Skip to main content

Selecting the Right Targets for Cancer Therapy

  • Chapter

Abstract

It will surely be through science and hard work, rather than some peculiar trick of magic or mere luck, that cancer will finally be defeated. To understand the prospects of cancer research, practicing clinicians and the public in general should have some idea of the present state of our knowledge on the subject. In the past two decades there has been an explosion of knowledge in the molecular aspects of cancer: some 200 genes and their respective protein products have been described as directly or indirectly linked to cancer. There are so many trees that there is a real risk of missing the forest. Cancer clinicians (medical oncologists, hematologists, general surgeons, gynecologists, urologists, etc.) find it increasingly more difficult to stay abreast of knowledge in the molecular aspects of these complex diseases. Indeed, some believe that in the not too distant future, relevant information will pass from the molecular pathology laboratory to the busy cancer clinical units only with the help of clever computer programs. Before clinicians can determine the curability or incurability of any given cancer, and to decide which sequence and combination of drugs to use to treat a patient, they will need to consult a computer program and the molecular pathology laboratory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cairns J. Cancer: Science and Society. WH Freeman, San Francisco, 1978.

    Google Scholar 

  2. Bailar JC III, Gornik HL. Cancer undefeated. N Engl J Med. 1997; 336: 1569–74.

    Article  PubMed  Google Scholar 

  3. Doll R, Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981; 66: 1191–98.

    PubMed  CAS  Google Scholar 

  4. Wang XD, Liu C, Bronson RT, et al. Beta-carotenes and squamous metaplasia in ferrets. J Natl Cancer Inst. 1999; 91: 60–64.

    Article  PubMed  CAS  Google Scholar 

  5. Tuyns AJ. Alcohol. In: Cancer Epidemiology and Prevention ( Schottenfeld D and Fraumeni JF Jr, eds.), WB Saunders, Philadelphia, 1982, pp. 293–304.

    Google Scholar 

  6. Langenfeld J, Kiyokawa H, Sekula D, Boyle J, Dmitrovsky E. Posttranslational regulation of cyclin D1 by retinoic acid: a chemoprevention mechanism. Proc Natl Acad Sci USA. 1997; 94: 12070–4.

    Article  PubMed  CAS  Google Scholar 

  7. Hong WK, Sporn MB. Recent advances in chemoprevention of cancer. Science. 1997; 278: 1073–7.

    Article  PubMed  CAS  Google Scholar 

  8. Buiatti E, Palli D, Decarli A, et al. A case-control study of gastric cancer and diet in Italy. II. Association with nutrients. Int J Cancer. 1990; 45: 896–901.

    Article  PubMed  CAS  Google Scholar 

  9. Greenwald P, Lanza E. Dietary fiber and colon cancer. Bol Asoc Med PR. 1986; 78: 311–3.

    CAS  Google Scholar 

  10. Fraumeni JF Jr. Epidemiology of cancer. In: Origins of Human Cancer: A Comprehensive Review ( Brugge J, Curran T, Harlow E, McCormick F, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1991, pp. 171–81.

    Google Scholar 

  11. De Caprio JA, Ludlow JW, Lynch D, et al. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell. 1989; 58: 1085–9.

    Article  Google Scholar 

  12. Heslop HE, Rooney CM. Adoptive cellular immunotherapy for EBV lymphoproliferative disease. Immunol Rev. 1997; 157: 217–222.

    Article  PubMed  CAS  Google Scholar 

  13. Rickinson AB, Moss DJ. Human cytotoxic T lymphocyte responses to Epstein–Barr virus infection. Annu Rev Immunol. 1997; 15: 405–31.

    Article  PubMed  CAS  Google Scholar 

  14. Bayerdörffer E, Neubauer A, Rudolph B, et al. Regression of primary gastric lymphoma of mucosa-associated lymphoid tissue type after cure of Helicobacter pylori infection. Lancet. 1995; 345: 1591–4.

    Article  PubMed  Google Scholar 

  15. Thiede C, Alpen B, Morgner A, et al. Ongoing somatic mutations and clonal expansions after cure of Helicobacter pylori infection in gastric mucosa-associated lymphoid tissue B-cell lymphoma. J Clin Oncol. 1998; 16: 3822–31.

    PubMed  CAS  Google Scholar 

  16. Russell MAH. Cigarette smoking: a natural history of a dependence disorder. Br J Med Psychol. 1971; 44: 1–16.

    Article  PubMed  CAS  Google Scholar 

  17. Patrick E, Maibach HI. Dermatotoxicology. In: Principles and Methods of Toxicology, 2nd edit. ( Hayes AW, ed.), Raven Press, New York, 1989, pp. 383–406.

    Google Scholar 

  18. Romano C, Goldstein A. Stereospecific nicotine receptors on rat brain membranes. Science. 1980; 210: 647–50.

    Article  PubMed  CAS  Google Scholar 

  19. Roitt I, Brostoff J, Male D. Immunology, 5th edit., Mosby, London, 1998.

    Google Scholar 

  20. Gonzalez FJ, Jai swal AK, Nebert DW. P-450 genes: evolution, regulation, and relationship to human cancer and pharmacogenetics. Cold Spring Harb Symp Quant Biol. 1986; 51: 879–90.

    Article  PubMed  CAS  Google Scholar 

  21. Law MR. Genetic predisposition to lung cancer. Br J Cancer. 1990; 61: 195–206.

    Article  PubMed  CAS  Google Scholar 

  22. Hong WK, Endicott J, Itri LM, et al. 13-cis-retinoic acid in the treatment of oral leukoplakia. N Engl J Med. 1986; 315: 1501–5.

    Article  PubMed  CAS  Google Scholar 

  23. Moriarty M, Dunn J, Darragh A, et al. Etretinate in the treatment of actinic keratosis. A double-blind crossover study. Lancet. 1982; 1: 364–5.

    Article  PubMed  CAS  Google Scholar 

  24. Moshell AN. Prevention of skin cancer in xeroderma pigmentosum with oral isotretinoin. Cutis. 1989; 43: 485–90.

    PubMed  CAS  Google Scholar 

  25. Hong WK, Lippman SM, Itri LM, et al. Prevention of secondary primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck. N Engl J Med. 1990; 323: 795–801.

    Article  PubMed  CAS  Google Scholar 

  26. Margolese RG. How do we interpret the results of the Breast Cancer Prevention Trial? CMAJ. 1998; 158: 1613–14.

    PubMed  CAS  Google Scholar 

  27. Goel V. Tamoxifen and breast cancer prevention: what should you tell your patients? CMAJ. 1998; 158: 1615–17.

    PubMed  CAS  Google Scholar 

  28. Pritchard KI. Is tamoxifen effective in prevention of breast cancer? Lancet. 1998; 352: 80–1.

    Article  PubMed  CAS  Google Scholar 

  29. Hodgson SV, Maher ER. A Practical Guide to Human Cancer Genetics. Cambridge University Press, 1993.

    Google Scholar 

  30. Collins FS. BRCA1—lots of mutations, lots of dilemmas. NEngl JMed. 1996; 334: 186–8.

    Article  CAS  Google Scholar 

  31. Giardiello FM, Brensinger JD, Petersen GM, et al. The use and interpretation of commercial APC gene testing for familial adenomatous polyposis. N Engl J Med. 1997; 336: 823–7.

    Article  PubMed  CAS  Google Scholar 

  32. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996; 87: 159–70.

    Article  PubMed  CAS  Google Scholar 

  33. Lynch HT, Smyrk T, Lynch J. An update of HNPCC (Lynch syndrome). Cancer Genet Cytogenet. 1997; 93: 84–99.

    Article  PubMed  CAS  Google Scholar 

  34. Serova OM, Mazoyer S, Puget N, et al. Mutations in BRCA1 and BRCA2 in breast cancer families: are there more breast-cancer susceptibility genes? Am J Hum Genet. 1997; 60: 486–95.

    PubMed  CAS  Google Scholar 

  35. Athma P, Rappaport R, Swift M. Molecular genotyping shows that ataxia-telangiectasia heterozygotes are predisposed to breast cancer. Cancer Genet Cytogenet. 1996; 92: 130–4.

    Article  PubMed  CAS  Google Scholar 

  36. Fitzgerald MG, Bean JM, Hedge SR, et al. Heterozygous ATM mutations do not contribute to early onset breast cancer. Cancer Genet Cytogenet. 1996; 92: 130–4.

    Article  Google Scholar 

  37. Swift M. Ataxia telangiectasia and risk of breast cancer. Lancet. 1997; 350: 740.

    Article  PubMed  CAS  Google Scholar 

  38. Reis A. Genetics and B-cell leukemia. Lancet. 1999; 353: 3.

    Article  PubMed  CAS  Google Scholar 

  39. American Society of Clinical Oncology (ASCO): Statement of the American Society of Clinical Oncology: Genetic testing for cancer susceptibility. J Clin Oncol. 1996; 14: 1730–6.

    Google Scholar 

  40. Kodish E, Wiesner GL, Mehlman M, et al. Genetic testing for cancer risk: how to reconcile the conflicts. JAMA. 1998; 279: 179–81.

    Article  PubMed  CAS  Google Scholar 

  41. Boyle P. Prostate specific antigen (PSA) testing as screening for prostate cancer: the current controversy. Ann Oncol. 1998; 9: 1263–4.

    Article  PubMed  CAS  Google Scholar 

  42. Bronchud MH, Scarffe JH, Thatcher N, et al. Phase I/II study of recombinant human granulocyte colony-stimulating factor in patients receiving intensive chemotherapy for small cell lung cancer. Br J Cancer. 1987; 56: 809–13.

    Article  PubMed  CAS  Google Scholar 

  43. Bronchud MH, Dexter TM. Clinical use of growth factors. Br Med Bull. 1989; 45: 590–9.

    PubMed  CAS  Google Scholar 

  44. Herna´ndez-Bronchud M. Growth factors and cancer. Br J Hosp Med. 1995; 53: 20–6.

    Google Scholar 

  45. ASCO (American Society of Clinical Oncology). Recommendations for the use of hematopoietic colony-stimulating factors: evidence-based, clinical practice guidelines. J Clin Oncol. 1994; 12: 2471–2508.

    Google Scholar 

  46. Croockewit AJ, Bronchud MH, Aapro MS, et al. A European perspective on haematopoietic growth factors in haemato-oncology: report of an expert meeting of the EORTC. Eur J Cancer. 1997; 33: 1732–46.

    Article  PubMed  CAS  Google Scholar 

  47. Emerson SG. Ex vivo expansion of hematopoietic precursors, progenitors, and stem cells: the next generation of cellular therapeutics. Blood. 1996; 8: 3082–8.

    Google Scholar 

  48. Lambrechts AC, van’t Veer LJ, Rodenhuis S. The detection of minimal numbers of contaminating epithelial tumor cells in blood or bone marrow: use, limitations and future of RNA-based methods. Ann Oncol. 1998; 9: 1269–76.

    Article  PubMed  CAS  Google Scholar 

  49. Hancock JT. Cell Signaling. Addison Wesley Longman, UK, 1997.

    Google Scholar 

  50. Liggett WH, Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol. 1998; 16: 1197–1206.

    PubMed  CAS  Google Scholar 

  51. Valero V, Hortobagyi GN. Primary chemotherapy: a better overall therapeutic option for patients with breast cancer. Ann Oncol. 1998; 9: 1151–4.

    Article  PubMed  CAS  Google Scholar 

  52. Harris AL. Are angiostatin and endostatin cures for cancer? Lancet. 1998; 351: 1598–9.

    Article  PubMed  CAS  Google Scholar 

  53. Brunn GJ, Hudson CC, Sekulic A, et al. Phosphorylation of the translational repressor PHAS-1 by the mammalian target of rapamycin. Science. 1997; 277: 99–101.

    Article  PubMed  CAS  Google Scholar 

  54. Boehm T, Folkman J, Browder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce drug resistance. Nature. 1997; 390: 404–7.

    Article  PubMed  CAS  Google Scholar 

  55. Hohenester E, Sasaki T, Olsen BR, Timpl R. Crystal structure of the angiogenesis inhibitor endostatin at 1.5 Å resolution. EMBO J. 1998; 17: 1656–64.

    Article  PubMed  CAS  Google Scholar 

  56. Slamon D, Leyland-Jones B, Shak S, et al. Addition of Herceptin (humanized anti-HER2 antibody) to first line chemotherapy for HER2 overexpressing metastatic breast cancer (HER2+/MBC) markedly increases anticancer activity: a randomized, multinational controlled phase III trial. Proc Am Soc Clin Oncol. 1998; 17: 98a (abstr 377).

    Google Scholar 

  57. Ezequiel MP, Robert F, et al. Phase I study of anti-epidermal growth factor receptor (EGFR) antibody C225 in combination with irradiation in patients with advanced squamous cell carcinoma of the head and neck (SCCHN). Proc Am Soc Clin Oncol. 1998; 17: 395a (abstr 1522).

    Google Scholar 

  58. Von Hoff DD. There are no bad anticancer agents, only bad clinical trial designs—Twentyfirst Richard and Hinda Rosenthal Foundation Award Lecture. Clin Cancer Res. 1998; 4: 1079–86.

    Google Scholar 

  59. Gale EF, Cundliffe E, Reynolds PE, Richmond MH, Waring MJ. The Molecular Basis of Antibiotic Action, John Wiley & Sons, London, 1972.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bronchud, M.H., Peters, W.P. (2000). Selecting the Right Targets for Cancer Therapy. In: Bronchud, M.H., Foote, M.A., Peters, W.P., Robinson, M.O. (eds) Principles of Molecular Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-222-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-222-7_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6274-7

  • Online ISBN: 978-1-59259-222-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics