Skip to main content

Genetic Determination of Androgen Responsiveness

  • Chapter
Gene Engineering in Endocrinology

Part of the book series: Contemporary Endocrinology ((COE,volume 22))

  • 101 Accesses

Abstract

In the human fetus, the testes begin to secrete testosterone between wk 6 and 8 of gestation. Androgens, testosterone and 5α-dihydrotestosterone (DHT), are required during the fetal period for growth and differentiation of the male reproductive tract, including the Wolffian ducts, urogenital sinus, and external genitalia primordia (1). This developmental phase is completed by 20 wks of gestation, when testosterone synthesis by Leydig cells in the fetal testes ceases. A second unique window of testicular testosterone secretion lasting approx 6 mo occurs during the immediate postnatal period in humans. Androgen actions during this period may imprint the central nervous system and determine the male pattern of gonadotropin secretion. The human testes then remain quiescent until testosterone synthesis and secretion is reinitiated for a third time at puberty. At this time, androgens promote the appearance of secondary male sex characteristics, including growth of the external genitalia, distribution of body hair, deepening of the voice, and increase in muscle mass. These steroid hormones initiate and maintain spermatogenesis and function of the epididymides, seminal vesicles, and prostate. They exert feedback control on the output of gonadotropins by the hypothalamic-pituitary axis. Androgens also act on the liver, kidneys, muscles, bones, and nervous and cardiovascular systems, but it is within the male reproductive tract that the molecular mechanisms of androgen action are best understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Griffin JE, Wilson JD. Disorders of the testes and the male reproductive tract. In: Wilson JD, Foster DW, Kronenberg HM, Larsen PM, eds. Williams Textbook of Endocrinology. WB Saunders, Philadelphia, 1998, pp. 819–875.

    Google Scholar 

  2. Grumbach MM, Conte FA. Disorders of sex differentiation. In: Wilson JD, Foster DW, Kronenberg HM, Larsen PM, eds. Williams Textbook of Endocrinology. WB Saunders, Philadelphia, 1998, pp. 1303–1425.

    Google Scholar 

  3. Bruchovsky N, Wilson JD. The conversion of testosterone to 5a-androstan-1713-o1–3-one by rat prostate in vivo and in vitro. J Biol Chem 1968; 243: 2012–2021.

    PubMed  CAS  Google Scholar 

  4. Imperato-McGinley JL, Guerrero L, Gautier T, Peterson RE. Steroid 5a-reductase deficiency in men: an inherited form of male pseudohermaphroditism. Science 1974; 186: 1213–1215.

    Article  PubMed  CAS  Google Scholar 

  5. Walsh PC, Madden JD, Harrod MJ, Goldstein J, MacDonald PC, Wilson JD. Familial incomplete pseudohermaphroditism, type 2: decreased dihydrotestosterone formation in pseudovaginal perineoscrotal hypospadias. N Engl J Med 1974; 291: 944–949.

    Article  PubMed  CAS  Google Scholar 

  6. Russell DW, Wilson JD. Steroid 5a-reductase: two genes/two enzymes. Annu Rev Biochem 1994; 63: 25–61.

    Article  PubMed  CAS  Google Scholar 

  7. Wilson JD, Griffin JE, Russell DW. Steroid 5a-reductase: one disorder/ two enzymes/ many unsolved problems. In Bhasin S, Gabelnick HL, Spieler JM, Swerdloff RS, Wang C, Kelly C, eds. Pharmacology, Biology and Clinical Applications of Androgens: Current Status and Future Prospects, Wiley-Liss, New York, 1995, pp. 57–63.

    Google Scholar 

  8. Wilson JD, Griffin JE, Russell DW. Steroid 5a-reductase 2 deficiency. Endocr Rev 1993; 14: 577–593.

    PubMed  CAS  Google Scholar 

  9. Mahendroo MS, Cala KM, Russell DW. 5a-Reduced androgens play a key role in murine parturition. Mol Endocrinol 1996; 10: 380–392.

    Article  PubMed  CAS  Google Scholar 

  10. Mahendroo MS, Cala KM, Landrum CP, Russell DW. Fetal death in mice lacking 5a-reductase type 1 caused by estrogen excess. Mol Endocrinol 1997; 11: 917–927.

    Article  PubMed  CAS  Google Scholar 

  11. Zhou Z-X, Wong C-I, Sar M, Wilson EM. The androgen receptor: an overview. Recent Prog Horm Res 1994; 49: 249–274.

    PubMed  CAS  Google Scholar 

  12. Lubahn DB, Joseph DR, Sar M, Tan J-A, Higgs HN, Larson DE, French FS, Wilson EM. The human androgen receptor: complementary deoxyribonucleic acid cloning, sequence analysis, and gene expression in prostate. Mol Endocrinol 1988; 2: 1265–1275.

    Article  PubMed  CAS  Google Scholar 

  13. Kuiper GGJM, Faber PW, van Rooij HCJ, van der Korput JAGM, Ris-Staplers C, Klassen P, Trapman J, Brinkmann AO. Structural organization of the human androgen receptor gene. J Mol Endocrinol 1989; 2: R1 - R4.

    Article  PubMed  CAS  Google Scholar 

  14. Faber PW, van Rooij HCJ, Schipper HJ, Brinkmann AO, Trapman J. Two different, overlapping pathways of transcription initiation are active on the TATA-less human androgen receptor promoter. J Biol Chem 1993; 268: 9296–9301.

    PubMed  CAS  Google Scholar 

  15. Mizokami A, Yeh S-Y, Chang C. Identification of 3’,5’-cyclic adenosine monophosphate response element and other cis-acting elements in the human androgen receptor gene promoter. Mol Endocrinol 1994; 8: 77–88.

    Article  PubMed  CAS  Google Scholar 

  16. Chen S, Supakar PC, Vellanoweth RL, Song CS, Chatterjee B, Roy AK. Functional role of a conformationally flexible homopurine/homopyrimidine domain of the androgen receptor gene promoter interacting with SPl and a pyrimidine single strand DNA-binding protein. Mol Endocrinol 1997; 11: 3–15.

    Article  PubMed  CAS  Google Scholar 

  17. Mizokami A, Chang C. Induction of translation by the 5’-untranslated region of human androgen receptor mRNA. J Biol Chem 1994; 269: 25655–25659.

    PubMed  CAS  Google Scholar 

  18. Gao T, McPhaul MJ. Functional activities of the A and B forms of the human androgen receptor in response to androgen receptor agonists and antagonists. Mol Endocrinol 1998; 12: 654–663.

    Article  PubMed  CAS  Google Scholar 

  19. Jenster G, vander Korput HAGM, van Vroonhoven C, vander Kwast TH, Trapman J, Brinkmann AO. Domains of the human androgen receptor involved in steroid binding, transcriptional activation and subcellular localization. Mol Endocrinol 1991; 5: 1396–1404.

    Article  PubMed  CAS  Google Scholar 

  20. Lubahn DB, Brown TR, Simental JA, Higgs HN, Migeon CJ, Wilson EM, French FS. Sequence of the intron/exon junctions of the coding region of the human androgen receptor gene and identification of a point mutation in a family with complete androgen insensitivity. Proc Natl Acad Sci USA 1989; 86: 9534–9538.

    Article  PubMed  CAS  Google Scholar 

  21. Doesburg P, Kuil CW, Berrevoets CA, Steketee K, Faber PW, Mulder E, Brinkmann AO, Trapman J. Functional in vivo interaction between the amino-terminal, transactivation domain and the ligand binding domain of the androgen receptor. Biochemistry 1997; 36: 1052–1064.

    Article  PubMed  CAS  Google Scholar 

  22. Freedman LP. Anatomy of the steroid receptor zinc finger region. Endocr Rev 1992; 13: 129–145.

    PubMed  CAS  Google Scholar 

  23. Zhou Z-X, Sar M, Simental JA, Lane MV, Wilson EM. Ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. J Biol Chem 1994; 269: 13115–13123.

    PubMed  CAS  Google Scholar 

  24. Pratt WB. Role of heat-shock proteins in steroid receptor function. In Parker M, ed. Frontiers in Molecular Biology: Steroid Hormone Action. IRL, Oxford, 1993, pp. 64–93.

    Google Scholar 

  25. Langley E, Zhou Z-X, Wilson EM. Evidence for an anti-parallel orientation of the ligand-activated human androgen receptor dimer. J Biol Chem 1995; 270: 29983–29990.

    Article  PubMed  CAS  Google Scholar 

  26. Wong CI, Zhou Z-X, Sar M, Wilson EM. Steroid requirement for androgen receptor dimerization and DNA binding. J Biol Chem 1993; 268: 19004–19012.

    PubMed  CAS  Google Scholar 

  27. Kemppainen JA, Lane MV, Sar M, Wilson EM. Androgen receptor phosphorylation, turnover, nuclear transport, and transcriptional activation. J Biol Chem 1992; 267: 968–974.

    PubMed  CAS  Google Scholar 

  28. Kupier GGJM, de Ruiter PE, Trapman J, Boersma WJA, Grootegoed JA, Brinkmann AO. Localization and hormonal stimulation of phosphorylation sites in the LNCaP-cell androgen receptor. Biochem J 1993; 291: 95–101.

    Google Scholar 

  29. Brzozowski AM, Pike ACW, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson J, Carlquist M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997; 389: 753–758.

    Article  PubMed  CAS  Google Scholar 

  30. Williams SP, Sigler PB. Atomic structure of progesterone complexed with its receptor. Nature 1998; 393: 392–395.

    Article  PubMed  CAS  Google Scholar 

  31. Glass CK. Differential recognition of target genes by nuclear receptor monomers, dimers and heterodimers. Endocr Rev 1994; 15: 391–407.

    PubMed  CAS  Google Scholar 

  32. Beato M, Sanchez-Pacheo A. Interaction of steroid hormone receptors with the transcription initiation complex. Endocr Rev 1996; 17: 587–609.

    PubMed  CAS  Google Scholar 

  33. Zhou Z, Corden JL, Brown TR. Identification and characterization of a novel androgen response element composed of a direct repeat. J Biol Chem 1997; 272: 8227–8235.

    Article  PubMed  CAS  Google Scholar 

  34. McEwan I, Gustafsson J-A. Interaction of the human androgen receptor transactivation function with the general transcription factor TFIIF. Proc Natl Acad Sci USA 1997; 94: 8485–8490.

    Article  PubMed  CAS  Google Scholar 

  35. Bubulya A, Wise SC, Shen X-Q, Burmeister LA, Shemshedini L. cJun can mediate androgen receptor-induced transactivation. J Biol Chem 1996; 271: 24583–24589.

    Article  PubMed  CAS  Google Scholar 

  36. Kallio PJ, Poukka H, Moilanen A, Janne OA, Palvimo JJ. Androgen-receptor mediated transcriptional regulation in the absence of direct interaction with a specific DNA element. Mol Endocrinol 1995; 9: 1017–1028.

    Article  PubMed  CAS  Google Scholar 

  37. Horwitz KB, Jackson TA, Bain DL, Richer JK, Takimoto GS, Tung L. Nuclear receptor coactivators and corepressors. Mol Endocrinol 1996; 10: 1167–1177.

    Article  PubMed  CAS  Google Scholar 

  38. Glass CK, Rose DW, Rosenfeld MG. Nuclear receptor coactivators. Curr Opin Cell Biol 1997; 9: 222–232.

    Article  PubMed  CAS  Google Scholar 

  39. Berrevoets CA, Doesburg P, Steketee K, Trapman J, Brinkmann AO. Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and the transcriptional coactivator TIF2 (transcriptional intermediary factor 2). Mol Endocrinol 1998; 12: 1172–1183.

