Skip to main content

Molecular Pathways of Drug Resistance

  • Chapter
Principles of Molecular Oncology

Abstract

Resistance to cytotoxic chemotherapy is a frequent clinical problem in patients with cancer that leads to their ineffective treatment. Although important progress has been made in oncology in recent years, most tumors respond only temporarily to the current drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sirotnak FM, Moccio DM, Young CW. Increased accumulation of methotrexate by murine tumor cells in vitro in the presence of probenecid which is mediated by a preferential inhibition of efflux. Cancer Res. 1981; 41: 966–76.

    PubMed  CAS  Google Scholar 

  2. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976; 455: 152–62.

    Article  PubMed  CAS  Google Scholar 

  3. Aguilar-Bryan L, Nichols CG, Wechsler SW, et al. Cloning of the ß cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science. 1995; 268: 423–6.

    Article  PubMed  CAS  Google Scholar 

  4. Papadopoulou B, Roy G, Dey S, Rosen BP, Ouellette M. Contribution of the Leishmania P-glycoprotein-related gene ItpgpA to oxyanion resistance. J Biol Chem 1994; 269:11980–6.

    Google Scholar 

  5. Ling V. Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Che-mother Pharmacol. 1997; 40 (Suppl): S3–S8.

    Article  CAS  Google Scholar 

  6. Chen CJ, Chin JE, Ueda K, et al. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell. 1986; 47: 381–9.

    Article  PubMed  CAS  Google Scholar 

  7. Willingham MC, Richerd ND, Cornwell MM, et al. Immunocytochemical localization of P170 at the plasma membrane of multidrug-resistant human cells. J Histochem Cytochem. 1987; 35: 1451–6.

    Article  PubMed  CAS  Google Scholar 

  8. Ueda K, Cardarelli C, Gottesman MM, Pastan I. Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci USA. 1987; 84: 3004–8.

    Article  PubMed  CAS  Google Scholar 

  9. Safa AR, Glover CJ, Meyers MB, Biedler JL, Felsted RL. Vinblastine photoaffinity labeling of a high molecular weight surface membrane glycoprotein specific for multidrug-resistant cells. J Biol Chem. 1986; 261: 6137–40.

    PubMed  CAS  Google Scholar 

  10. Schlemmer SR, Yang CH, Sirotnak FM. Functional modulation of multidrug resistance-related P-glycoprotein by Ca(2+)-calmodulin. J Biol Chem. 1995; 270: 11040–2.

    Article  PubMed  CAS  Google Scholar 

  11. Cordon-Cardo C, O’Brien JP, Boccia J, Casals D, Bertino JR, Melamed MR. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem. 1990; 38: 1277–87.

    Article  PubMed  CAS  Google Scholar 

  12. Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci USA. 1987; 84: 265–9.

    Article  PubMed  CAS  Google Scholar 

  13. Cordon-Cardo C, O’Brien JP, Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood–brain barrier sites. Proc Natl Acad Sci USA. 1989; 86: 695–8.

    Article  PubMed  CAS  Google Scholar 

  14. Leith CP, Kopecky KJ, Godwin J, et al. Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood. 1997; 89: 3323–9.

    PubMed  CAS  Google Scholar 

  15. Willman CL. The prognostic significance of the expression and function of multidrug resistance transporter proteins in acute myeloid leukemia: studies of the Southwest Oncology Group Leukemia Research Program. Semin Hematol. 1997; 34: 25–33.

    PubMed  CAS  Google Scholar 

  16. Bosch I, Croop J. P-glycoprotein multidrug resistance and cancer. Biochim Biophys Acta. 1996; 1288: F37–F54.

    PubMed  Google Scholar 

  17. Goldstein LJ, Galski H, Fojo A, et al. Expression of a multidrug resistance gene in human cancers. J Natl Cancer Inst. 1989; 81: 116–24.

    Article  PubMed  CAS  Google Scholar 

  18. Chan HS, Thorner PS, Haddad G, Ling V. Immunohistochemical deletion of P-glycoprotein: prognostic correlation in soft tissue sarcoma of childhood. J Clin Oncol. 1990; 8: 689–704.

    PubMed  CAS  Google Scholar 

  19. Chan HS, Haddad G, Thorner PS, et al. P-glycoprotein expression as a predictor of the outcome of therapy for neuroblastoma. N Engl J Med. 1991; 325: 1608–14.

    Article  PubMed  CAS  Google Scholar 

  20. Lai SL, Goldstein LJ, Gottesman MM, et al. MDR1 gene expression in lung cancer. J Natl Cancer Inst 1989; 81: 1144–50.

    Article  PubMed  CAS  Google Scholar 

  21. Savaraj N, Wu CJ, Xu R, et al. Multidrug-resistant gene expression in small-cell lung cancer. Am J Clin Oncol. 1997; 20: 398–403.

    Article  PubMed  CAS  Google Scholar 

  22. Beck WT, Grogan TM, Willman CL, et al. Methods to detect P-glycoprotein-associated multidrug resistance in patients’ tumors: consensus recommendations. Cancer Res. 1996; 56: 3010–20.

    PubMed  CAS  Google Scholar 

  23. Dalton WS, Crowley JJ, Salmon SS, et al. A phase III randomized study of oral verapamil as a chemosensitizer to reverse drug resistance in patients with refractory myeloma. A Southwest Oncology Group study. Cancer. 1995; 75: 815–20.

    Article  PubMed  CAS  Google Scholar 

  24. Naito M, Tsuruo T. New multidrug-resistance-reversing drugs, MS-209 and SDZ PSC 833. Cancer Chemother Pharmacol. 1997; 40 (Suppl): S20–S24.

    Article  PubMed  CAS  Google Scholar 

  25. Shrivastava P, Hanibuchi M, Yano S, Parajuli P, Tsuruo T, Sone S. Circumvention of multidrug resistance by a quinoline derivative, MS-209, in multidrug-resistant human small-cell lung cancer cells and its synergistic interaction with cyclosporin A or verapamil. Cancer Chemother Pharmacol. 1998; 42: 483–90.

    Article  PubMed  CAS  Google Scholar 

  26. Smith AJ, Mayer U, Schinkel AH, Borst P. Availability of PSC833, a substrate and inhibitor of P-glycoproteins, in various concentrations of serum. J Natl Cancer Inst. 1998; 90: 1161–6.

    Article  PubMed  CAS  Google Scholar 

  27. Wishart GC, Bissett D, Paul J, et al. Quinidine as a resistance modulator of epirubicin in advanced breast cancer: mature results of a placebo-controlled randomized trial. J Clin Oncol. 1994; 12: 1771–7.

    PubMed  CAS  Google Scholar 

  28. Wagner RW. The state of the art in antisense research. Nat Med. 1995; 1: 1116–8.

    Article  PubMed  CAS  Google Scholar 

  29. Cucco C, Calabretta B. In vitro and in vivo reversal of multidrug resistance in a human leukemia-resistant cell line by mdr1 antisense oligodeoxynucleotides. Cancer Res. 1996; 56: 4332–7.

    PubMed  CAS  Google Scholar 

  30. Hanchett LA, Baker RM, Dolnick BJ. Subclonal heterogeneity of the multidrug resistance phenotype in a cell line expressing MDR1 RNA. Somat Cell Mol Genet. 1994; 20: 463–80.

    Article  PubMed  CAS  Google Scholar 

  31. Cole SP, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992; 258: 1650–4.

    Article  PubMed  CAS  Google Scholar 

  32. Mirski SE, Gerlach JH, Cole SP. Multidrug resistance in a human small cell lung cancer cell line selected in Adriamycin®. Cancer Res. 1987; 47: 2594–8.

    PubMed  CAS  Google Scholar 

  33. Krishnamachary N, Center MS. The MRP gene associated with a non-P-glycoprotein multidrug resistance encodes a 190-kDa membrane bound glycoprotein. Cancer Res. 1993; 53: 3658–61.

    PubMed  CAS  Google Scholar 

  34. Barrand MA, Heppell-Parton AC, Wright KA, Rabbitts PH, Twentyman PR. A 190- kilodalton protein overexpressed in non-P-glycoprotein-containing multidrug-resistant cells and its relationship to the MRP gene. J Natl Cancer Inst. 1994; 86: 110–7.

    Article  PubMed  CAS  Google Scholar 

  35. Schneider E, Horton JK, Yang CH, Nakagawa M, Cowan KH. Multidrug resistance-associated protein gene overexpression and reduced drug sensitivity of topoisomerase II in a human breast carcinoma MCF7 cell line selected for etoposide resistance. Cancer Res. 1994; 54: 152–8.

    PubMed  CAS  Google Scholar 

  36. Slapak CA, Fracasso PM, Martell RL, Toppmeyer DL, Lecerf JM, Levy SB. Overexpression of the multidrug resistance-associated protein (MRP) gene in vincristine but not doxorubicin-selected multidrug-resistant murine erythroleukemia cells. Cancer Res. 1994; 54: 5607–13.

    PubMed  CAS  Google Scholar 

  37. Slovak ML, Ho JP, Bhardwaj G, Kurz EU, Deeley RG, Cole SP. Localization of a novel multidrug resistance-associated gene in the HT1080/DR4 and H69AR human tumor cell lines. Cancer Res. 1993; 53: 3221–5.

    PubMed  CAS  Google Scholar 

  38. Tasaki Y, Nakagawa M, Ogata J, et al. Reversal by a dihydropyridine derivative of nonP-glycoprotein-mediated multidrug resistance in etoposide-resistant human prostatic cancer cell line. J Urol. 1995; 154: 1210–6.

    Article  PubMed  CAS  Google Scholar 

  39. Hasegawa S, Abe T, Naito S, et al. Expression of multidrug resistance-associated protein(MRP), MDR1, and DNA topoisomerase II in human multidrug-resistant bladder cancer cell lines. Br J Cancer. 1995; 71: 907–13.

    Article  PubMed  CAS  Google Scholar 

  40. Slapak CA, Mizunuma N, Kufe DW. Expression of the multidrug resistance associated protein and P-glycoprotein in doxorubicin-selected human myeloid leukemia cells. Blood. 1994; 84: 3113–21.

    PubMed  CAS  Google Scholar 

  41. Cole SP, Sparks KE, Fraser K. et al. Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res. 1994; 54: 5902–10.

    PubMed  CAS  Google Scholar 

  42. Kool M, deHaas M, Scheffer GL, et al. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res. 1997; 57: 3537–47.

    PubMed  CAS  Google Scholar 

  43. Taniguchi K, Wada M, Kohno K, et al. A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Res. 1996; 56: 4124–9.

    PubMed  CAS  Google Scholar 

  44. Breuninger LM, Paul S, Gaughan K, et al. Expression of multidrug resistance-associated protein in NIH/3T3 cells confers multidrug resistance associated with increased drug efflux and altered intracellular drug distribution. Cancer Res. 1995; 55: 5342–7.

    PubMed  CAS  Google Scholar 

  45. Lautier D, Canitrot Y, Deeley RG, Cole SP. Multidrug resistance mediated by the multidrug resistance protein (MRP) gene. Biochem Pharmacol. 1996; 52: 967–77.

    Article  PubMed  CAS  Google Scholar 

  46. Zaman GJ, Flens MJ, vanLeusden MR, et al. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc Natl Acad Sci USA. 1994; 91: 8822–6.

    Article  PubMed  CAS  Google Scholar 

  47. Heijn M, Hooijberg JH, Scheffer GL, Szabo G, Westerhoff HV, Lankelma J. Anthracyclines modulate multidrug resistance protein (MRP) mediated organic anion transport. Biochim Biophys Acta. 1997; 1326: 12–22.

    Article  PubMed  CAS  Google Scholar 

  48. Muller M, Meijer C, Zaman GJ, et al. Overexpression of the gene encoding the multidrug resistance-associated protein results in increased ATP-dependent glutathione S-conjugate transport. Proc Natl Acad Sci USA. 1994; 91: 13033–7.

    Article  PubMed  CAS  Google Scholar 

  49. Evers R, Cnubben NH, Wijnholds J, van Deetmer L, van Bladeren PJ, Borst P. Transport of glutathione prostaglandin A conjugates by the multidrug resistance protein 1. FEBS Lett. 1997; 419: 112–6.

    Article  PubMed  CAS  Google Scholar 

  50. Zaman GJ, Cnubben NH, van Bladeren PJ, Evers R, Borst P. Transport of the glutathione conjugate of ethacrynic acid by the human multidrug resistance protein MRP. FEBS Lett. 1996; 391: 126–30.

    Article  PubMed  CAS  Google Scholar 

  51. Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 1994; 54: 4313–20.

    PubMed  CAS  Google Scholar 

  52. Loe DW, Deeley RG, Cole SP. Characterization of vincristine transport by the M(r) 190,000 multidrug resistance protein (MRP): evidence for cotransport with reduced glutathione. Cancer Res. 1998; 58: 5130–6.

    PubMed  CAS  Google Scholar 

  53. Keppler D, Leier I, Jedlitschky G. Transport of glutathione conjugates and glucuronides by the multidrug resistance proteins MRP1 and MRP2. Biol Chem. 1997; 378: 787–91.

    PubMed  CAS  Google Scholar 

  54. Kruh GD, Gaughan KT, Godwin A, Chan A. Expression pattern of MRP in human tissues and adult solid tumor cell lines. J Natl Cancer Inst. 1995; 87: 1256–8.

    Article  PubMed  CAS  Google Scholar 

  55. Zaman GJ, Versantvoort CH, Smit JJ, et al. Analysis of the expression of MRP, the gene for a new putative transmembrane drug transporter, in human multidrug resistant lung cancer cell lines. Cancer Res. 1993; 53: 1747–50.

    PubMed  CAS  Google Scholar 

  56. Broxterman HJ, Giaccone G, Lankelma J. Multidrug resistance proteins and other drug transport-related resistance to natural product agents. Curr Opin Oncol. 1995; 7: 532–40.

    Article  PubMed  CAS  Google Scholar 

  57. Berger W, Hauptmann E, Elbling L, Vefterlein M, Kokoschka EM, Micksche M. Possible role of the multidrug resistance-associated protein (MRP) in chemoresistance of human melanoma cells. Int J Cancer. 1997; 71: 108–115.

    Article  PubMed  CAS  Google Scholar 

  58. Norris MD, Bordow SB, Marshall GM, Haber PS, Cohn SL, Haber M. Expression of the gene for multidrug-resistance-associated protein and outcome in patients with neuroblastoma. N Engl J Med. 1996; 334: 231–8.

    Article  PubMed  CAS  Google Scholar 

  59. Zhou DC, Zittoun R, Marie JP. Expression of multidrug resistance-associated protein (MRP) and multidrug resistance (MDR1) genes in acute myeloid leukemia. Leukemia. 1995; 9: 1661–6.

    PubMed  CAS  Google Scholar 

  60. Elliott T. How does TAP associate with MHC class I molecules? Immunol Today. 1997; 18: 375–9.

    Article  PubMed  CAS  Google Scholar 

  61. Neefjes JJ, Momburg F, Hammerling GJ. Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science. 1993; 261: 769–71.

    Article  PubMed  CAS  Google Scholar 

  62. Izquierdo MA, Neefjes JJ, Mathari AE, Flens MJ, Scheffer GL, Scheper RJ. Overexpression of the ABC transporter TAP in multidrug-resistant human cancer cell lines. Br J Cancer. 1996; 74: 1961–7.

    Article  PubMed  CAS  Google Scholar 

  63. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990; 63: 1129–36.

    Article  PubMed  CAS  Google Scholar 

  64. Scheper RJ, Broxterman HJ, Scheffer GL, etal. Overexpression of a M(r) 110,000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance. Cancer Res. 1993; 53: 1475–9.

    PubMed  CAS  Google Scholar 

  65. Chugani DC, Kedersha NL, Rome LH. Vault immunofluorescence in the brain: new insights regarding the origin of microglia. J Neurosci. 1991; 11: 256–68.

    PubMed  CAS  Google Scholar 

  66. Chugani DC, Rome LH, Kedersha NL. Evidence that vault ribonucleoprotein particles localize to the nuclear pore complex. J Cell Sci. 1993; 106: 23–29.

    PubMed  CAS  Google Scholar 

  67. Izquierdo MA, Scheffer GL, Flens MJ, et al. Broad distribution of the multidrug resistance-related vault lung resistance protein in normal human tissues and tumors. Am J Pathol. 1996; 148: 877–87.

    PubMed  CAS  Google Scholar 

  68. Izquierdo MA, Shoemaker RH, Flens MJ, et al. Overlapping phenotypes of multidrug resistance among panels of human cancer-cell lines. Int J Cancer. 1996; 65: 230–7.

    Article  PubMed  CAS  Google Scholar 

  69. Izquierdo MA, van der Zee AG, Vermorken JB, et al. Drug resistance-associated marker Lrp for prediction of response to chemotherapy and prognoses in advanced ovarian carcinoma. J Natl Cancer Inst. 1995; 87: 1230–7.

    Article  PubMed  CAS  Google Scholar 

  70. den Boer ML, Pieters R, Kazemier KM, et al. Relationship between major vault protein/ lung resistance protein, multidrug resistance-associated protein, P-glycoprotein expression, and drug resistance in childhood leukemia. Blood. 1998; 91: 2092–8.

    Google Scholar 

  71. Dingemans AM, van Ark-Ofte J, van der Valk P, et al. Expression of the human major vault protein LRP in human lung cancer samples and normal lung tissues. Ann Oncol. 1996; 7: 625–30.

    Article  PubMed  CAS  Google Scholar 

  72. Lash LH, Jones DP. Renal glutathione transport. Characteristics of the sodium-dependent system in the basal-lateral membrane. J Biol Chem 1984; 259: 14508–14.

    PubMed  CAS  Google Scholar 

  73. Hinchman CA, Truong AT, Ballatori N. Hepatic uptake of intact glutathione S-conjugate, inhibition by organic anions, and sinusoidal catabolism. Am J Physiol. 1993; 265: G547–54.

    PubMed  CAS  Google Scholar 

  74. Loe DW, Stewart RK, Massey TE, Deeley RG, Cole SP. ATP-dependent transport of aflatoxin B 1 and its glutathione conjugates by the product of the multidrug resistance protein (MRP) gene. Mol Pharmacol. 1997; 51: 1034–41.

    PubMed  CAS  Google Scholar 

  75. Gupta V, Jani JP, Jacobs S, et al. Activity of melphalan in combination with the glutathione transferase inhibitor sulfasalazine. Cancer Chemother Pharmacol. 1995; 36: 13–19.

    Article  PubMed  CAS  Google Scholar 

  76. Prezioso JA, FitzGerald GB, Wick MM. Melanoma cytotoxicity of buthionine sulfoximine (BSO) alone and in combination with 3,4-dihydroxybenzylamine and melphalan. J Invest Dermatol. 1992; 99: 289–93.

    Article  PubMed  CAS  Google Scholar 

  77. O’Dwyer PJ, LaCreta F, Nash S, et al. Phase I study of thiotepa in combination with the glutathione transferase inhibitor ethacrynic acid. Cancer Res. 1991; 51: 6059–65.

    PubMed  Google Scholar 

  78. Lyttle MH, Hocker MD, Hui HC, et al. Isozyme-specific glutathione-S-transferase inhibitors: design and synthesis. J Med Chem. 1994; 37: 189–94.

    Article  PubMed  CAS  Google Scholar 

  79. Wang JC. DNA topoisomerases: why so many? J Biol Chem. 1991; 266: 6659–62.

    PubMed  CAS  Google Scholar 

  80. Hwang J, Hwong CL. Cellular regulation of mammalian DNA topoisomerases. Adv Pharmacol. 1994; 29A: 167–89.

    Article  Google Scholar 

  81. Kapoor R, Slade DL, Fujimori A, Pommier Y, Harker WG. Altered topoisomerase I expression in two subclones of human CEM leukemia selected for resistance to camptothecin. Oncol Res. 1995; 7: 83–95.

    PubMed  CAS  Google Scholar 

  82. Kaufmann SH, McLaughlin SJ, Kastan MB, Liu LF, Karp JE, Burke PJ. Topoisomerase II levels during granulocytic maturation in vitro and in vivo. Cancer Res. 1991; 51: 3534–43.

    PubMed  CAS  Google Scholar 

  83. Potmesil M, Hsiang YH, Liu LF, et al. Resistance of human leukemic and normal lymphocytes to drug-induced DNA cleavage and low levels of DNA topoisomerase II. Cancer Res. 1988; 48: 3537–43.

    PubMed  CAS  Google Scholar 

  84. Sullivan DM, Latham MD, Ross WE. Proliferation-dependent topoisomerase II content as a determinant of antineoplastic drug action in human, mouse, and Chinese hamster ovary cells. Cancer Res. 1987; 47: 3973–9.

    PubMed  CAS  Google Scholar 

  85. Campain JA, Gottesman MM, Pastan I. A novel mutant topoisomerase II a present in VP-16-resistant human melanoma cell lines has a deletion of alanine 429. Biochemistry. 1994; 33: 11327–32.

    Article  PubMed  CAS  Google Scholar 

  86. Beck WT, Danks MK, Wolverton JS, et al. Resistance of mammalian tumor cells to inhibitors of DNA topoisomerase II. Adv Pharmacol. 1994; 29B: 145–69.

    Article  Google Scholar 

  87. Fujimori A, Harker WG, Kohlhagen G, Hoki Y, Pommier Y. Mutation at the catalytic site of topoisomerase I in CEM/C2, a human leukemia cell line resistant to camptothecin. Cancer Res. 1995; 55: 1339–46.

    PubMed  CAS  Google Scholar 

  88. Campain JA, Padmanabhan R, Hwang J, Gottesman MM, Pastan I. Characterization of an unusual mutant of human melanoma cells resistant to anticancer drugs that inhibit topoisomerase II. J Cell Physiol. 1993; 155: 414–25.

    Article  PubMed  CAS  Google Scholar 

  89. Ganapathi R, Constantinou A, Kamath N, Dubyak G, Grabowski D, Krivacic K. Rersistance to etoposide in human leukemia HL-60 cells: reduction in drug-induced DNA cleavage associated with hypophosphorylation of topoisomerase II phosphopeptides. Mol Pharmacol. 1996; 50: 243–8.

    PubMed  CAS  Google Scholar 

  90. Ritke MK, Murray NR, Allan WP, Fields AP, Yalowich JC. Hypophosphorylation of topoisomerase II in etoposide (VP-16)-resistant human leukemia K562 cells associated with reduced levels of ß II protein kinase C. Mol Pharmacol. 1995; 48: 798–805.

    PubMed  CAS  Google Scholar 

  91. Henderson GB, Tsuji JM, Kumar HP. Transport of folate compounds by leukemic cells. Evidence for a single influx carrier for methotrexate, 5-methyltetrahydrofolate, and folate in CCRF-CEM human lymphoblasts. Biochem Pharmacol. 1987; 36: 3007–14.

    Article  PubMed  CAS  Google Scholar 

  92. Moscow JA, Gong M, He R, et al. Isolation of a gene encoding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells. Cancer Res. 1995; 55: 3790–4.

    PubMed  CAS  Google Scholar 

  93. Wong SC, Proefke SA, Bhushan A, Matherly LH. Isolation of human cDNAs that restore methotrexate sensitivity and reduced folate carrier activity in methotrexate transport-defective Chinese hamster ovary cells. J Biol Chem. 1995; 270: 17468–75.

    Article  PubMed  CAS  Google Scholar 

  94. Stark GR, Debatisse M, Giulotto E, Wahl GM. Recent progress in understanding mechanisms of mammalian DNA amplification. Cell. 1989; 57: 901–8.

    Article  PubMed  CAS  Google Scholar 

  95. Matherly LH, Taub JW, Ravindranath Y, et al. Elevated dihydrofolate reductase and impaired methotrexate transport as elements in methotrexate resistance in childhood acute lymphoblastic leukemia. Blood. 1995; 85: 500–9.

    PubMed  CAS  Google Scholar 

  96. Rhee MS, Wang Y, Nair MG, Galivan J. Acquisition of resistance to antifolates caused by enhanced y-glutamyl hydrolase activity. Cancer Res. 1993; 53: 2227–30.

    PubMed  CAS  Google Scholar 

  97. Schweitzer BI, Dicker AP, Bertino JR. Dihydrofolate reductase as a therapeutic target. FASEB J. 1990; 4: 2441–52.

    PubMed  CAS  Google Scholar 

  98. Domin BA, Mahony WB, Zimmerman TP. Transport of 5-fluorouracil and uracil into human erythrocytes. Biochem Pharmacol. 1993; 46: 503–10.

    Article  PubMed  CAS  Google Scholar 

  99. Spears CP, Gustavsson BG, Berne M, Frosing R, Bernstein L, Hayes AA. Mechanisms of innate resistance to thymidylate synthase inhibition after 5-fluorouracil. Cancer Res. 1988; 48: 5894–900.

    PubMed  CAS  Google Scholar 

  100. Peters GJ, van der Wilt CL, van Groeningen CJ, Smid K, Meijer S, Pinedo HM. Thymidylate synthase inhibition after administration of fluorouracil with or without leucovorin in colon cancer patients: implications for treatment with fluorouracil. J Clin Oncol. 1994; 12: 2035–42.

    PubMed  CAS  Google Scholar 

  101. van der Wilt CL, Pinedo HM, de Jong M, Peters GJ. Effect of folate diastereoisomers on the binding of 5-fluoro-2′-deoxyuridine-5′-monophosphate to thymidylate synthase. Biochem Pharmacol. 1993; 45: 1177–9.

    Article  PubMed  Google Scholar 

  102. Bapat AR, Zarow C, Danenberg PV. Human leukemic cells resistant to 5-fluoro-2′-deoxyuridine contain a thymidylate synthetase with lower affinity for nucleotides. J Biol Chem. 1983; 258: 4130–6.

    PubMed  CAS  Google Scholar 

  103. Jenh CH, Geyer PK, Baskin F, Johnson LF. Thymidylate synthase gene amplification in fluorodeoxyuridine-resistant mouse cell lines. Mol Pharmacol. 1985; 28: 80–85.

    PubMed  CAS  Google Scholar 

  104. Peters GJ, van Groeningen CJ. Clinical relevance of biochemical modulation of 5-fluorouracil. Ann Oncol. 1991; 2: 469–80.

    PubMed  CAS  Google Scholar 

  105. Pinedo HM, Peters GF. Fluorouracil: biochemistry and pharmacology. J Clin Oncol. 1988; 6: 1653–64.

    PubMed  CAS  Google Scholar 

  106. Sirotnak FM, Barrueco JR. Membrane transport and the antineoplastic action of nucleoside analogues. Cancer Metastas Rev. 1987; 6: 459–80.

    Article  CAS  Google Scholar 

  107. Capizzi RL, Yang JL, Rathmell JP, et al. Dose-related pharmacologic effects of high-dose ara-C and its self-potentiation. Semin Oncol. 1985; 12: 65–74.

    PubMed  CAS  Google Scholar 

  108. Ross DD, Cuddy DP, Cohen N, Hensley DR. Mechanistic implications of alterations in HL-60 cell nascent DNA after exposure to 1–0-D-arabinofuranosylcytosine. Cancer Chemother Pharmacol. 1992; 31: 61–70.

    Article  PubMed  CAS  Google Scholar 

  109. Drenthe-Schonk AM, Holdrinet RS, van Egmond J, Wessels JM, Haanen C. Cytokinetic changes after cytosine arabinoside in acute non-lymphocyte leukemia. Leuk Res. 1981; 5: 89–96.

    Article  PubMed  CAS  Google Scholar 

  110. Flasshove M, Strumberg D, Ayscue L, et al. Structural analysis of the deoxycytidine kinase gene in patients with acute myeloid leukemia and resistance to cytosine arabinoside. Leukemia. 1994; 8: 780–5.

    PubMed  CAS  Google Scholar 

  111. Fridland A, Verhoef V. Mechanism for ara-CTP catabolism in human leukemic cells and effect of deaminase inhibitors on this process. Semin Oncol. 1987; 14: 262–8.

    PubMed  CAS  Google Scholar 

  112. Kreis W, Lesser M, Budman DR, et al. Phenotypic analysis of 1–0-D-arabinofuranosylcytosine deamination in patients treated with high doses and correlation with response. Cancer Chemother Pharmacol. 1992; 30: 126–30.

    Article  PubMed  CAS  Google Scholar 

  113. Reed E. Platinum-DNA adduct, nucleotide excision repair and platinum based anti-cancer chemotherapy. Cancer Treat Rev. 1998; 24: 331–44.

    Article  PubMed  CAS  Google Scholar 

  114. Barry MA, Behnke CA, Eastman A. Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem Pharmacol. 1990; 40: 2353–62.

    Article  PubMed  CAS  Google Scholar 

  115. Heiger-Bernays WJ, Essigmann JM, Lippard SJ. Effect of the antitumor drug cis-diamminedichloroplatinum(II) and related platinum complexes on eukaryotic DNA replication. Biochemistry 1990; 29: 8461–6.

    Article  PubMed  CAS  Google Scholar 

  116. Ewig RA, Kohn KW. DNA damage and repair in mouse leukemia L1210 cells treated with nitrogen mustard.1,3-bis(2-chloroethyl)-1-nitrosourea, and other nitrosoureas. Cancer Res. 1977; 37: 2114–22.

    PubMed  CAS  Google Scholar 

  117. Sherman SE, Gibson D, Wang AH, Lippard SJ. X-ray structure of the major adduct of the anticancer drug cisplatin with DNA: cis-[Pt(NH3)2(d(pGpG))]. Science. 1985; 230: 412–7.

    Article  PubMed  CAS  Google Scholar 

  118. Hartley JA, Gibson NW. DNA damage and cytotoxicity of 2-chloroethyl (methylsulfonyl)- methanesulfonate (NSC 338947) produced in human colon carcinoma cells with or without methylating agent pretreatment. Cancer Res. 1986; 46: 3871–5.

    PubMed  CAS  Google Scholar 

  119. Hurley LH, Reynolds VL, Swenson DH, Petzold GL, Scahill TA. Reaction of the antitumor antibiotic CC-1065 with DNA: structure of a DNA adduct with DNA sequence specificity. Science. 1984; 226: 843–4.

    Article  PubMed  CAS  Google Scholar 

  120. Kohn KW. Interstrand cross-linking of DNA by 1,3-bis(2-chloroethyl)-1 nitrosourea and other 1-(2-haloethyl)-1-nitrosoureas. Cancer Res. 1977; 37: 1450–4.

    PubMed  CAS  Google Scholar 

  121. Bennett RA, Pegg AE. Alklylation of DNA in rat tissues following administration of streptozotocin. Cancer Res. 1981; 41: 2786–90.

    PubMed  CAS  Google Scholar 

  122. Gonzaga PE, Brent TP. Affinity purification and characterization of human O6-alkylguanine-DNA alkyltransferase complexed with BCNU-treated, synthetic oligonucleotide. Nucleic Acids Res. 1989; 17: 6581–90.

    Article  PubMed  CAS  Google Scholar 

  123. Ludlum DB. DNA alkylation by the haloethylnitrosoureas: nature of modifications produced and their enzymatic repair or removal. Mutat Res. 1990; 233: 117–26.

    Article  PubMed  CAS  Google Scholar 

  124. Wu ZN, Chan CL, Eastman A, Bresnick E. Expression of human O6-methylguanine-DNA methyltransferase in a DNA excision repair-deficient Chinese hamster ovary cell line and its response to certain alkylating agents. Cancer Res. 1992; 52: 32–35.

    PubMed  CAS  Google Scholar 

  125. Chae MY, McDougall MG, Dolan ME, Swenn K, Pegg AE, Moschel RC. Substituted O6- benzylguanine derivatives and their inactivation of human O6-alkylguanine-DNA alkyltransferase. J Med Chem. 1994; 37: 342–7.

    Article  PubMed  CAS  Google Scholar 

  126. Dolan ME, Moschel RC, Pegg AE. Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc Natl Acad Sci USA. 1990; 87: 5368–72.

    Article  PubMed  CAS  Google Scholar 

  127. McCormick JE, McElhinney RS. Nitrosoureas from chemist to physician: classification and recent approaches to drug design. Eur J Cancer. 1990; 26: 207–21.

    Article  PubMed  CAS  Google Scholar 

  128. Pegg AE. Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res. 1990; 50: 6119–29.

    PubMed  CAS  Google Scholar 

  129. Seeberg E, Eide L, Bjoras M. The base excision repair pathway. Trends Biochem Sci. 1995; 20: 391–7.

    Article  PubMed  CAS  Google Scholar 

  130. Frosina G, Fortini P, Rossi O, et al. Two pathways for base excision repair in mammalian cells. J Biol Chem. 1996; 271: 9573–8.

    Article  PubMed  CAS  Google Scholar 

  131. Klungland A, Lindahl T. Second pathway for completion of human DNA base excision- repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 1997; 16: 3341–8.

    Article  PubMed  CAS  Google Scholar 

  132. Sancar A, Sancar GB. DNA repair enzymes. Annu Rev Biochem. 1988; 57: 29–67.

    Article  PubMed  CAS  Google Scholar 

  133. Perez RP, Hamilton TC, Ozols RF, Young RC. Mechanisms and modulation of resistance to chemotherapy in ovarian cancer. Cancer. 1993; 71: 1571–80.

    Article  PubMed  CAS  Google Scholar 

  134. Dabholkar M, Parker R, Reed E. Determinants of cisplatin sensitivity in non-malignant non-drug-selected human T cell lines. Mutat Res. 1992; 274: 45–56.

    Article  PubMed  CAS  Google Scholar 

  135. Dabholkar M, Bradshaw L, Parker RJ, et al. Cisplatin-DNA damage and repair in peripheral blood leukocytes in vivo and in vitro. Environ Health Perspect. 1992; 98: 53–59.

    Article  PubMed  CAS  Google Scholar 

  136. Godwin AK, Meister A, O’Dwyer PJ, Huang CS, Hamilton TC, Anderson ME. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci USA 1992; 89: 3070–74.

    Article  PubMed  CAS  Google Scholar 

  137. Parker RJ, Eastman A, Bostick-Bruton F, Reed E. Acquired cisplatin resistance in human ovarian cancer cells is associated with enhanced repair of cisplatin-DNA lesions and reduced drug accumulation. J Clin Invest. 1991; 87: 772–777.

    Article  PubMed  CAS  Google Scholar 

  138. van Duin M, de Wit J, Odijk H, et al. Molecular characterization of the human excision repair gene ERCC-1: cDNA cloning and amino acid homology with the yeast DNA repair gene RAD10. Cell. 1986; 44: 913–23.

    Article  PubMed  Google Scholar 

  139. Lee KB, Parker RJ, Bohr V, Cornelison T, Reed E. Cisplatin sensitivity/resistance in UV repair-deficient Chinese hamster ovary cells of complementation groups 1 and 3. Carcinogenesis. 1993; 14: 2177–80.

    Article  PubMed  CAS  Google Scholar 

  140. Dabholkar M, Vionnet J, Bostick-Bruton F, Yu JJ, Reed E. Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum-based chemotherapy. J Clin Invest. 1994; 94: 703–8.

    Article  PubMed  CAS  Google Scholar 

  141. Metzger R, Leichman CG, Danenberg KD, et al. ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. J Clin Oncol. 1998; 16: 309–16.

    PubMed  CAS  Google Scholar 

  142. Leveillard T, Andera L, Bissonnette N, et al. Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. EMBO J. 1996; 15: 1615–24.

    PubMed  CAS  Google Scholar 

  143. Wang XW, Yeh H, Schaeffer L, et al. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet. 1995; 10: 188–95.

    Google Scholar 

  144. Wang XW, Vermeulen W, Coursen JD, et al. The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev. 1996; 10: 1219–32.

    Article  PubMed  CAS  Google Scholar 

  145. Modrich P. Mismatch repair, genetic stability, and cancer. Science. 1994; 266: 1959–60.

    Article  PubMed  CAS  Google Scholar 

  146. Goldmacher VS, Cuzick RA Jr, Thilly WG. Isolation and partial characterization of human cell mutants differing in sensitivity to killing and mutation by methylnitrosourea and Nmethyl-N′-nitro-N-nitrosoguanidine. J Biol Chem. 1986; 261: 12462–71.

    PubMed  CAS  Google Scholar 

  147. Drummond JT, Anthoney A, Brown R, Modrich P. Cisplatin and Adriamycin® resistance are associated with MutLá and mismatch repair deficiency in an ovarian tumor cell line. J Biol Chem. 1996; 271: 19645–8.

    Article  PubMed  CAS  Google Scholar 

  148. Dive C, Hickman JA. Drug-target interactions: only the first step in the commitment to a programmed cell death? Br J Cancer. 1991; 64: 192–6.

    Article  PubMed  CAS  Google Scholar 

  149. Fisher DE. Apoptosis in cancer therapy: crossing the threshold. Cell. 1994; 78: 539–42.

    Article  PubMed  CAS  Google Scholar 

  150. Quillet-Mary A, Mansat V, Duchayne E, et al. Daunorubicin-induced internucleosomal DNA fragmentation in acute myeloid cell lines. Leukemia. 1996; 10: 417–25.

    PubMed  CAS  Google Scholar 

  151. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972; 26: 239–57.

    Article  PubMed  CAS  Google Scholar 

  152. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980; 68: 251–306.

    Article  PubMed  CAS  Google Scholar 

  153. Lane DP. p53 and human cancers.Br Med Bull. 1994; 50: 582–99.

    PubMed  CAS  Google Scholar 

  154. Linzer DI, Levine AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979; 17: 43–52.

    Article  PubMed  CAS  Google Scholar 

  155. Resnick-Silverman L, St. Clair S, Maurer M, Zhao K, Manfredi JJ. Identification of a novel class of genomic DNA-binding sites suggests a mechanism for selectivity in target gene activation by the tumor suppressor protein p53. Genes Dev 1998; 12:2102–7.

    Google Scholar 

  156. Di Leonardo A, Linke SP, Clarkin K, Wahl GM. DNA damage triggers a prolonged p53- dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 1994; 8: 2540–51.

    Article  PubMed  Google Scholar 

  157. Linke SP, Clarkin KC, Wahl GM. p53 mediates permanent arrest over multiple cell cycles in response to y-irradiation. Cancer Res. 1997; 57: 1171–9.

    PubMed  CAS  Google Scholar 

  158. Shivakumar CV, Brown DR, Deb S, Deb SP. Wild-type human p53 transactivates the human proliferating cell nuclear antigen promoter. Mol Cell Biol. 1995; 15: 6785–93.

    PubMed  CAS  Google Scholar 

  159. Agarwal ML, Agarwal A, Taylor WR, Stark GR. p53 controls both the G2M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci USA 1995; 92: 8493–7.

    Article  PubMed  CAS  Google Scholar 

  160. Stewart N, Hicks GG, Paraskevas F, Mowat M. Evidence for a second cell cycle block at G2/M by p53. Oncogene. 1995; 10: 109–15.

    PubMed  CAS  Google Scholar 

  161. Attardi LD, Lowe SW, Brugarolas J, Jacks T. Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis. EMBO J. 1996; 15: 3693–3701.

    PubMed  CAS  Google Scholar 

  162. Caelles C, Helmberg A, Karin M. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature. 1994; 370: 220–3.

    Article  PubMed  CAS  Google Scholar 

  163. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995; 80: 293–9.

    Article  PubMed  CAS  Google Scholar 

  164. Miyashita T, Krajewski S, Krajewska M, et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 1994; 9: 1799–1805.

    PubMed  CAS  Google Scholar 

  165. Miyashita T, Harigai M, Hanada M, Reed JC. Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res. 1994; 54: 3131–5.

    PubMed  CAS  Google Scholar 

  166. Chiou SK, Rao L, White E. Bcl-2 blocks p53-dependent apoptosis. Mol Cell Biol. 1994; 14: 2556–63.

    Article  PubMed  Google Scholar 

  167. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature. 1997; 389: 300–5.

    Article  PubMed  CAS  Google Scholar 

  168. Owen-Schaub LB, van Golen KL, Hill LL, Price JE. Fas and Fas ligand interactions suppress melanoma lung metastasis. J Exp Med. 1998; 188: 1717–23.

    Article  PubMed  CAS  Google Scholar 

  169. Bennett M, Macdonald K, Chan SW, Luzio JP, Simari R, Weissberg P. Cell surface trafficking of Fas: a rapid mechanism ofp53-mediated apoptosis. Science. 1998; 282: 290–3.

    Article  PubMed  CAS  Google Scholar 

  170. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991; 253: 49–53.

    Article  PubMed  CAS  Google Scholar 

  171. Casey G, Lopez ME, Ramos JC, et al. DNA sequence analysis of exons 2 through 11 and immunohistochemical staining are required to detect all known p53 alterations in human malignancies. Oncogene. 1996; 13: 1971–81.

    PubMed  CAS  Google Scholar 

  172. Iggo R, Gatter K, Bartek J, Lane D, Harris AL. Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet. 1990; 335: 675–9.

    Article  PubMed  CAS  Google Scholar 

  173. Unger T, Nau MM, Segal S, Minna JD. p53: a transdominant regulator of transcription whose function is ablated by mutations occurring in human cancer. EMBO J. 1992; 11: 1383–90.

    PubMed  CAS  Google Scholar 

  174. Demers GW, Halbert CL, Galloway DA. Elevated wild-type p53 protein levels in human epithelial cell lines immortalized by the human papillomavirus type 16 E7 gene. Virology. 1994; 198: 169–74.

    Article  PubMed  CAS  Google Scholar 

  175. Yew PR, Berk AJ. Inhibition of p53 transactivation required for transformation by adenovirus early 10 protein. Nature. 1992; 357: 82–85.

    Article  PubMed  CAS  Google Scholar 

  176. Lowe SW, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 1993; 74: 957–67.

    Article  PubMed  CAS  Google Scholar 

  177. Lowe SW, Bodis S, McClatchey A, et al. p53 status and the efficacy of cancer therapy in vivo. Science. 1994; 266: 807–810.

    Article  PubMed  CAS  Google Scholar 

  178. Ju JF, Banerjee D, Lenz HJ, et al. Restoration of wild-type p53 activity in p53-null HL-60 cells confers multidrug sensitivity. Clin Cancer Res. 1998; 4: 1315–22.

    PubMed  CAS  Google Scholar 

  179. O’Connor PM, Jackman J, Bae I, et al. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res 1997; 57:4285– 4300.

    Google Scholar 

  180. Weinstein JN, Myers TG, O’Connor PM, et al. An information-intensive approach to the molecular pharmacology of cancer. Science. 1997; 275: 343–9.

    Article  PubMed  CAS  Google Scholar 

  181. Yang B, Eshleman JR, Berger NA, Markowitz SD. Wild-type p53 protein potentiates cytotoxicity of therapeutic agents in human colon cancer cells. Clin Cancer Res. 1996; 2: 1649–57.

    PubMed  CAS  Google Scholar 

  182. Vasey PA, Jones NA, Jenkins S, Dive C, Brown R. Cisplatin, camptothecin, and taxol sensitivities of cells with p53-associated multidrug resistance. Mol Pharmacol. 1996; 50: 1536–40.

    PubMed  CAS  Google Scholar 

  183. Hawkins DS, Demers GW, Galloway DA. Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents. Cancer Res. 1996; 56: 892–8.

    PubMed  CAS  Google Scholar 

  184. Vikhanskaya F, D’Incalci M, Broggini M. Decreased cytotoxic effects of doxorubicin in a human ovarian cancer-cell line expressing wild-type p53 and WAF1/CIP1 genes. Int J Cancer. 1995; 61: 397–401.

    Article  PubMed  CAS  Google Scholar 

  185. Trepel M, Scheding S, Groscurth P, et al. A new look at the role of p53 in leukemia cell sensitivity to chemotherapy. Leukemia. 1997; 11: 1842–9.

    Article  PubMed  CAS  Google Scholar 

  186. Debernardis D, Sire EG, De Feudis P, et al. p53 status does not affect sensitivity of human ovarian cancer cell lines to paclitaxel. Cancer Res. 1997; 57: 870–4.

    Google Scholar 

  187. Fan S, Cherney B, Reinhold W, Rucker K, O’Connor PM. Disruption of p53 function in immortalized human cells does not affect survival or apoptosis after Taxol or vincristine treatment. Clin Cancer Res. 1998; 4: 1047–54.

    PubMed  CAS  Google Scholar 

  188. Wu GS, El-Diery WS. p53 and chemosensitivity. Nat Med. 1996; 2: 255–6.

    Article  PubMed  CAS  Google Scholar 

  189. Wahl AF, Donaldson KL, Fairchild C, et al. Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat Med. 1996; 2: 72–79.

    Article  PubMed  CAS  Google Scholar 

  190. Cross SM, Sanchez CA, Morgan CA, et al. A p53-dependent mouse spindle checkpoint. Science. 1995; 267: 1353–6.

    Article  PubMed  CAS  Google Scholar 

  191. Bergh J, Norberg T, Sjoegren S, Lindgren A, Holmberg L. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med. 1995; 1: 1029–34.

    Article  PubMed  CAS  Google Scholar 

  192. Boku N, Chin K, Hosokawa K, et al. Biological markers as a predictor for response and prognosis of unrresectable gastric cancer patients treated with 5-fluorouracil and cis-platinum. Clin Cancer Res. 1998; 4: 1469–74.

    PubMed  CAS  Google Scholar 

  193. Brett MC, Pickard M, Green B, et al. p53 protein overexpression and response to biomodulated 5-fluorouracil chemotherapy in patients with advanced colorectal cancer. Eur J Surg Oncol. 1996; 22: 182–5.

    Article  PubMed  CAS  Google Scholar 

  194. Buttitta F, Marchetti A, Gadducci A, et al. p53 alterations are predictive of chemoresistance and aggressiveness in ovarian carcinomas: a molecular and immunohistochemical study. Br J Cancer. 1997; 75: 230–5.

    Article  PubMed  CAS  Google Scholar 

  195. Clahsen PC, van de Velde CJ, Duval C, et al. p53 protein accumulation and response to adjuvant chemotherapy in premenopausal women with node-negative early breast cancer. J Clin Oncol. 1998; 16: 470–9.

    PubMed  CAS  Google Scholar 

  196. Degeorges A, de Roquancourt A, Extra JM, et al. Is p53 a protein that predicts the response to chemotherapy in node negative breast cancer? Breast Cancer Res Treat. 1998; 47: 47–55.

    Article  PubMed  CAS  Google Scholar 

  197. Di Leo A, Bajetta E, Biganzoli L, et al. An I.T.M.O. group study on second-line treatment in advanced epithelial ovarian cancer: an attempt to identify clinical and biological factors determining prognosis. Eur J Cancer. 1995; 31A: 2248–54.

    Article  Google Scholar 

  198. Elledge RM, Gray R, Monsour E, et al. Accumulation of p53 protein as a possible predictor of response to adjuvant combination chemotherapy with cyclophosphamide, methotrexate, fluorouracil, and prednisone for breast cancer. J Natl Cancer Inst. 1995; 87: 1254–6.

    Article  PubMed  CAS  Google Scholar 

  199. Jacquemier J, Penault-Llorca F, Viens P, et al. Breast cancer response to adjuvant chemotherapy in correlation with erbB2 and p53 expression. Anticancer Res. 1994; 14: 2773–8.

    PubMed  CAS  Google Scholar 

  200. Lenz HJ, Hayashi K, Salonga D, et al. p53 point mutations and thymidylate synthase messenger RNA levels in disseminated colorectal cancer: an analysis of response and survival. Clin Cancer Res. 1998; 4: 1243–50.

    PubMed  CAS  Google Scholar 

  201. Linn SC, Pinedo HM, van Ark-Otte J, et al. Expression of drug resistance proteins in breast cancer, in relation to chemotherapy. Int J Cancer. 1997; 71: 787–95.

    Article  PubMed  CAS  Google Scholar 

  202. Makris A, Powles TJ, Dowsett M, Allred C. p53 protein overexpression and chemosensitivity in breast cancer. Lancet 1995; 345: 1181–2.

    Article  PubMed  CAS  Google Scholar 

  203. Paradiso A, Rabinovich M, Vallejo C, et al. p53 and PCNA expression in advanced colorectal cancer: response to chemotherapy and long-term prognosis. Int J Cancer. 1996; 69: 437–41.

    Article  PubMed  CAS  Google Scholar 

  204. Righetti SC, Delia-Torre TG, Pilotti S, et al. A comparative study of p53 gene mutations, protein accumulation, and response to cisplatin-based chemotherapy in advanced ovarian carcinoma. Cancer Res. 1996; 56: 689–93.

    PubMed  CAS  Google Scholar 

  205. Rosell R, Gonzalez-Larriba JL, Alberola V, et al. Single-agent paclitaxel by 3-hour infusion in the treatment of non-small cell lung cancer: links between p53 and K-ras gene status and chemosensitivity. Semin Oncol. 1995; 22: 12–18.

    PubMed  CAS  Google Scholar 

  206. Rusch V, Klimstra D, Venkatraman E, et al. Aberrant p53 expression predicts clinical resistance to cisplatin-based chemotherapy in locally advanced non-small cell lung cancer. Cancer Res. 1995; 55: 5038–42.

    PubMed  CAS  Google Scholar 

  207. Smith-Sorensen B, Kaern J, Holm R, Dorum A, Trope C, Borresen-Dale AL. Therapy effect of either paclitaxel or cyclophosphamide combination treatment in patients with epithelial ovarian cancer and relation to TP53 gene status. Br J Cancer. 1998; 78: 375–81.

    Article  PubMed  CAS  Google Scholar 

  208. Stal O, Stenmark-Askmalm M, Wingren S, et al. p53 expression and the result of adjuvant therapy of breast cancer. Acta Oncol. 1995; 34: 767–70.

    Article  PubMed  CAS  Google Scholar 

  209. Renninson J, Baker BW, McGown AT, et al. Immunohistochemical detection of mutant p53 protein in epithelial ovarian cancer using polyclonal antibody CMI: correlation with histopathology and clinical features. Br J Cancer. 1994; 69: 609–12.

    Article  PubMed  CAS  Google Scholar 

  210. Kawasaki M, Nakanishi Y, Kuwano K, Yatsunami J, Takayama K, Hara N. The utility of p53 immunostaining of transbronchial biopsy specimens of lung cancer: p53 overexpression predicts poor prognosis and chemoresistance in advanced non-small cell lung cancer. Clin Cancer Res. 1997; 3: 1195–1200.

    PubMed  CAS  Google Scholar 

  211. Apolinario RM, van der Valk P, de Jong JS, et al. Prognostic value of the expression of p53, bcl-2, and bax oncoproteins, and neovascularization in patients with radically resected non-small-cell lung cancer. J Clin Oncol. 1997; 15: 2456–66.

    PubMed  CAS  Google Scholar 

  212. Tsujimoto Y, Croce CM. Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci USA. 1986; 83: 5214–8.

    Article  PubMed  CAS  Google Scholar 

  213. Nunez G, London L, Hockenbery D, Alexander M, McKearn JP, Korsmeyer SJ. Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines. J Immunol. 1990; 144: 3602–10.

    PubMed  CAS  Google Scholar 

  214. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988; 335: 440–2.

    Article  PubMed  CAS  Google Scholar 

  215. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990; 348: 334–6.

    Article  PubMed  CAS  Google Scholar 

  216. Matsuzaki Y, Nakayama K, Nakayama K, et al. Role of bcl-2 in the development of lymphoid cells from the hematopoietic stem cell. Blood. 1997; 89: 853–862.

    PubMed  CAS  Google Scholar 

  217. Uhlmann EJ, D’Sa-Eipper C, Subramanian T, Wagner AJ, Hay N, Chinnadurai G. Deletion of a nonconserved region of Bcl-2 confers a novel gain of function: suppression of apoptosis with concomitant cell proliferation. Cancer Res. 1996; 56: 2506–9.

    PubMed  CAS  Google Scholar 

  218. Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 1993; 53: 4701–14.

    PubMed  CAS  Google Scholar 

  219. Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol. 1994; 124: 1–6.

    Article  PubMed  CAS  Google Scholar 

  220. Reed JC. Bcl-2: prevention of apoptosis as a mechanism of drug resistance. Hematol Oncol Clin North Am. 1995; 9: 451–73.

    PubMed  CAS  Google Scholar 

  221. Strasser A, Huang DC, Vaux DL. The role of the bcl-2/ced-9 gene family in cancer and general implications of defects in cell death control for tumourigenesis and resistance to chemotherapy. Biochim Biophys Acta. 1997; 1333: F151–78.

    PubMed  CAS  Google Scholar 

  222. Allsopp TE, Wyatt S, Paterson HF, Davies AM. The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell. 1993; 73: 295–307.

    Article  PubMed  CAS  Google Scholar 

  223. Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med. 1997; 3: 614–20.

    Article  PubMed  CAS  Google Scholar 

  224. Brown R. The bcl-2 family of proteins. Br Med Bull. 1997; 53: 466–77.

    Article  PubMed  CAS  Google Scholar 

  225. Haldar S, Chintapalli J, Croce CM. Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res. 1996; 56: 1253–5.

    PubMed  CAS  Google Scholar 

  226. Siegel RM, Katsumata M, Miyashita T, Louie DC, Greene MI, Reed JC. Inhibition of thymocyte apoptosis and negative antigenic selection of bcl-2 transgenic mice. Proc Natl Acad Sci USA. 1992; 89: 7003–7.

    Article  PubMed  CAS  Google Scholar 

  227. Kondo S, Yin D, Morimura T, Oda Y, Kikuchi H, Takeuchi J. Transfection with a bcl-2 expression vector protects transplanted bone marrow from chemotherapy-induced myelosuppresseion. Cancer Res. 1994; 54: 2928–33.

    PubMed  CAS  Google Scholar 

  228. Offit K, Koduru PR, Hollis R, et al. 18q21 rearrangement in diffuse large cell lymphoma: incidence and clinical significance. Br J Haematol. 1989; 72: 178–83.

    Article  PubMed  CAS  Google Scholar 

  229. Yunis JJ, Mayer MG, Arnesen MA, Aeppli DP, Oken MM, Frizzera G. bcl-2 and other genomic alterations in the prognosis of large-cell lymphoma. N Engl J Med. 1989; 320: 1047–54.

    Article  PubMed  CAS  Google Scholar 

  230. Pezzella F, Jones M, Ralfkiaer E, Ersboll J, Gatter KC, Mason DY. Evaluation of bcl-2 protein expression and 14;18 translocation as prognostic markers in follicular lymphoma. Br J Cancer. 1992; 65: 87–89.

    Article  PubMed  CAS  Google Scholar 

  231. Jacobson JO, Wilkes BM, Kwaiatkowski DJ, Medeiros LJ, Aisenberg AC, Harris NL. bcl-2 rearrangements in de novo diffuse large cell lymphoma. Association with distinctive clinical features. Cancer. 1993; 72: 231–6.

    Article  PubMed  CAS  Google Scholar 

  232. Piris MA, Pezzella F, Martinez-Montero JC, et al. p53 and bcl-2 expression in high-grade B-cell lymphomas: correlation with survival time. Br J Cancer. 1994; 69: 337–41.

    Article  PubMed  CAS  Google Scholar 

  233. Romaguera JE, Pugh W, Luthra R, Goodacre A, Cabanillas F. The clinical relevance of t(14;18)/BCL-2 rearrangement and DEL 6q in diffuse large cell lymphoma and immunoblastic lymphoma. Ann Oncol. 1993; 4: 51–54.

    PubMed  CAS  Google Scholar 

  234. Wilson WH, Teruya-Feldstein J, Fest T, et al. Relationship of p53, bcl-2, and tumor proliferation to clinical drug resistance in non-Hodgkin’s lymphomas. Blood. 1997; 89: 601–9.

    PubMed  CAS  Google Scholar 

  235. Campos L, Rouault JP, Sabido O, et al. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood. 1993; 81: 3091–6.

    PubMed  CAS  Google Scholar 

  236. McDonnell TJ, Troncoso P, Brisbay SM, et al. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. 1992; 52: 6940–4.

    PubMed  CAS  Google Scholar 

  237. Takayama K, Ogata K, Nakanishi Y, Yatsunami J, Kawasaki M, Hara N. Bcl-2 expression as a predictor of chemosensitivities and survival in small cell lung cancer. Cancer J Sci Am. 1996; 2: 212.

    PubMed  CAS  Google Scholar 

  238. Bonetti A, Zaninelli M, Leone R, et al. bcl-2 but not p53 expression is associated with resistance to chemotherapy in advanced breast cancer. Clin Cancer Res. 1998; 4:2331– 2336.

    Google Scholar 

  239. van Slooten HJ, Clahsen PC, van Dierendonck JH, et al. Expression of Bcl-2 in node-negative breast cancer is associated with various prognostic factors, but does not predict response to one course of perioperative chemotherapy. Br J Cancer. 1996; 74: 78–85.

    Article  PubMed  Google Scholar 

  240. Amati B, Dalton S, Brooks MW, Littlewood TD, Evan GI, Land H. Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature. 1992; 359: 423–6.

    Article  PubMed  CAS  Google Scholar 

  241. Oswald F, Lovec H, Moeroey T, Lipp M. E2F-dependent regulation of human MYC: trans-activation by cyclins D1 and A overrides tumour suppressor protein functions. Oncogene. 1994; 9: 2029–36.

    PubMed  CAS  Google Scholar 

  242. Chiarugi V, Ruggiero M. Role of three cancer “master genes” p53, bc12 and c-myc on the apoptotic process. Tumori. 1996; 82: 205–9.

    PubMed  CAS  Google Scholar 

  243. Reyt E, Lavieille JP, Brambilla E, Barra Y, Riva C. [Expression of oncogenes C-myc, C-and N-ras in advanced cancers of the upper respiratory and digestive tracts. Correlation with tumor clinical response to chemotherapy]. Ann Otolaryngol Chir Cervicofac. 1993; 110: 310–5.

    PubMed  CAS  Google Scholar 

  244. Riva C, Lavieille JP, Reyt E, Brambilla E, Lunardi J, Brambilla C. Differential c-myc, cjun, c-raf and p53 expression in squamous cell carcinoma of the head and neck: implication in drug and radioresistance. Eur J Cancer B Oral Oncol. 1995; 31B: 384–91.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tolis, C., Ferreira, C.G., Pinedo, H.M., Giaccone, G. (2000). Molecular Pathways of Drug Resistance. In: Bronchud, M.H., Foote, M.A., Peters, W.P., Robinson, M.O. (eds) Principles of Molecular Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-222-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-222-7_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6274-7

  • Online ISBN: 978-1-59259-222-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics