.PubMedGoogle Scholar
  62. 62.
    Small EJ, Carroll PR. Prostate-specific antigen decline after casodex withdrawal: evidence for an anti androgen withdrawal syndrome. Urology 1994; 43: 408–410.PubMedCrossRefGoogle Scholar
  63. 63.
    Bissada NK, Kaczmarek AT. Complete remission of hormone refractory adenocarcinoma of the prostate in response to withdrawal of diethylstilbestrol. J Urol 1995; 153: 1944, 1945.Google Scholar
  64. 64.
    Dawson NA, McLeod DG. Dramatic prostate specific antigen decrease in response to discontinuation of megestrol acetate in advanced prostate cancer: expansion of the anti androgen withdrawal syndrome. J Urol 1995; 153: 1946, 1947.Google Scholar
  65. 65.
    Miyamoto H, Yeh S, Lardy H, Messing E, Chang C. Deltas-androstenediol is a natural hormone with androgenic activity inhuman prostate cancer cells. Proc Natl Acad Sci USA 1998;95:11, 083–11, 088.Google Scholar
  66. 66.
    Sonnenschein C, Olea N, Pasanen M, Soto A. Negative controls of cell proliferation: human prostate cancers and androgens. Cancer Res 1989; 49: 3474–3481.PubMedGoogle Scholar
  67. 67.
    Lee C, Sutkowski D, Sensibar J, Zelner D, Kim I, Amsel I, et al. Regulation of proliferation and production of prostate specific antigen in androgen-sensitive prostate cancer cells, LNCaP, by dihydrotestosterone. Endocrinology 1995; 136: 796–803.PubMedCrossRefGoogle Scholar
  68. 68.
    Yuan S, Trachtenberg J, Mills G, Brown T, Xu F, Keating A. Androgen-induced inhibition of cell proliferation in an androgen-insensitive prostate cancer cell line (PC-3) transfected with a human androgen receptor complementary DNA. Cancer Res 1993; 53: 1304–1311.PubMedGoogle Scholar
  69. 69.
    Marcelli M, Haidecher SJ, Plymate SR, Birnbaum RS. Altered growth and insulin-like growth factor binding protein-3 (IGFBP-3) production in PC3 prostate carcinoma cells stably transfected with a constitutively active androgen receptor cDNA. Endocrinology 1995; 136: 1040–1048.PubMedCrossRefGoogle Scholar
  70. 70.
    Dai JL, Maiorino CA, Gkonos PJ, Burnstein KL. Androgenic up-regulation of androgen receptor cDNA expression in androgen-independent prostate cancer cells. Steroids 1996; 61: 531–539.PubMedCrossRefGoogle Scholar
  71. 71.
    Umekita Y, Hiipakka R, Kokontis J, Liao S. Human prostate tumor growth in athymic mice: inhibition by androgens and stimulation by finasteride. Proc Natl Acad Sci USA 1996;93:11, 802–11, 807.Google Scholar
  72. 72.
    Kokontis JM, Hay N, Liao S. Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kipl in androgen-induced cell cycle arrest. Mol Endocrinol 1998; 12: 941–953.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhau H, Chang S-M, Chen B-Q, Wang Y, Zhang H, Kao C, et al. Androgen-repressed phenotype in human prostate cancer. Proc Nat] Acad Sci USA 1996;93:15, 152–15, 157.Google Scholar
  74. 74.
    Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 1992; 12: 241–253.PubMedCrossRefGoogle Scholar
  75. 75.
    Mhatre AN, Trifiro MA, Kaufman M, Kazemi-Esfarjani P, Figlewicz D, Rouleau G, Pinsky L. Reduced transcriptional regulatory competence of the androgen receptor in X-linked spinal and bulbar muscular atrophy [published erratum appears in Nat Genet 1994;6:214]. Nat Genet 1993; 5: 184–188.Google Scholar
  76. 76.
    Kazemi-Esfarjani P, Trifiro MA, Pinsky L. Evidence for a repressive function of the long polyglutamine tract in the human androgen receptor: possible pathogenetic relevance for the (CAG)n-expanded neuronopathies. Hum Mol Genet 1995; 4: 523–527.PubMedCrossRefGoogle Scholar
  77. 77.
    Chamberlain NL, Driver ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res 1994; 22: 3181–3186.PubMedCrossRefGoogle Scholar
  78. 78.
    Gao T, Marcelli M, McPhaul M. Transcriptional activation and transient expression of the human androgen receptor. J Steroid Biochem Mol Biol 1996; 59: 9–20.PubMedCrossRefGoogle Scholar
  79. 79.
    Choong CS, Kemppainen JA, Zhou ZX, Wilson EM. Reduced androgen receptor gene expression with first exon CAG repeat expansion. Mol Endocrinol 1996; 10: 1527–1535.PubMedCrossRefGoogle Scholar
  80. 80.
    La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991; 352: 77–79.PubMedCrossRefGoogle Scholar
  81. 81.
    Ross RK, Paganini-Hill A, Henderson BE. The etiology of prostate cancer: what does the epidemiology suggest? Prostate 1983; 4: 333–444.PubMedCrossRefGoogle Scholar
  82. 82.
    Morton RA Jr. Racial differences in adenocarcinoma of the prostate in North American men. Urology 1994; 44: 637–645.PubMedCrossRefGoogle Scholar
  83. 83.
    Coetzee GA, Ross RK. Re: Prostate cancer and the androgen receptor [letter]. J Natl Cancer Inst 1994; 86: 872, 873.Google Scholar
  84. 84.
    Orti E, Bodwell JE, Munck A. Phosphorylation of steroid hormone receptors. Endocr Rev 1992; 13: 105–128.PubMedGoogle Scholar
  85. 85.
    Denner LA, Weigel NL, Maxwell BL, Schrader WT, O’Malley BW. Regulation of progesterone receptor-mediated transcription by phosphorylation. Science 1990; 250: 1740–1743.PubMedCrossRefGoogle Scholar
  86. 86.
    Power RF, Mani SK, Codina J, Conneely OM, O’Malley BW. Dopaminergic and ligand-independent activation of steroid hormone receptors. Science 1991; 254: 1636–1639.PubMedCrossRefGoogle Scholar
  87. 87.
    Zhang Y, Bai W, Allgood VE, Weigel NL. Multiple signaling pathways activate the chicken progesterone receptor. Mol Endocrinol 1994; 8: 577–584.PubMedCrossRefGoogle Scholar
  88. 88.
    Ignar-Trowbridge DM, Nelson KG, Bidwell MC, Curtis SW, Washburn TF, McLachlan JA, Korach KS. Coupling of dual signaling pathways: epidermal growth factor action involves the estrogen receptor. Proc Natl Acad Sci USA 1992; 89: 4658–4662.PubMedCrossRefGoogle Scholar
  89. 89.
    Smith CL, Conneely OM, O’Malley BW. Modulation of the ligand-independent activation of the human estrogen receptor by hormone and antihormone. Proc Natl Acad Sci USA 1993; 90: 6120–6124.PubMedCrossRefGoogle Scholar
  90. 90.
    Culig Z, Hobish A, Cronauer MV, Radmayr C, Trapman J, Hittmair A, Bartsch G, Klocker H. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor I: keratinocyte growth factor, and epidermal growth factor. Cancer Res 1994; 54: 5474–5478.PubMedGoogle Scholar
  91. 91.
    Nazareth L, Weigel N. Activation of the human androgen receptor through a proteinase A signaling pathway. J Biol Chem 1996;271:19, 900–19, 907.Google Scholar
  92. 92.
    Hobisch A, Eder IE, Putz T, Horninger W, Bartsch G, Klocker H, Culig Z. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res 1998; 58: 4640–4645.PubMedGoogle Scholar
  93. 93.
    Cohen P, Peehl D, Lamson G, Rosenfeld RR. Insulin-like growth factors, IGF receptors and IGF-binding proteins in primary cultures of prostate epithelial cells. J Clin Endocrinol Metab 1991; 73: 401–407.PubMedCrossRefGoogle Scholar
  94. 94.
    Iwamura M, Sluss PM, Casamento JB, Cockett AT. Insulin-like growth factor, I, action and receptor characterization in human prostate cancer cell lines. Prostate 1993; 22: 243–252.PubMedCrossRefGoogle Scholar
  95. 95.
    Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, Hennekens CH, Pollak M. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 1998; 279: 563–566.PubMedCrossRefGoogle Scholar
  96. 96.
    Voeller H, Wilding G, Gelmann E. v-rasH expression confers hormone-independent in-vitro growth to LnCAP prostate carcinoma cells. Mol Endocrinol 1991; 5: 209–216.PubMedCrossRefGoogle Scholar
  97. 97.
    Carter BS, Epstein J1, Isaacs WB. ras gene mutations in human prostate cancer. Cancer Res 1990; 50: 6830–6832.Google Scholar
  98. 98.
    Gumerlock PH, Poonamallee UR, Meyers FJ, deVereWhite RW. Activated as alleles in human carcinoma of the prostate are rare. Cancer Res 1991; 51: 1632–1637.PubMedGoogle Scholar
  99. 99.
    Moul JW, Friedrichs PA, Lance RS, Theune SM, Chang EH. Infrequent RAS oncogene mutations in human prostate cancer. Prostate 1992; 20: 327–338.PubMedCrossRefGoogle Scholar
  100. 100.
    Konishi N, Enomoto T, Buzard G, Ohshima M, Ward JM, Rice JM. K-ras activation and ras p21 expression in latent prostatic carcinoma in Japanese men. Cancer 1992; 69: 2293–2299.PubMedCrossRefGoogle Scholar
  101. 101.
    Anwar K, Nakakuki K, Shiraishi T, Naiki H, Yatani R, Inuzuka M. Presence of ras oncogene mutations and human papillomavirus DNA in human prostate carcinomas. Cancer Res 1992; 52: 5991–5996.PubMedGoogle Scholar
  102. 102.
    Konishi N, Hiasa Y, Tsuzuki T, Tao M, Enomoto T, Miller GJ. Comparison of ras activation in prostate carcinoma in Japanese and American men. Prostate 1997; 30: 53–57.PubMedCrossRefGoogle Scholar
  103. 103.
    Shiraishi T, Muneyuki T, Fukutome K, Ito H, Kotake T,Watanabe M, Yatani R. Mutations of ras genes are relatively frequent in Japanese prostate cancers: pointing to genetic differences between populations. Anticancer Res 1998; 18: 2789–2792.PubMedGoogle Scholar
  104. 104.
    Yang G, Truong LD, Timme TL, Ren C, Wheeler TM, Park SH, et al. Elevated expression of caveolin is associated with prostate and breast cancer. Clin Cancer Res 1998; 4: 1873–1880.PubMedGoogle Scholar
  105. 105.
    Nasu Y, Timme T, Yang G, Bangma C, Li L, Ren C, et al. Suppression of caveolin expression induces androgen sensitivity in metastatic androgen-insensitive mouse prostate cancer. Nature Med 1998; 4: 1062–1064.PubMedCrossRefGoogle Scholar
  106. 106.
    Bruchovsky N, Wilson JD. The intranuclear binding of testosterone and 5-alpha-androstan-17-betaol-3-one by rat prostate. J Biol Chem 1968; 243: 5953–5960.PubMedGoogle Scholar
  107. 107.
    Ross RK, Pike MC, Coetzee GA, Reichardt JK, Yu MC, Feigelson H, et al. Androgen metabolism and prostate cancer: establishing a model of genetic susceptibility. Cancer Res 1998; 58: 4497–4504.PubMedGoogle Scholar
  108. 108.
    Makridakis N, Ross RK, Pike MC, Chang L, Stanczyk FZ, Kolonel LN, et al. A prevalent missense substitution that modulates activity of prostatic steroid 5alpha-reductase. Cancer Res 1997; 57: 1020–1022.PubMedGoogle Scholar
  109. 109.
    Yeh S, Chang C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci USA 1996; 93: 5517–5521.PubMedCrossRefGoogle Scholar
  110. 110.
    Onate SA, Tsai SY, Tsai MJ, O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 1995; 270: 1354–1357.PubMedCrossRefGoogle Scholar
  111. 1.
    Chen H, Lin Ri, Schiltz RL, Chakravarti D, Nash A, Nagy L, et al. Nuclear receptor coactivator ACTR is a novel histone acetyl transferase and forms a multimeric activation complex with P/CAF and CBP/ p300. Cell 1997; 90: 569–580.CrossRefGoogle Scholar
  112. 112.
    Yeh S, Miyamoto H, Shima H, Chang C. From estrogen to androgen receptor: a new pathway for sex hormones in prostate. Proc Natl Acad Sci USA 1998; 95: 5527–5532.PubMedCrossRefGoogle Scholar
  113. 113.
    Miyamoto H, Yeh S, Wilding G, Chang C. Promotion of agonist activity of anti androgens by the androgen receptor coactivator, ARA70, in human prostate cancer DÚ145 cells. Proc Natl Acad Sci USA 1998; 95: 7379–7384.PubMedCrossRefGoogle Scholar
  114. 114.
    Takahashi H, Furusato M, Allsbrook WC Jr, Nishii H, Wakui S, Barrett JC, Boyd J. Prevalence of androgen receptor gene mutations in latent prostatic carcinomas from Japanese men. Cancer Res 1995; 55: 1621–1624.PubMedGoogle Scholar
  115. 115.
    Culig Z, Klocker H, Eberle J, Kaspar F, Hobisch A, Cronauer MV, Bartsch G. DNA sequence of the androgen receptor in prostatic tumor cell lines and tissue specimens assessed by means of the polymerase chain reaction. Prostate 1993; 22: 11–22.PubMedCrossRefGoogle Scholar
  116. 116.
    Bashirelahi N, Felder CC, Young JD. Characterization and stabilization of progesterone receptors in human benign prostatic hypertrophy. J Steroid Biochem 1983; 18: 801–809.PubMedCrossRefGoogle Scholar
  117. 117.
    Kumar VL, Wadhwa SN, Kumar V, Farooq A. Androgen estrogen and progesterone receptor contents and serum hormone profiles in patients with benign hypertrophy and carcinoma of the prostate. J Surg Oncol 1990; 44: 122–128.PubMedCrossRefGoogle Scholar
  118. 118.
    Ekman P, Brolin J. Steroid receptor profile in human prostate cancer metastases as compared with primary prostatic carcinoma. Prostate 1991; 18: 147–153.PubMedCrossRefGoogle Scholar
  119. 119.
    Mobbs BG, Johnson IE, Liu Y. Quantitation of cytosolic and nuclear estrogen and progesterone receptor in benign, untreated, and treated malignant human prostatic tissue by radio ligand binding and enzyme-immunoassays. Prostate 1990; 16: 235–244.PubMedCrossRefGoogle Scholar
  120. 120.
    Hobisch A. Metastatic lesions from prostate cancer do not express oestrogen and progesterone receptors. J Pathol 1997; 182: 356–361.PubMedCrossRefGoogle Scholar
  121. 121.
    Brolin J, Skoog L, Ekman P. Immunohistochemistry and biochemistry in detection of androgen, progesterone, and estrogen receptors in benign and malignant human prostatic tissue. Prostate 1992; 20: 281–295.PubMedCrossRefGoogle Scholar
  122. 122.
    Mobbs BG, Liu Y. Immunohistochemical localization of progesterone receptor in benign and malignant human prostate. Prostate 1990; 16: 245–251.PubMedCrossRefGoogle Scholar
  123. 123.
    Hiramatsu M, Maehara I, Orikasa S, Sasano H. Immunolocalization of estrogen and progesterone receptors in prostatic hyperplasia and carcinoma. Histopathology 1996; 28: 163–168.PubMedCrossRefGoogle Scholar
  124. 124.
    Gaudin PB, Rosai J, Epstein JI. Sarcomas and related proliferative lesions of specialized prostatic stroma: a clinico pathologic study of 22 cases. Am J Surg Pathol 1998; 22: 148–162.PubMedCrossRefGoogle Scholar
  125. 125.
    Sak SD, Orhan D, Yaman O, Tulunay O, Ozdiler E. Carcino sarcoma of the prostate. A case report and a possible evidence on the role of hormonal therapy. Urol Int 1997; 59: 50–52.PubMedCrossRefGoogle Scholar
  126. 126.
    Lin MF, Kawachi MH, Stallcup MR, Grunberg SM, Lin FF. Growth inhibition of androgen-insensitive human prostate carcinoma cells by a 19-norsteroid derivative agent, mifepristone. Prostate 1995; 26: 194–204.PubMedCrossRefGoogle Scholar
  127. 127.
    Widmark A, Grankvist K, Bergh A, Henriksson R, Damber JE. Effects of estrogens and progestogens on the membrane permeability and growth of human prostatic carcinoma cells (PC-3) in vitro. Prostate 1995; 26: 5–11.PubMedCrossRefGoogle Scholar
  128. 128.
    Castagnetta LA, Carruba G. Human prostate cancer: a direct role for oestrogens. Ciba Found Symp 1995; 191: 269–286.PubMedGoogle Scholar
  129. 129.
    Emtage LA, Dunn PJ, Rowse AD. Androgen and oestrogen receptor status in benign and neoplastic prostate disease. Study of prevalence and influence on time to progression and survival in prostate cancer treated by hormone manipulation. Br J Urol 1989; 63: 627–633.PubMedCrossRefGoogle Scholar
  130. 130.
    Konishi N, Nakaoka S, Hiasa Y, et al. Immunohistochemical evaluation of estrogen receptor status in benign prostatic hypertrophy and in prostate carcinoma and the relationship to efficacy of endocrine therapy. Oncology 1993; 50: 259–263.PubMedCrossRefGoogle Scholar
  131. 131.
    Kruithof-Dekker IG, Tetu B, Janssen PJ, Van der Kwast TH. Elevated estrogen receptor expression in human prostatic stromal cells by androgen ablation therapy. J Urol 1996; 156: 1194–1197.PubMedCrossRefGoogle Scholar
  132. 132.
    Nativ O, Umehara T, Colvard DS, et al. Relationship between DNA ploidy and functional estrogen receptors in operable prostate cancer. Eur Urol 1997; 32: 96–99.PubMedGoogle Scholar
  133. 133.
    Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS. Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology 1997; 138: 4613–4621.PubMedCrossRefGoogle Scholar
  134. 134.
    Prins GS, Marmer M, Woodham C, et al. Estrogen receptor-beta messenger ribonucleic acid ontogeny in the prostate of normal and neonatally estrogenized rats. Endocrinology 1998; 139: 874–883.PubMedCrossRefGoogle Scholar
  135. 135.
    Mosselman S, Polman J, Dijkema R. ER beta: identification and characterization of a novel human estrogen receptor. FEBS Lett 1996; 392: 49–53.PubMedCrossRefGoogle Scholar
  136. 136.
    Ogawa S, Inoue S, Watanabe T, et al. The complete primary structure of human estrogen receptor beta (hER beta) and its heterodimerization with ER alpha in vivo and in vitro. Biochem Biophys Res Commun 1998; 243: 122–126.PubMedCrossRefGoogle Scholar
  137. 137.
    Moore JT, McKee DD, Slentz-Kesler K, et al. Cloning and characterization of human estrogen receptor beta isoforms. Biochem Biophys Res Commun 1998; 247: 75–78.PubMedCrossRefGoogle Scholar
  138. 138.
    Carruba G, Pfeffer U, Fecarotta E, et al. Estradiol inhibits growth of hormone-nonresponsive PC3 human prostate cancer cells. Cancer Res 1994; 54: 1190–1193.PubMedGoogle Scholar
  139. 139.
    Hobisch A, Hittmair A, Daxenbichler G, et al. Metastatic lesions from prostate cancer do not express oestrogen and progesterone receptors. J Pathol 1997; 182: 356–361.PubMedCrossRefGoogle Scholar
  140. 140.
    Markaverich BM, Alejandro MA. Type II [3H] estradiol binding site antagonists: inhibition of normal and malignant prostate cell growth and proliferation. Int J Oncol 1998; 12: 1127–1135.PubMedGoogle Scholar
  141. 141.
    Bezwoda WR. Treatment of stage D2 prostatic cancer refractory to or relapsed following castration plus oestrogens. Comparison of aminoglutethimide plus hydrocortisone with medroxy progesterone acetate plus hydrocortisone. Br J Urol 1990; 66: 196–201.PubMedCrossRefGoogle Scholar
  142. 142.
    Chang AY, Bennett JM, Pandya KJ, Asbury R, McCune C. A study of amino glutethemide and hydrocortisone in patients with advanced and refractory prostate carcinoma. Am J Clin Oncol 1989; 12: 358–360.PubMedCrossRefGoogle Scholar
  143. 143.
    Dowsett M, Shearer RJ, Ponder BA, Malone P, Jeffcoate SL. The effects of aminoglutethimide and hydrocortisone alone and combined, on androgen levels in postorchiectomy prostatic cancer patients. Br J Cancer 1988; 57: 190–192.PubMedCrossRefGoogle Scholar
  144. 144.
    Figg WD, Kroog G, Duray P, et al. Flutamide withdrawal plus hydrocortisone resulted in clinical complete response in a patient with prostate carcinoma. Cancer 1997; 79: 1964–1968.PubMedCrossRefGoogle Scholar
  145. 145.
    Harland SJ, Duchesne GM. Suramin and prostate cancer: the role of hydrocortisone [letter]. Eur J Cancer 1992; 28A: 1295.CrossRefGoogle Scholar
  146. 146.
    Kelly WK, Curley T, Leibretz C, Dnistrian A, Schwartz M, Scher HI. Prospective evaluation of hydrocortisone and suramin in patients with androgen-independent prostate cancer. J Clin Oncol 1995; 13: 2208–2213.PubMedGoogle Scholar
  147. 147.
    Kelly WK, Scher HI, Mazumdar M, et al. Suramin and hydrocortisone: determining drug efficacy in androgen-independent prostate cancer. J Clin Oncol 1995; 13: 2214–2222.PubMedGoogle Scholar
  148. 148.
    Labrie F, Dupont A, Belanger A, et al. Anti-hormone treatment for prostate cancer relapsing after treatment with flutamide and castration. Addition of aminoglutethimide and low dose hydrocortisone to combination therapy. Br J Urol 1989; 63: 634–638.PubMedCrossRefGoogle Scholar
  149. 149.
    Plowman PN, Perry LA, Chard T. Androgen suppression by hydrocortisone without aminoglutethimide in orchiectomised men with prostatic cancer. Br J Urol 1987; 59: 255–257.PubMedCrossRefGoogle Scholar
  150. 150.
    Small EJ, Baron A, Bok R. Simultaneous antiandrogen withdrawal and treatment with ketoconazole and hydrocortisone in patients with advanced prostate carcinoma. Cancer 1997; 80: 1755–1759.PubMedCrossRefGoogle Scholar
  151. 151.
    Brendler H. Adrenalectomy and hypophysectomy for prostatic cancer. Urology 1973; 2: 99–102.PubMedCrossRefGoogle Scholar
  152. 152.
    Schoonees R, Schalch DS, Reynoso G, Murphy GP. Bilateral adrenalectomy for advanced prostatic carcinoma. J Urol 1972; 108: 123–125.PubMedGoogle Scholar
  153. 153.
    Sogani PC, Fair WR. Treatment of advanced prostatic cancer. Urol Clin North Am 1987; 14: 353–371.PubMedGoogle Scholar
  154. 154.
    Gerber GS, Chodak GW. Prostate specific antigen for assessing response to ketoconazole and prednisone in patients with hormone refractory metastatic prostate cancer. J Urol 1990; 144: 1177–1179.PubMedGoogle Scholar
  155. 155.
    Mahler C, Verhelst J, Denis L. Ketoconazole and liarozole in the treatment of advanced prostatic cancer. Cancer 1993; 71: 1068–1073.PubMedCrossRefGoogle Scholar
  156. 156.
    Small EJ, Baron AD, Fippin L, Apodaca D. Ketoconazole retains activity in advanced prostate cancer patients with progression despite flutamide withdrawal. J Urol 1997; 157: 1204–1207.PubMedCrossRefGoogle Scholar
  157. 157.
    Trachtenberg J, Zadra J. Steroid synthesis inhibition by ketoconazole: sites of action. Clin Invest Med 1988; 11: 1–5.PubMedGoogle Scholar
  158. 158.
    Scher HI, Steineck G, Kelly WK. Hormone-refractory (D3) prostate cancer: refining the concept. Urology 1995; 46: 142–148.PubMedCrossRefGoogle Scholar
  159. 159.
    Peehl DM, Stamey TA. Growth responses of normal, benign hyperplastic, and malignant human prostatic epithelial cells in vitro to cholera toxin, pituitary extract, and hydrocortisone. Prostate 1986; 8: 51–61.PubMedCrossRefGoogle Scholar
  160. 160.
    Chan SY. Androgen and glucocorticoid receptors in the Pollard prostate adenocarcinoma cell lines. Prostate 1980; 1: 53–60.PubMedCrossRefGoogle Scholar
  161. 161.
    Koutsilieris M, Grondin F, Lehoux JG. The expression of mRNA for glucocorticoid receptor gene and functional glucocorticoid receptors detected in PA-III rat prostate adenocarcinoma cells. Anticancer Res 1992; 12: 899–904.PubMedGoogle Scholar
  162. 162.
    Reyes-Moreno C, Frenette G, Boulanger J, Lavergne E, Govindan MV, Koutsilieris M. Mediation of glucocorticoid receptor function by transforming growth factor beta I expression in human PC-3 prostate cancer cells. Prostate 1995; 26: 260–269.PubMedCrossRefGoogle Scholar
  163. 163.
    Smith RG, Syms AJ, Nag A, Lerner S, Norris JS. Mechanism of the glucocorticoid regulation of growth of the androgen-sensitive prostate-derived R3327H-G8–A1 tumor cell line. J Biol Chem 1985; 260:12, 454–12, 463.Google Scholar
  164. 164.
    Sosnowski J, Stetter-Neel C, Cole D, Durham JP, Mawhinney MG. Protein kinase C mediated anti-proliferative glucocorticoid-sphinganine synergism in cultured Pollard III prostate tumor cells. J Urol 1997; 158: 269–274.PubMedCrossRefGoogle Scholar
  165. 165.
    Chang C, Kokontis J, Liao SS, Chang Y. Isolation and characterization of human TR3 receptor: a member of steroid receptor superfamily. J Steroid Biochem 1989; 34: 391–395.PubMedCrossRefGoogle Scholar
  166. 166.
    Uemura H, Chang C. Antisense TR3 orphan receptor can increase prostate cancer cell viability with etoposide treatment. Endocrinology 1998; 139: 2329–2334.PubMedCrossRefGoogle Scholar
  167. 167.
    Haussier MR, Mangelsdorf DJ, Komm BS, Terpening CM, Yamazaki K, Allegretto EA, et al. Molecular biology of the vitamin D hormone. In: Anonymous, ed. Recent Progress in Hormone Research. Academic, New York, 1988, pp. 263–305.Google Scholar
  168. 168.
    Haussier MR, Jurutka PW, Hsieh J-C, Thompson PD, Selznick SH, Haussier CA, Whitfield GK. New understanding of the molecular mechanism of receptor-mediated genomic actions of the vitamin D hormone. Bone 1995; 17: 33S - 38S.CrossRefGoogle Scholar
  169. 169.
    Anderson JJB, Toverud SU. Diet and vitamin D: a review with an emphasis on human function. J Nutr Biochem 1994; 5: 58–65.CrossRefGoogle Scholar
  170. 170.
    Walters MR. Newly identified actions of the vitamin D endocrine system. Endocr Rev 1992; 13: 719–764.PubMedGoogle Scholar
  171. 171.
    Fife RS, Sledge GW, Proctor C. Effects of vitamin D3 on proliferation of cancer cells in vitro. Cancer Lett 1997; 120: 65–69.PubMedCrossRefGoogle Scholar
  172. 172.
    Colston KW, James SY, Ofori-Kuragu EA, Binderup L, Grant AG. Vitamin D receptors and anti-proliferative effects of vitamin D derivatives in human pancreatic carcinoma cells in vivo and in vitro. Br J Cancer 1997; 76: 1017–1020.PubMedCrossRefGoogle Scholar
  173. 173.
    Colston KW, Colston JM, Feldman D. 1,25-Dihydroxyvitamin D3 and malignant melanoma: the presence of receptors and inhibition of cell growth in culture. Endocrinology 1981; 108: 1083–1086.PubMedCrossRefGoogle Scholar
  174. 174.
    Miller GJ, Stapleton GE, Ferrara JA, Lucia MS, Pfister S, Hedlund TE, Upadhya P. Human prostatic carcinoma cell line LNCaP expresses biologically active, specific receptors for 1 alpha, 25-dihydroxyvitamin D3. Cancer Res 1992; 52: 515–520.PubMedGoogle Scholar
  175. 175.
    Miller GJ, Stapleton GE, Hedlund TE, Moffat KA. Vitamin D receptor expression, 24-hydroxylase activity, and inhibition of growth by 1,25-dihydroxyvitamin D3 in seven human prostatic carcinoma cell lines. Clin Cancer Res 1995; 1: 997–1003.PubMedGoogle Scholar
  176. 176.
    Skowronski RJ, Peehl DM, Feldman D. Vitamin D and prostate cancer: 1,25-dihydroxyvitamin D3 receptors and actions in human prostate cancer cell lines. Endocrinology 1993; 132: 1952–1960.PubMedCrossRefGoogle Scholar
  177. 177.
    Holick MF. The photobiology of vitamin D3 in man. In: Kumar R, ed. Vitamin D: Basic and Clinical Aspects. Martinus Nijhoff, Boston, 1984, pp. 197–216.Google Scholar
  178. 178.
    Studzinski GP, Moore DC. Sunlight-can it prevent as well as cause cancer? Cancer Res 1995; 55: 4014–4022.PubMedGoogle Scholar
  179. 179.
    Corder EH, Guess HA, Hulka BS, Friedman GD, Sadler M, Vollmer RT, et al. Vitamin D and prostate cancer: a prediagnostic study with stored sera. Cancer Epidemiol Biomarkers Prey 1993; 2: 467–472.Google Scholar
  180. 180.
    Braun MM, Helzlsouer KJ, Hollis BW, Comstock GW. Prostate cancer and prediagnostic levels of serum vitamin D metabolites. Cancer Causes Control 1995; 6: 235–239.PubMedCrossRefGoogle Scholar
  181. 181.
    Gann PH, Ma J, Hennekens CH, Hollis BW, Haddad JG, Stampfer MJ. Circulating vitamin D metabolites in relation to subsequent development of prostate cancer. Cancer Epidemiol Biomarkers Prey 1996; 5: 121–126.Google Scholar
  182. 182.
    Baker MR, Peacock M, Nordin BE. The decline in vitamin D status with age. Age Ageing 1980; 9: 249–252.PubMedCrossRefGoogle Scholar
  183. 183.
    Lawson DE, Paul AA, Black AE, Cole TJ, Mandal AR, Davie M. Relative contributions of diet and sunlight to vitamin D state in the elderly. Br Med J 1979; 2: 303–305.PubMedCrossRefGoogle Scholar
  184. 184.
    Matusoka LY, Wortsman J, Haddad JG, Kolm P, Hollis BW. Racial pigmentation and the cutaneous synthesis of vitamin D. Arch Dermatol 1991; 127: 536–538.CrossRefGoogle Scholar
  185. 185.
    Haenszel W, Kurihara M. Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J Nati Cancer Inst 1968; 40: 43–68.Google Scholar
  186. 186.
    Hanchette CL, Schwartz GG. Geographic patterns of prostate cancer mortality. Evidence for a protective effect of ultraviolet radiation. Cancer 1992; 70: 2861–2869.PubMedCrossRefGoogle Scholar
  187. 187.
    Peehl DM, Skowronski RJ, Leung GK, Wong ST, Stamey TA, Feldman D. Antiproliferative effects of 1,25-dihydroxyvitamin D3 on primary cultures of human prostatic cells. Cancer Res 1994; 54: 805–810.PubMedGoogle Scholar
  188. 188.
    Blutt SE, Allegretto EA, Pike JW, Weigel NL. 1,25-dihydroxyvitamin D3 and 9-cis-retinoic acid act synergistically to inhibit the growth of LNCaP prostate cells and cause accumulation of cells in G1. Endocrinology 1997; 138: 1491–1497.PubMedCrossRefGoogle Scholar
  189. 189.
    Hedlund TE, Moffat KA, Miller GJ. Stable expression of the nuclear vitamin D receptor in the human prostatic carcinoma cell line JCA- 1: evidence that the antiproliferative effects of I a, 25-dihydroxyvitamin D3 are mediated exclusively through the genomic signaling pathway. Endocrinology 1996; 137: 1554–1561.PubMedCrossRefGoogle Scholar
  190. 190.
    Hedlund TE, Moffatt KA, Miller GJ. Vitamin D receptor expression is required for growth modulation by la, 25-dihydroxyvitamin D3 in the human prostatic carcinoma cell line ALVA-31. J Steroid Biochem 1996; 58: 277–288.CrossRefGoogle Scholar
  191. 191.
    Getzenberg RH, Light BW, Lapco PE, Konety BR, Nangia AK, Acierno JS, et al. Vitamin D inhibition of prostate adenocarcinoma growth and metastasis in the Dunning rat prostate model system. Urology 1998; 50: 999–1006.CrossRefGoogle Scholar
  192. 192.
    Schwartz GG, Hill CC, Oeler TA, Becich MJ, Bahnson RR. 1,24-dihydroxy-16-ene-23-yne-vitamin D3 and prostate cancer cell proliferation in vivo. Urology 1995; 46: 365–369.PubMedCrossRefGoogle Scholar
  193. 193.
    Taylor JA, Hirvonen A, Watson M, Pittman G, Mohler JL, Bell DA. Association of prostate cancer with vitamin D receptor gene polymorphism. Cancer Res 1996; 56: 4108–4110.PubMedGoogle Scholar
  194. 194.
    Ingles SA, Ross RK, Yu MC, Irvine RA, Lapera G, Haile RW, Coetzee GA. Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst 1997; 89: 166–170.PubMedCrossRefGoogle Scholar
  195. 195.
    Ingles SA, Coetzee GA, Ross RK, Henderson BE, Kolonel LN, Crocitto L, Wang W, Haile RW. Association of prostate cancer with vitamin D receptor haplotypes in African-Americans. Cancer Res 1998; 58: 1620–1623.PubMedGoogle Scholar
  196. 196.
    Kibel AS, Isaacs SD, Isaacs WB, Bova GS. Vitamin D receptor polymorphisms and lethal prostate cancer. J Urol 1998; 160: 1405–1409.PubMedCrossRefGoogle Scholar
  197. 197.
    Schwartz GG, Hulka BS. Is vitamin D deficiency a risk factor for prostate cancer? (hypothesis). Anticancer Res 1990; 10: 1307–1312.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Marco Marcelli
  • Nancy L. Weigel
  • Dolores J. Lamb

There are no affiliations available

Personalised recommendations