    Article  PubMed  CAS  Google Scholar 

  40. Ding XF, Anderson CM, Ma H, Hong H, Uht RM, Kushner PJ, Stallcup MR. Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): multiple motifs with different binding specificities. Mol Endocrinol 1998; 12: 302–313.

    Article  PubMed  CAS  Google Scholar 

  41. Yao T-P, Ku G, Zhou N, Scully R, Livingston DM. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc Natl Acad Sci USA 1996; 93: 10626–10631.

    Article  PubMed  CAS  Google Scholar 

  42. Yeh S, Chang C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci USA 1996; 93: 5517–5521.

    Article  PubMed  CAS  Google Scholar 

  43. Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurolawa R, Ryan A, Kamel Y, Soderstrom M, Glass CK, Rosenfeld MG. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear co-repressor. Nature 1995; 377: 397–403.

    Article  PubMed  CAS  Google Scholar 

  44. Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 1995; 377: 454–457.

    Article  PubMed  CAS  Google Scholar 

  45. Quigley CA, DeBellis A, Marschke KB, El-Awady MK, Wilson EM, French FS. Androgen receptor defects: historical, clinical and molecular perspectives. Endocr Rev 1995; 16: 271–321.

    PubMed  CAS  Google Scholar 

  46. Brown TR. Androgen insensitivity syndrome. J Androl 1995; 16: 299–303.

    PubMed  CAS  Google Scholar 

  47. Lyon MF, Hawkes SG. X-linked gene for testicular feminization in the mouse. Nature 1970; 227: 1217–1219.

    Article  PubMed  CAS  Google Scholar 

  48. Gehring U, Tomkins GM, Ohno S. Effect of the androgen-insensitivity mutation on a cytoplasmic receptor for dihydrotestosterone. Nature 1971; 232: 106–107.

    CAS  Google Scholar 

  49. Stanley AJ, Gumbreck LG, Allison JE, Easley RB. Part I. Male pseudohermaphroditism in the laboratory Norway rat. Recent Prog Horm Res 1973; 29: 43–64.

    PubMed  CAS  Google Scholar 

  50. Bardin CW, Bullock LP, Sherins RJ, Mowszowicz I, Blackburn WR. Part II. Androgen metabolism and mechanism of action in male pseudohermaphroditism: a study of testicular feminization. Recent Prog Horm Res 1973; 29: 65–109.

    PubMed  CAS  Google Scholar 

  51. Yarbrough WG, Quarmby VE, Simental JA, Joseph DR, Sar M, Lubahn DB, Olsen KL, French FS, Wilson EM. A single base mutation in the androgen receptor gene causes androgen insensitivity in the testicular feminized rat. J Biol Chem 1990; 265: 8893–8900.

    PubMed  CAS  Google Scholar 

  52. Gaspar M-L, Meo T, Bourgarel P, Guenet J-L, Tosi M. A single base deletion in the Tfm androgen receptor gene creates a short lived messenger RNA that directs internal translation initiation. Proc Natl Acad Sci USA 1991; 88: 8606–8610.

    Article  PubMed  CAS  Google Scholar 

  53. Brown TR, Migeon CJ. Androgen insensitivity syndromes: paradox of phenotypic feminization with male genotype and normal testicular androgen secretion. In: Cohen MP, Foa PP, eds. Endocrinology and Metabolism: Progress in Research and Clinical Practice; Vol. 1-Hormone Resistance and Other Endocrine Paradoxes. Springer-Verlag, New York, 1987, pp. 157–203.

    Chapter  Google Scholar 

  54. Gottlieb B, Trifiro M, Lumbroso R, Pinsky L. The androgen receptor gene mutation database. Nucl Acid Res 1997; 25: 158–162.

    Article  CAS  Google Scholar 

  55. LaSpada AR, Wilson EM, Lubahn DB. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991; 352: 77–79.

    Article  CAS  Google Scholar 

  56. Trifiro MA, Kazemi-Esfarjani P, Pinsky L. X-linked muscular atrophy and the androgen receptor. Trends Endocrinol Metab 1994; 5: 416–421.

    Article  PubMed  CAS  Google Scholar 

  57. Choong CS, Kemppainen JA, Zhou Z-X, Wilson EM. Reduced androgen receptor gene expression with first exon CAG repeat expansion. Mol Endocrinol 1996; 10: 1527–1535.

    Article  PubMed  CAS  Google Scholar 

  58. Veldsholte J, Ris-Staplers C, Kuiper GGJM, Jenster G, Berrevoets C, Classen E, van Rooij HCJ, Trapman J, Brinkmann AO, Mulder E. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun 1990; 173: 534–540.

    Article  Google Scholar 

  59. Newmark JR, Hardy DO, Tonb DC, Carter BS, Epstein JI, Isaacs WB, Brown TR, Barrack ER. Androgen receptor gene mutations in human prostate cancer. Proc Natl Acad Sci USA 1992; 89: 6319–6323.

    Article  PubMed  CAS  Google Scholar 

  60. Culig Z, Hobisch A, Cronauer MV, Cato ACB, Hittmair A, Radmayr C, Eberle J, Bartsch G, Klocker H. Mutant androgen receptor detected in an advanced stage carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol 1993; 7: 1541–1550.

    Article  PubMed  CAS  Google Scholar 

  61. Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK, Keer HN, Balk SP. Mutation of the androgen receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 1995; 332: 1393–1398.

    Article  PubMed  CAS  Google Scholar 

  62. Kovisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J, Trapman J, Cleutjens K, Noordzij A, Visacorpi T, Kallioniemi O-P. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 1997; 57: 314–319.

    Google Scholar 

  63. Culig Z, Hobisch A, Cronauer MV, Radmayr C, Trapman J, Hittmair A, Bartsch G, Klocker H. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor and epidermal growth factor. Cancer Res 1994; 54: 5474–5478.

    PubMed  CAS  Google Scholar 

  64. Schoenberg MP, Hakimi JM, Wang S, Bova GS, Epstein JI, Fischbeck KH, Isaacs WB, Walsh PC, Barrack ER. Microsatellite mutation (CAG24–18) in the androgen receptor gene in human prostate cancer. Biochem Biophys Res Commun 1994; 198: 74–80.

    Article  PubMed  CAS  Google Scholar 

  65. Irvine RA, Yu MC, Ross RK, Coetzee GA. The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res 1995; 55: 1937–1940.

    PubMed  CAS  Google Scholar 

  66. Giovannucci E, Stampfer MJ, Krithivas K, Brown M, Dahl D, Brufsky A, Talcott J, Hennekens CH, Kantoff PW. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 1997; 94: 3320–3323.

    Article  PubMed  CAS  Google Scholar 

  67. Coetzee GA, Ross RK. Re: prostate cancer and the androgen receptor. J Natl Cancer Inst 1994; 86: 872–873.

    Article  PubMed  CAS  Google Scholar 

  68. Wooster R, Mangion J, Eeles R, Smith S, Dowsett M, Averill D, Barrett-Lee P, Easton DF, Ponder BAJ, Stratton MR. A germline mutation in the androgen receptor gene in two brothers with breast cancer and Reifenstein syndrome. Nature Genetics 1992; 2: 132–134.

    Article  PubMed  CAS  Google Scholar 

  69. Lobaccaro J-M, Lumbroso S, Belon C, Galtier-Dereure F, Bringer J, Lesimple T, Namer M, Cutuli BF, Pujol H, Sultan C. Androgen receptor gene mutation in male breast cancer. Hum Mol Genetics 1993; 2: 1799–1802.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brown, T.R. (2000). Genetic Determination of Androgen Responsiveness. In: Shupnik, M.A. (eds) Gene Engineering in Endocrinology. Contemporary Endocrinology, vol 22. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-221-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-221-0_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-147-9

  • Online ISBN: 978-1-59259-221-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics