Skip to main content

The Androgen Receptor, Androgen Insensitivity, and Prostate Cancer

  • Chapter
Gene Engineering in Endocrinology

Part of the book series: Contemporary Endocrinology ((COE,volume 22))

  • 99 Accesses

Abstract

Androgens control a wide range of processes in vertebrates, from important developmental events in embryogenesis, to functions occurring as a part of normal adult physiology (1). In mammals, two steroids, testosterone and its 5α-reduced metabolite 5α-dihydrotestosterone (5α-DHT), serve as the principal circulating androgens. Individually, each of these hormones exerts specific functions relative to the events modulated by androgen. Both hormones, however, are required to account for the entire spectrum of androgen-regulated phenomena. How some processes are preferentially dependent on one or the other of the two hormones remains the subject of active study (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Griffin JE, McPhaul MJ, Russell DW,Wilson JD. The androgen resistance syndromes: steroid 5reductase 2 deficiency, testicular feminization, and related disorders. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Diseases, 7th ed., vol. II. McGraw-Hill, New York, 1995, pp. 2967–2998.

    Google Scholar 

  2. Wilson JD. Role of dihydrotestosterone in androgen action. Prostate Suppl 1996; 6: 88–92.

    Article  PubMed  CAS  Google Scholar 

  3. Quigley CA, De Bellis A, Marschke KB, el-Awady MK, Wilson EM, French FS. Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev 1995; 16: 271–321.

    PubMed  CAS  Google Scholar 

  4. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P. The nuclear receptor superfamily the second decade. Cell 1995; 83: 835–839.

    Article  PubMed  CAS  Google Scholar 

  5. Lubahn DB, Joseph DR, Sar M, Tan J, Higgs HN, Larson RE, French FS, Wilson EM. The human androgen receptor: complementary deoxyribonucleic acid cloning, sequence analysis and gene expression in prostate. Mol Endocrinol 1988; 2: 1265–1275.

    Article  PubMed  CAS  Google Scholar 

  6. Umesono K, Evans RM. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 1989; 57: 1139–1146.

    Article  PubMed  CAS  Google Scholar 

  7. Giguere V, Hollenberg SM, Rosenfeld MG, Evans RM. Functional domains of the human glucocorticoid receptor. Cell 1986; 46: 645–652.

    Article  PubMed  CAS  Google Scholar 

  8. Kumar V, Green S, Staub A, Chambon P. Localisation of the oestradiol-binding and putative DNA-binding domains of the human oestrogen receptor. EMBO J 1986; 5: 2231–2236.

    PubMed  CAS  Google Scholar 

  9. Carson MA, Tsai MJ, Conneely OM, Maxwell BL, Clark JH, Dobson AD, Elbrecht A, Toft DO, Schrader WT, O’Malley BW. Structure-function properties of the chicken progesterone receptor A synthesized from complementary deoxyribonucleic acid. Mol Endocrinol 1987; 1: 791–801.

    Article  PubMed  CAS  Google Scholar 

  10. Cooper B, Gruber JA, McPhaul MJ. Hormone-binding and solubility properties of fusion proteins containing the ligand-binding domain of the human androgen receptor. J Steroid Biochem Mol Biol 1996; 57: 251–257.

    Article  PubMed  CAS  Google Scholar 

  11. Simental JA, Sar M, Lane MV, French FS, Wilson EM. Transcriptional activation and nuclear targeting signals of the human androgen receptor. J Biol Chem 1991; 266: 510–518.

    PubMed  CAS  Google Scholar 

  12. Jenster G, van der Korput HA, van Vroonhoven C, van der Kwast TH, Trapman J, Brinkmann AO. Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol Endocrinol 1991; 5: 1396–1404.

    Article  PubMed  CAS  Google Scholar 

  13. Gao TS, Marcelli M, McPhaul MJ. Transcriptional activation and transient expression of the human androgen receptor. J Steroid Biochem Mol Biol 1996; 59: 9–20.

    Article  PubMed  CAS  Google Scholar 

  14. Choong CS, Kemppainen JA, Wilson EM. Evolution of the primate androgen receptor-a structural basis for disease. J Mol Evol 1998; 47: 334–342.

    Article  PubMed  CAS  Google Scholar 

  15. Sleddens HF, Oostra BA, Brinkmann AO, Trapman J. Trinucleotide (GGN) repeat polymorphism in the human androgen receptor (AR) gene. Hum Mol Genetics 1993; 2: 493.

    Article  CAS  Google Scholar 

  16. McPhaul MJ, Marcelli M, Tilley WD, Griffin JE, Isidro-Gutierrez RF, Wilson JD. Molecular basis of androgen resistance in a family with a qualitative abnormality of the androgen receptor and responsive to high-dose androgen therapy. J Clin Invest 1991; 87: 1413–1421.

    Article  PubMed  CAS  Google Scholar 

  17. Sleddens HF, Oostra BA, Brinkmann AO, Trapman J. Trinucleotide repeat polymorphism in the androgen receptor gene (AR). Nucleic Acids Res 1992; 20: 1427.

    Article  PubMed  CAS  Google Scholar 

  18. Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 1992; 12: 241–253.

    Article  PubMed  CAS  Google Scholar 

  19. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991; 352: 77–79.

    Article  PubMed  Google Scholar 

  20. Giovannucci E, Stampfer MJ, Krithivas K, Brown M, Dahl D, Brufsky A, Talcott J, Hennekens CH, Kantoff PW. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 1997; 94: 3320–3323.

    Article  PubMed  CAS  Google Scholar 

  21. Stanford JL, Just JJ, Gibbs M, Wicklund KG, Neal CL, Blumenstein BA, Ostrander EA. Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk. Cancer Res 1997; 57: 1194–1198.

    PubMed  CAS  Google Scholar 

  22. Ingles SA, Ross RK, Yu MC, Irvine RA, La Pera G, Haile RW, Coetzee GA. Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst 1997; 89: 166–170.

    Article  PubMed  CAS  Google Scholar 

  23. Hardy DO, Scher HI, Bogenreider T, Sabbatini P, Zhang ZF, Nanus DM, Catterall JF. Androgen receptor CAG repeat lengths in prostate cancer: correlation with age of onset. J Clin Endocrinol Metab 1996; 81: 4400–4405.

    Article  PubMed  CAS  Google Scholar 

  24. Jensen EV, Suzuki T, Numata M, Smith S, DeSombre ER. Estrogen-binding substances of target tissues. Steroids 1969; 13: 417–427.

    Article  PubMed  CAS  Google Scholar 

  25. Brown TR, Maes M, Rothwell SW, Migeon CJ. Human complete androgen insensitivity with normal dihydrotestosterone receptor binding capacity in cultured genital skin fibroblasts: evidence for a qualititative abnormality of the receptor. J Clin Endocrinol Metab 1982; 55: 61–69.

    Article  PubMed  CAS  Google Scholar 

  26. Griffin JE, Durrant JL. Qualitative receptor defects in families with androgen resistance: failure of stabilization of the fibroblast cytosol androgen receptor. J Clin Endocrinol Metab 1982; 55: 465–474.

    Article  PubMed  CAS  Google Scholar 

  27. Pinsky L, Kaufman M, Summitt RL. Congenital androgen insensitivity due to a qualitatively abnormal androgen receptor. Am J Med Genetics 1981; 10: 91–99.

    Article  CAS  Google Scholar 

  28. Traish AM, Muller RE, Wotiz HH. Differences in the physicochemical characteristics of androgen-receptor complexes formed in vivo and in vitro. Endocrinology 1984; 114: 1761–1769.

    Article  PubMed  CAS  Google Scholar 

  29. Rees HD, Bonsall RW, Michael RP. Sites of action of testosterone in the brain of the female primate. Exp Brain Res 1986; 63: 67–75.

    Article  PubMed  CAS  Google Scholar 

  30. Beckman WC Jr, Mickey DD, Fried FA. Autoradiographic localization of estrogen and androgen target cells in human and rat prostate carcinoma. J Urol 1985; 133: 724–728.

    PubMed  Google Scholar 

  31. Zegers ND, Claassen E, Neelen C, Mulder E, van Laar JH, Voorhorst MM, Berrevoets CA, Brinkmann AO, van der Kwast TH, Ruizeveld de Winter JA, et al. Epitope prediction and confirmation for the human androgen receptor: generation of monoclonal antibodies for multi-assay performance following the synthetic peptide strategy. Biochim Biophys Acta 1991; 1073: 23–32.

    Article  PubMed  CAS  Google Scholar 

  32. Chang CS, Whelan CT, Popovich TC, Kokontis J, Liao ST. Fusion proteins containing androgen receptor sequences and their use in the production of poly-and monoclonal anti-androgen receptor antibodies. Endocrinology 1989; 125: 1097–1099.

    Article  PubMed  CAS  Google Scholar 

  33. Husmann DA, Wilson CM, McPhaul MJ, Tilley WD, Wilson JD. Antipeptide antibodies to two distinct regions of the androgen receptor localize the receptor protein to the nuclei of target cells in the rat and human prostate. Endocrinology 1991; 126: 2359–2368.

    Article  Google Scholar 

  34. Young CY, Murthy LR, Prescott JL, Johnson MP, Rowley DR, Cunningham GR, Killian CS, Scardino PT, VonEschenbach A, Tindall DJ. Monoclonal antibodies against the androgen receptor: recognition of human and other mammalian androgen receptors. Endocrinology 1988; 123: 601–610.

    Article  PubMed  CAS  Google Scholar 

  35. Janssen PJ, Brinkmann AO, Boersma WJ, Van der Kwast TH. Immunohistochemical detection of the androgen receptor with monoclonal antibody F39.4 in routinely processed, paraffin-embedded human tissues after microwave pre-treatment. J Histochem Cytochem 1991; 42: 1169–1175.

    Article  Google Scholar 

  36. van Laar JH, Voorhorst-Ogink MM, Zegers ND, Boersma WJ, Claassen E, van der Korput JA, Ruizeveld de Winter JA, van der Kwast TH, Mulder E, Trapman J, et al. Characterization of polyclonal antibodies against the N-terminal domain of the human androgen receptor. Mol Cell Endocrinol 1989; 67: 29–38.

    Article  PubMed  Google Scholar 

  37. Marivoet S, Hertogen M, Verhoeven G, Heyns W. Antibodies against synthetic peptides recognize the human and rat androgen receptor. J Steroid Biochem Mol Biol 1991; 37: 39–45.

    Article  Google Scholar 

  38. Otten AD, Sanders MM, McKnight GS. The MMTV LTR promoter is induced by progesterone and dihydrotestosterone but not by estrogen. Mol Endocrinol 1988; 2: 143–147.

    Article  PubMed  CAS  Google Scholar 

  39. Ham J, Thomson A, Needham M, Webb P, Parker M. Characterization of response elements for androgens, glucocorticoids and progestins in mouse mammary tumour virus. Nucleic Acids Res 1988; 16: 5263–5276.

    Article  PubMed  CAS  Google Scholar 

  40. Cleutjens KB, van der Korput HA, van Eekelen CC, van Rooij HC, Faber PW, Trapman J. An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter. Mol Endocrinol 1997; 11: 148–161.

    Article  PubMed  CAS  Google Scholar 

  41. Kasper S, Rennie PS, Bruchovsky N, Sheppard PC, Cheng H, Lin L, Shiu RP, Snoek R, Matusik RJ. Cooperative binding of androgen receptors to two DNA sequences is required for androgen induction of the probasin gene. J Biol Chem 1994; 269:31,763–31,769.

    CAS  Google Scholar 

  42. Fang Y, Fliss AE, Robins DM, Caplan AJ. Hsp90 regulates androgen receptor hormone binding affinity in vivo. J Biol Chem 1996; 271:28,697–28,702.

    CAS  Google Scholar 

  43. Veldscholte J, Berrevoets CA, Brinkmann AO, Grootegoed JA, Mulder E. Anti-androgens and the mutated androgen receptor of LNCaP cells: differential effects on binding affinity, heat-shock protein interaction, and transcription activation. Biochemistry 1992; 31: 2393–2399.

    Article  PubMed  CAS  Google Scholar 

  44. Zhou ZX, Sar M, Simental JA, Lane MV, Wilson EM. A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain & modulation. J Biol Chem 1994; 269:13,115–13,123.

    CAS  Google Scholar 

  45. Jenster G, Trapman J, Brinkmann AO. Nuclear import of the human androgen receptor. Biochem J 1993; 293: 761–768.

    PubMed  CAS  Google Scholar 

  46. Allan GF, Leng X, Tsai SY, Weigel NL, Edwards DP, Tsai MJ, O’Mailley, BW. Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J Biol Chem 1992; 267:19,513–19,520.

    CAS  Google Scholar 

  47. Beekman JM, Allan GF, Tsai SY, Tsai MJ, O’Malley BW. Transcriptional activation by the estrogen receptor requires a conformational change in the ligand binding domain. Mol Endocrinol 1993; 7: 1266–1274.

    Article  PubMed  CAS  Google Scholar 

  48. Kuil CW, Berrevoets CA, Mulder E. Ligand-induced conformational alterations of the androgen receptor analyzed by limited trypsinization. Studies on the mechanism of antiandrogen action. J Biol Chem 1995; 270:27,569–27,576.

    CAS  Google Scholar 

  49. Kallio PJ, Janne OA, Palvimo JJ. Agonists, but not antagonists, alter the conformation of the hormone-binding domain of androgen receptor. Endocrinology 1994; 134: 998–1001.

    Article  PubMed  CAS  Google Scholar 

  50. Baumann H, Paulsen K, Kovacs H, Berglund H, C AP, Gustafsson JA, Hard T. Refined solution structure of the glucocorticoid receptor DNA-binding domain. Biochemistry 1993; 32:13,463–13,471.

    CAS  Google Scholar 

  51. Schwabe JW, Neuhaus D, Rhodes D. Solution structure of the DNA-binding domain of the oestrogen receptor. Nature 1990; 348: 458–461.

    Article  PubMed  CAS  Google Scholar 

  52. Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR, Sigler PB. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 1991; 352: 497–505.

    Article  PubMed  CAS  Google Scholar 

  53. Schwabe JW, Chapman L, Finch JT, Rhodes D. The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. Cell 1993; 75: 567–578.

    Article  PubMed  CAS  Google Scholar 

  54. Schwabe JW, Fairall L, Chapman L, Finch JT, Dutnall RN, Rhodes D. The cocrystal structures of two zinc-stabilized DNA-binding domains illustrate different ways of achieving sequence-specific DNA recognition. Cold Spring Harbor Symp Quant Biol 1993; 58: 141–147.

    Article  PubMed  CAS  Google Scholar 

  55. Rastinejad F, Perlmann T, Evans RM, Sigler PB. Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature 1995; 375: 203–211.

    Article  PubMed  CAS  Google Scholar 

  56. Gewirth DT, Sigler PB. The basis for half-site specificity explored through a non-cognate steroid receptor-DNA complex. Nat Struct Biol 1995; 2: 386–394.

    Article  PubMed  CAS  Google Scholar 

  57. Gronemeyer H, Moras D. Nuclear receptors. How to finger DNA. Nature 1995; 375: 190–191.

    Article  PubMed  CAS  Google Scholar 

  58. Luisi BF, Schwabe JW, Freedman LP. The steroid/nuclear receptors: from three-dimensional structure to complex function. Vitam Horm 1994; 49: 1–47.

    Article  PubMed  CAS  Google Scholar 

  59. Freedman LP, Luisi BF. On the mechanism of DNA binding by nuclear hormone receptors: a structural and functional. J Cell Biochem 1993; 51: 140–150.

    Article  PubMed  CAS  Google Scholar 

  60. Danielsen M, Hinck L, Ringold GM. Two amino acids within the knuckle of the first zinc finger specify DNA response element activation by the glucocorticoid receptor. Cell 1989; 57: 1131–1138.

    Article  PubMed  CAS  Google Scholar 

  61. Mader S, Kumar V, de Verneuil H, Chambon P. Three amino acids of the oestrogen receptor are essential to its ability to distinguish an oestrogen from a glucocorticoid-responsive element. Nature 1989; 338: 271–274.

    Article  PubMed  CAS  Google Scholar 

  62. Umesono K, Evans RM. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 1989; 57: 1139–1146.

    Article  PubMed  CAS  Google Scholar 

  63. Lobaccaro JM, Poujol N, Chiche L, Lumbroso S, Brown TR, Sultan C. Molecular modeling and in vitro investigations of the human androgen receptor DNA-binding domain: application for the study of two mutations. Mol Cell Endocrinol 1996; 116: 137–147.

    Article  PubMed  CAS  Google Scholar 

  64. Bruggenwirth HT, Boehmer AL, Lobaccaro JM, Chiche L, Sultan C, Trapman J, Brinkmann AO. Substitution of A1a564 in the first zinc cluster of the deoxyribonucleic acid (DNA)-binding domain of the androgen receptor by Asp, Asn, or Leu exerts differential effects on DNA binding. Endocrinology 1968; 139: 103–110.

    Article  Google Scholar 

  65. Wagner RL, Apriletti JW, McGrath ME, West BL, Baxter JD, Fletterick RJ. A structural role for hormone in the thyroid hormone receptor. Nature 1995; 378: 690–697.

    Article  PubMed  CAS  Google Scholar 

  66. Renaud JP, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, Moras D. Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature 1995; 378: 681–689.

    Article  PubMed  CAS  Google Scholar 

  67. Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature 1995; 375: 377–382.

    Article  PubMed  CAS  Google Scholar 

  68. Wurtz JM, Bourguet W, Renaud JP, Vivat V, Chambon P, Moras D, Gronemeyer H. A canonical structure for the ligand-binding domain of nuclear receptors. Nat Struct Biol 1996; 3: 206.

    Article  PubMed  CAS  Google Scholar 

  69. Rochel N, Renaud JP, Ruff M, Vivat V, Granger F, Bonnier D, Lerouge T, Chambon P, Gronemeyer H, Moras D. Purification of the human RARgamma ligand-binding domain and crystallization of its complex with all-trans retinoic acid. Biochem Biophys Res Commun 1997; 230: 293–296.

    Article  PubMed  CAS  Google Scholar 

  70. Klaholz BP, Renaud JP, Mitschler A, Zusi C, Chambon P, Gronemeyer H, Moras D. Conformational adaptation of agonists to the human nuclear receptor RAR gamma. Nat Struct Biol 1998; 5: 199–202.

    Article  PubMed  CAS  Google Scholar 

  71. Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA, Carlquist M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997; 389: 753–758.

    Article  PubMed  CAS  Google Scholar 

  72. Wurtz JM, Egner U, Heinrich N, Moras D, Mueller-Fahrnow A. Three-dimensional models of estrogen receptor ligand binding domain complexes, based on related crystal structures and mutational and structure-activity relationship data J Med Chem 1998; 41: 1803–1814.

    Article  PubMed  CAS  Google Scholar 

  73. Williams SP, Sigler PB. Atomic structure of progesterone complexed with its receptor. Nature 1998; 393: 392–396.

    Article  PubMed  CAS  Google Scholar 

  74. Jenster G, Spencer TE, Burcin MM, Tsai SY, Tsai MJ, O’Malley BW. Steroid receptor induction of gene transcription: a two-step model. Proc Natl Acad Sci USA 1997; 94: 7879–7884.

    Article  PubMed  CAS  Google Scholar 

  75. Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A, Beug H, Vennstrom B. The c-erbA protein is a high-affinity receptor for thyroid hormone. Nature 1986; 324: 635–640.

    Article  PubMed  CAS  Google Scholar 

  76. Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM. The c-erb-A gene encodes a thyroid hormone receptor. Nature 1986; 324: 641–646.

    Article  PubMed  CAS  Google Scholar 

  77. Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 1995; 377: 454–457.

    Article  PubMed  CAS  Google Scholar 

  78. Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Soderstrom M, Glass CK, et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995; 377: 397–404.

    Article  PubMed  CAS  Google Scholar 

  79. Smith CL, Nawaz Z, O’Malley BW. Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol Endocrinol 1997; 11: 657–666.

    Article  PubMed  CAS  Google Scholar 

  80. Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung L, Horwitz KB. The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol Endocrinol 1997; 11: 693–705.

    Article  PubMed  CAS  Google Scholar 

  81. Orate SA, Boonyaratanakornkit V, Spencer TE, Tsai SY, Tsai MJ, Edwards DP, O’Malley BW. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function. J Biol Chem 1998; 273:12,101–12,108.

    Google Scholar 

  82. Shibata H, Spencer TE, Onate SA, Jenster G, Tsai SY, Tsai MI, O’Malley BW. Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog Horm Res 1997; 52: 141–164.

    PubMed  CAS  Google Scholar 

  83. Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ, O’Malley BW. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 1997; 389: 194–198.

    Article  PubMed  CAS  Google Scholar 

  84. Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, Evans RM. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 1997; 90: 569–580.

    Article  PubMed  CAS  Google Scholar 

  85. Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, Rosenfeld MG. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 1996; 85: 403–414.

    Article  PubMed  CAS  Google Scholar 

  86. Voegel JJ, Heine MJ, Tini M, Vivat V, Chambon P, Gronemeyer H. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J 1998; 17: 507–519.

    Article  PubMed  CAS  Google Scholar 

  87. Voegel JJ, Heine MJ, Zechel C, Chambon P, Gronemeyer H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J 1996; 15: 3667–3675.

    PubMed  CAS  Google Scholar 

  88. Kalkhoven E, Valentine JE, Heery DM, Parker MG. Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J 1998; 17: 232–243.

    Article  PubMed  CAS  Google Scholar 

  89. Zhu Y, Qi C, Calandra C, Rao MS, Reddy JK. Cloning and identification of mouse steroid receptor coactivator-1 (mSRC-1), as a coactivator of peroxisome proliferator-activated receptor gamma. Gene Expr 1996; 6: 185–195.

    PubMed  CAS  Google Scholar 

  90. Hong H, Kohli K, Garabedian MJ, Stallcup MR. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol Cell Biol 1997; 17: 2735–2744.

    PubMed  CAS  Google Scholar 

  91. Heery DM, Kalkhoven E, Hoare S, Parker MG. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 1997; 387: 733–736.

    Article  PubMed  CAS  Google Scholar 

  92. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 1997; 277: 965–968.

    Article  PubMed  CAS  Google Scholar 

  93. Westin S, Kurokawa R, Nolte RT, Wisely GB, Mcinerney EM, Rose DW, Milburn MV, Rosenfeld MG, Glass CK. Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators. Nature 1998; 395: 199–202.

    Article  PubMed  CAS  Google Scholar 

  94. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV. Ligand binding and co-activator assembly of the peroxisome proliferatoractivated receptor-gamma. Nature 1998; 395: 137–143.

    Article  PubMed  CAS  Google Scholar 

  95. Yeh S, Chang C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci USA 1996; 93: 5517–5521.

    Article  PubMed  CAS  Google Scholar 

  96. Santoro M, Dathan NA, Berlingieri MT, Bongarzone I, Paulin C, Grieco M, Pierotti MA, Vecchio G, Fusco A. Molecular characterization of RET/PTC3: a novel rearranged version of the RET proto-oncogene in a human thyroid papillary carcinoma. Oncogene 1994; 9: 509–516.

    PubMed  CAS  Google Scholar 

  97. Bongarzone I, Butti MG, Coronelli S, Borrello MG, Santoro M, Mondellini P, Pilotti S, Fusco A, Della Porta G, Pierotti MA. Frequent activation of ret protooncogene by fusion with a new activating gene in papillary thyroid carcinomas. Cancer Res 1994; 54: 2979–2985.

    PubMed  CAS  Google Scholar 

  98. Yeh S, Miyamoto H, Shima H, Chang C. From estrogen to androgen receptor: a new pathway for sex hormones in prostate. Proc Natl Acad Sci USA 1998; 95: 5527–5532.

    Article  PubMed  CAS  Google Scholar 

  99. Gao TS, Brantley K, Bolu E, McPhaul MJ. RFG interacts with the human androgen receptor in a ligand-dependent fashion, but functions only weakly as a coactivator in cotransfection assays. Mol Endocrinol 1999; 13: 1645–1656.

    Article  PubMed  CAS  Google Scholar 

  100. Alen P, Claessens F, Schoenmakers E, Swinnen JV, Verhoeven G, Rombauts W, Peeters B. Interaction of the putative androgen receptor-specific coactivator ARA70/ELE1 alpha with multiple steroid receptors and identification of an internally deleted ELElbeta isoform. Mol Endocrinol 1999; 13: 117–128.

    Article  PubMed  CAS  Google Scholar 

  101. Avila DM, McPhaul MJ. Immunohistocytochemistry demonstrates that RFG/ELE1/ARA70 is a cytoplasmic protein in transfected COS cells. Endocrinology, in press.

    Google Scholar 

  102. Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, Rosenfeld MG. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 1996; 85: 403–414.

    Article  PubMed  CAS  Google Scholar 

  103. Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M, Evans RM. Role of CBP/P300 in nuclear receptor signalling. Nature 1996; 383: 99–103.

    Article  PubMed  CAS  Google Scholar 

  104. Smith CL, Onate SA, Tsai M-J, O’Malley BW. CREB binding protein acts synergistically with steroid receptor coactivator-1 to enhance steroid receptor-dependent transcription. Proc Natl Acad Sci USA 1996; 93: 8884–8888.

    Article  PubMed  CAS  Google Scholar 

  105. Yao TP, Ku G, Zhou N, Scully R, Livingston DM. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc Natl Acad Sci USA 1996; 93:10,626–10,631.

    CAS  Google Scholar 

  106. Hanstein B, Eckner R, DiRenzo J, Halachmi S, Liu H, Searcy B, Kurokawa R, Brown M. p300 is a component of an estrogen receptor coactivator complex. Proc Natl Acad Sci USA 1996; 93:11,540–11,545.

    Article  CAS  Google Scholar 

  107. Aarnisalo P, Palvimo JJ, Janne OA. CREB-binding protein in androgen receptor-mediated signaling. Proc Natl Acad Sci USA 1998; 95: 2122–2127.

    Article  PubMed  CAS  Google Scholar 

  108. Kadonaga JT. Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 1998; 92: 307–313.

    Article  PubMed  CAS  Google Scholar 

  109. Pazin MJ, Kadonaga JT. SW12/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell 1997; 88: 737–740.

    Article  PubMed  CAS  Google Scholar 

  110. Kraus WL, Kadonaga JT. p300 and estrogen receptor cooperatively activate transcription via differential enhancement of initiation and reinitiation. Genes Dev 1998; 12: 331–342.

    Article  PubMed  CAS  Google Scholar 

  111. Alland L, Muhle R, Hou H Jr, Potes J, Chin L, Schreiber-Agus N, DePinho RA. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 1997; 387: 49–55.

    Article  PubMed  CAS  Google Scholar 

  112. Pazin MJ, Kadonaga JT. What’s up & down with histone deacetylation and transcription? Cell 1997; 89: 325–328.

    Article  PubMed  CAS  Google Scholar 

  113. Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 1997; 89: 357–364.

    Article  PubMed  CAS  Google Scholar 

  114. Nagy L, Kao HY, Chakravarti D, Lin RJ, Hassig CA, Ayer DE, Schreiber SL, Evans RM. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 1997; 89: 373–380.

    Article  PubMed  CAS  Google Scholar 

  115. Soderstrom M, Vo A, Heinzel T, Lavinsky RM. Yang WM, Seto E, Peterson DA, Rosenfeld MG, Glass CK. Differential effects of nuclear receptor corepressor (N-CoR) expression levels on retinoic acid receptor-mediated repression support the existence of dynamically regulated corepressor complexes. Mol Endocrinol 1997; 11: 682–692.

    Article  PubMed  CAS  Google Scholar 

  116. Cordingley MG, Riegel AT, Hager GL. Steroid-dependent interaction of transcription factors with the inducible promoter of mouse mammary tumor virus in vivo. Cell 1987; 48: 261–270.

    Article  PubMed  CAS  Google Scholar 

  117. Fryer CJ, Archer TK. Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature 1998; 393: 88–91.

    Article  PubMed  CAS  Google Scholar 

  118. McLeod DG. Antiandrogenic drugs. Cancer 1993; 71 (Suppl. 3): 1046–1091.

    Article  PubMed  CAS  Google Scholar 

  119. Labrie F. Mechanism of action and pure antiandrogenic properties of flutamide. Cancer 1997; 72 (2 Suppl.): 3816–3827.

    Article  Google Scholar 

  120. Kolvenbag GJ, Blackledge GR, Gotting-Smith K. Bicalcutamide (Casodex) in the treatment of prostate cancer: history of clinical development. Prostate 1998; 34: 61–72.

    Article  PubMed  CAS  Google Scholar 

  121. Shet MS, McPhaul MJ, Fisher CW, Stallings NR, Estabrook RW. Metabolism of the antiandrogenic drug (flutamide) by human P450 1A2 Drug. Metab Disposition 1997; 61: 341–348.

    Google Scholar 

  122. Gao TS, McPhaul MJ. Functional activities of the A- and B- forms of the human androgen receptor in response to androgen receptor agonists and antagonists. Mol Endocrinol 1998; 12: 654–663.

    Article  PubMed  CAS  Google Scholar 

  123. Hamann LG, Higuchi RI, Zhi L, Edwards JP, Wang XN, Marschke KB, Kong JW, Farmer LJ, Jones TK. Synthesis and biological activity of a novel series of nonsteroidal, peripherally selective androgen receptor antagonists derived from 1,2-dihydropyridono [5,6-g] quinolines. J Med Chem 1998; 41: 623–639.

    Article  PubMed  CAS  Google Scholar 

  124. Shibata H, Spencer TE, Onate SA, Jenster G, Tsai SY, Tsai MJ, O’Malley BW. Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog Horm Res 1997; 52: 141–164.

    PubMed  CAS  Google Scholar 

  125. Soderstrom M, Vo A, Heinzel T, Lavinsky RM, Yang WM, Seto E, Peterson DA, Rosenfield MG, Glass CK. Differential effects of nuclear receptor corepressor (N-CoR) expression levels on retinoic acid receptor-mediated repression support the existence of dynamically regulated corepressor complexes. Mol Endocrinol 1997; 11: 682–692.

    Article  PubMed  CAS  Google Scholar 

  126. Chen JD, Umesono K, Evans RM. SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers. Proc Natl Acad Sci USA 1996; 93: 7567–7571.

    Article  PubMed  CAS  Google Scholar 

  127. Smith CL, Nawaz Z, O’Malley BW. Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol Endocrinol 1997; 11: 657–666.

    Article  PubMed  CAS  Google Scholar 

  128. Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung L, Horwitz KB. The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol Endocrinol 1997; 11: 693–705.

    Article  PubMed  CAS  Google Scholar 

  129. Hedden A, Muller V, Jensen EV. A new interpretation of antiestrogen action. Ann NY Acad Sci 1995; 761: 109–120.

    Article  PubMed  CAS  Google Scholar 

  130. Drouin J, Sun YL, Chamberland M, Gauthier Y, De LA, Nemer M, Schmidt TJ. Novel glucocorticoid receptor complex with DNA element of the hormone-repressed POMC gene. EMBO J 1993; 12: 145–156.

    PubMed  CAS  Google Scholar 

  131. Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA, Baldwin AS Jr. Characterization of mechanisms involved in transrepression of NF-KB by activated glucocorticoid receptors. Mol Cell Biol 1995; 15: 943–953.

    PubMed  CAS  Google Scholar 

  132. Heck S, Kullmann M, Gast A, Ponta H, Rahmsdorf HJ, Herrlich P, Cato AC. A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J 1995; 13: 4087–4095.

    Google Scholar 

  133. Reichardt HM, Kaestner KH, Tuckermann J, Kretz O, Wessely O, Bock R, Gass P, Schmid W, Herrlich P, Angel P, Schütz G. DNA binding of the glucocorticoid receptor is not essential for survival. Cell 1998; 93: 531–541.

    Article  PubMed  CAS  Google Scholar 

  134. Power RF, Mani SK, Codina J, Conneely OM, O’Malley BW. Dopaminergic and ligand-independent activation of steroid hormone receptors. Science 1991; 254: 1636–1639.

    Article  PubMed  CAS  Google Scholar 

  135. Wagner BL, Norris JD, Knotts TA, Weigel NL, McDonnell DP. The nuclear corepressors NCoR and SMRT are key regulators of both ligand-and 8-bromo-cyclic AMP-dependent transcriptional activity of the human progesterone receptor. Mol Cell Biol 1998; 18: 1369–1378.

    PubMed  CAS  Google Scholar 

  136. Darne C, Veyssiere G, Jean C. Phorbol ester causes ligand-independent activation of the androgen receptor. Eur J Biochem 1998; 256: 541–549.

    Article  PubMed  CAS  Google Scholar 

  137. Nazareth LV, Weigel NL. Activation of the human androgen receptor through a protein kinase A signaling pathway. J Biol Chem 1996; 271:19,900–19, 907.

    CAS  Google Scholar 

  138. Mani SK, Allen JM, Lydon JP, Mulac-Jericevic B, Blaustein JD, DeMayo FJ, Conneely O, O’Malley BW. Dopamine requires the unoccupied progesterone receptor to induce sexual behavior in mice. Mol Endocrinol 1996; 10: 1728–1737.

    Article  PubMed  CAS  Google Scholar 

  139. Culig Z, Hobisch A, Cronauer MV, Radmayr C, Trapman J, Hittmair A, Bartsch G, Klocker H. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor and epidermal growth factor. Eur Urol 1995 (Suppl. 27) 2: 45–47.

    Google Scholar 

  140. Culig Z, Hobisch A, Hittmair A, Cronauer MV, Radmayr C, Zhang J, Bartsch G, Klocker H. Synergistic activation of androgen receptor by androgen and luteinizing hormone-releasing hormone in prostatic carcinoma cells. Prostate 1997; 32: 106–114.

    Article  PubMed  CAS  Google Scholar 

  141. Culig Z, Hobisch A, Cronauer MV, Hittmair A, Radmayr C, Bartsch G, Klocker H. Activation of the androgen receptor by polypeptide growth factors and cellular regulators. World J Urol 1995; 13: 285–289.

    Article  PubMed  CAS  Google Scholar 

  142. Quigley CA. Disorders of sex determination and differentiation. In: Jameson JL, ed. Principles of Molecular Medicine. Humana Press, Totowa, NJ, 1998.

    Google Scholar 

  143. McPhaul MJ, Marcelli M, Zoppi S, Griffin JE, Wilson JD. The spectrum of mutations in the androgen receptor gene that causes androgen resistance. J Clin Endocrinol Metab 1993; 76: 7–23.

    Article  Google Scholar 

  144. Griffin JE. Androgen resistance-the clinical and molecular spectrum. New England Journal of Medicine 1992; 326: 611–618.

    Article  PubMed  CAS  Google Scholar 

  145. Zoppi S, Marcelli M, Deslypere JP, Griffin JE, Wilson JD, McPhaul MJ. Amino acid substitutions in the DNA-binding domain of the human androgen receptor are a frequent cause of receptor-binding positive androgen resistance. Mol Endocrinol 1992; 6: 409–415.

    Article  PubMed  CAS  Google Scholar 

  146. Beitel LK, Prior L, Vasiliou DM, Gottlieb B, Kaufman M, Lumbroso R, Alvarado C, McGillivray B, Trifiro M, Pinsky L. Complete androgen insensitivity due to mutations in the probable alpha-helical segments of the DNA-binding domain in the human androgen receptor. Hum Mol Genetics 1994; 3: 21–27.

    Article  CAS  Google Scholar 

  147. De Bellis A, Quigley CA, Marschke KB, el-Awady MK, Lane MV, Smith EP, Sar M, Wilson EM, French FS. Characterization of mutant androgen receptors causing partial androgen insensitivity syndrome. J Clin Endocrinol Metab 1994; 78: 513–522.

    Article  PubMed  Google Scholar 

  148. Sultan C, Lumbroso S, Poujol N, Belon C, Boudon C, Lobaccaro JM. Mutations of androgen receptor gene in androgen insensitivity syndromes. J Steroid Biochem Mol Biol 1993; 46: 519–530.

    Article  PubMed  CAS  Google Scholar 

  149. Lumbroso S, Lobaccaro JM, Belon C, Martin D, Chaussain JL, Sultan C. A new mutation within the deoxyribonucleic acid-binding domain of the androgen receptor gene in a familyl with complete androgen insensitivity syndrome. Fertil Steril 1993; 60: 814–819.

    PubMed  CAS  Google Scholar 

  150. Mowszowicz I, Lee HJ, Chen HT, Mestayer C, Portois MC, Cabrol S, Mauvais-Jarvis P, Chang C. A point mutation in the second zinc finger of the DNA-binding domain of the androgen receptor gene causes complete androgen insensitivity in two siblings with receptor-positive androgen resistance. Mol Endocrinol 1993; 7: 861–869.

    Article  PubMed  CAS  Google Scholar 

  151. McPhaul MJ, Marcelli M, Zoppi S, Griffin JE, Wilson JD. The spectrum of mutations in the androgen receptor gene that causes androgen resistance. J Clin Endocrinol Metab 1993; 76: 17–23.

    Article  PubMed  CAS  Google Scholar 

  152. Marcelli M, Tilley WD, Zoppi S, Griffin JE, Wilson JD, McPhaul MJ. Androgen resistance associated with a mutation of the androgen receptor at amino acid 772 (Arg-Cys) results from a combination of decreased messenger ribonucleic acid levels and impairment of receptor function. J Clin Endocrinol Metab 1991; 73: 318–325.

    Article  PubMed  CAS  Google Scholar 

  153. Wilson CM, Griffin JE, Wilson JD, McPhaul MJ. Immunoreactive androgen receptor (AR) in genital skin fibroblasts from androgen resistant subjects with undetectable levels of AR in ligand binding assays. J Clin Endocrinol Metab, in press.

    Google Scholar 

  154. Lubahn DB, Brown TR, Simental JA, Higgs HN, Migeon CJ, Wilson EM, French FS. Sequence of the intron/exon junctions of the coding region of the human androgen receptor gene and identification of a point mutation in a family with complete androgen insensitivity. Proc Natl Acad Sci USA 1989; 86: 9534–9538.

    Article  PubMed  CAS  Google Scholar 

  155. Brown TR, Lubahn DB, Wilson EM, French FS, Migeon CJ, Corden JL. Functional characterization of naturally occurring mutant androgen receptors from subjects with complete androgen insensitivity. Mol Endocrinol 1990; 4: 1759–1772.

    Article  PubMed  CAS  Google Scholar 

  156. McPhaul MJ, Marcelli M, Zoppi S, Wilson CM, Griffin JE, Wilson JD. Mutations in the ligand-binding domain of the androgen receptor gene cluster in two regions of the gene. J Clin Invest 1992; 90: 2097–2101.

    Article  PubMed  CAS  Google Scholar 

  157. Prior L, Bordet S, Trifiro MA, Mhatre A, Kaufman M, Pinsky L, Wrogeman K, Belsham DD, Pereira F, Greenberg C, et al. Replacement of arginine 773 by cysteine or histidine in the human androgen receptor causes complete androgen insensitivity with different receptor phenotypes. Am J Hum Genetics 1992; 51: 143–155.

    CAS  Google Scholar 

  158. Beitel LK, Kazemi-Esfarjani P, Kaufman M, Lumbroso R, DiGeorge AM, Killinger DW, Trifiro MA, Pinsky L. Substitution of arginine-839 by cysteine or histidine in the androgen receptor causes different receptor phenotypes in cultured cells and coordinate degrees of clinical androgen resistance. J Clin Invest 1994; 94: 546–554.

    Article  PubMed  CAS  Google Scholar 

  159. Kazemi-Esfarjani P, Beitel LK, Trifiro M, Kaufman M, Rennie P, Sheppard P, Matusik R, Pinsky L. Substitution of valine-865 by methionine or leucine in the human androgen receptor causes complete or partial androgen insensitivity, respectively with distinct androgen receptor phenotypes. Mol Endocrinol 1993; 7: 37–46.

    Article  PubMed  CAS  Google Scholar 

  160. Ris-Stalpers C, Trifiro MA, Kuiper GG, Jenster G, Romalo G, Sai T, van Rooij HC, Kaufman M, Rosenfield RL, Liao S, et al. Substitution of aspartic acid-686 by histidine or asparagine in the human androgen receptor leads to a functionally inactive protein with altered hormone-binding characteristics. Mol Endocrinol 1991; 5: 1562–1569.

    Article  PubMed  CAS  Google Scholar 

  161. Marcelli M, Zoppi S, Wilson CM, Griffin JE, McPhaul MJ. Amino acid substitutions in the hormone-binding domain of the human androgen receptor alter the stability of the hormone receptor complex. J Clin Invest 1994; 94: 1642–1650.

    Article  PubMed  CAS  Google Scholar 

  162. Zoppi S, Wilson CM, Harbison MD, Griffin JE, Wilson JD, McPhaul MJ, Marcelli M. Complete testicular feminization caused by an amino-terminal truncation of the androgen receptor with downstream initiation. J Clin Invest 1993; 91: 1105–1112.

    Article  PubMed  CAS  Google Scholar 

  163. Wilson CM, McPhaul MJ. A and B forms of the androgen receptor are present in human genital skin fibroblasts. Proc Natl Acad Sci USA 1994; 91: 1234–1238.

    Article  PubMed  CAS  Google Scholar 

  164. Schrader WT, O’Malley BW. Progesterone-binding components of chick oviduct. IV. Characterization of purified subunits. J Biol Chem 1972; 247: 51–59.

    PubMed  CAS  Google Scholar 

  165. Gao TS, McPhaul MJ. Functional activities of the A- and B- forms of the human androgen receptor in response to androgen receptor agonists and antagonists. Mol Endocrinol 1998; 12: 654–663.

    Article  PubMed  CAS  Google Scholar 

  166. Choong CS, Quigley CA, French FS, Wilson EM. A novel missense mutation in the amino-terminal domain of the human androgen receptor gene in a family with partial androgen insensitivity syndrome causes reduced efficiency of protein translation. J Clin Invest 1996; 98: 1423–1431.

    Article  PubMed  CAS  Google Scholar 

  167. Bruchovsky N, Craven S. Prostatic involution: effect on androgen receptors and intracellular androgen transport. Biochem Biophys Res Commun 1975; 62: 837–843.

    Article  PubMed  CAS  Google Scholar 

  168. Isaacs JT. Antagonistic effect of androgen on prostatic cell death. Prostate 1984; 5: 545–557.

    Article  PubMed  CAS  Google Scholar 

  169. Berges RR, Furuya Y, Remington L, English HF, Jacks T, Isaacs JT. Cell proliferation, DNA repair, and p53 function are not required for programmed death of prostatic glandular cells induced by androgen ablation. Proc Natl Acad Sci USA 1993; 90: 8910–8914.

    Article  PubMed  CAS  Google Scholar 

  170. Huggins C, Hodges CV. Studies on prostate cancer I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1941; 1: 293–297.

    CAS  Google Scholar 

  171. Huggins C. Endocrine-induced regression of cancers. Cancer Res 1967; 27: 1925–1930.

    PubMed  CAS  Google Scholar 

  172. Mahler C, Verhelst J, Denis L. Clinical pharmacokinetics of the antiandrogens and their efficacy in prostate cancer. Clin Pharmacokinet 1998; 34: 405–417.

    Article  PubMed  CAS  Google Scholar 

  173. Garnick MB. Hormonal therapy in the management of prostate cancer: from Huggins to the present. Urology 1997; 49: 5–15.

    Article  PubMed  CAS  Google Scholar 

  174. Vacher P. Gn-RH agonists in the treatment of prostatic carcinoma. Biomedicine Pharmacother 1995; 49: 325–331.

    Article  CAS  Google Scholar 

  175. Debruyne FM, Dijkman GA. Advances and trends in hormonal therapy for advanced prostate cancer. Eur Urol 1995; 28: 177–188.

    PubMed  CAS  Google Scholar 

  176. Schulze H, Isaacs JT. Institution Development of hormone refractory tumors• adaptation versus clonal selection. Recent Results Cancer Res 1990; 118: 153–162.

    Article  PubMed  CAS  Google Scholar 

  177. Wilding G, Chen M, Gelmann EP. Aberrant response in vitro of hormone-responsive prostate cancer cells to antiandrogens. Prostate 1989; 14: 103–115.

    Article  PubMed  CAS  Google Scholar 

  178. Veldscholte J, Ris-Stalpers C, Kuiper GG, Jenster G, Berrevoets C, Claassen E, van Rooij HC, Trapman J, Brinkmann AO, Mulder E. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun 1990; 173: 534–540.

    Article  PubMed  CAS  Google Scholar 

  179. Moul JW, Srivastava S, McLeod DG. Molecular implications of the antiandrogen withdrawal syndrome. Semin Urol 1995; 13: 157–163.

    PubMed  CAS  Google Scholar 

  180. Longmore L, Foley JP, Rozanski TA, Higgins B, Thompson IM. Prolonged prostate-specific antigen response in flutamide withdrawal syndrome despite disease progression. South Med J 1998; 91: 573–575.

    Article  PubMed  CAS  Google Scholar 

  181. Wirth MP, Froschermaier SE. The antiandrogen withdrawal syndrome. Urol Res 1997; (Suppl. 27) 2: S67 - S71.

    Google Scholar 

  182. Scher HI, Kolvenbag GJ. The antiandrogen withdrawal syndrome in relapsed prostate cancer. Eur Urol 1997; (Suppl. 31) 2: 3–7.

    Google Scholar 

  183. Tan J, Sharief Y, Hamil KG, Gregory CW, Zang DY, Sar M, Gumerlock PH, deVere White RW, Pretlow TG, Harris SE, Wilson EM, Mohler JL, French FS. Dehydroepiandrosterone activates mutant androgen receptors expressed in the androgen-dependent human prostate cancer xenograft CWR22 and LNCaP cells. Mol Endocrinol 1997; 11: 450–459.

    Article  PubMed  CAS  Google Scholar 

  184. Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK, Keer HN, Balk SP. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 1995; 332: 1393–1398.

    Article  PubMed  CAS  Google Scholar 

  185. Culig Z, Hobisch A, Cronauer MV, Cato AC, Hittmair A, Radmayr C, Eberle J, Bartsch G, Klocker H. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol 1993; 7: 541–550.

    Article  Google Scholar 

  186. Tilley WD, Buchanan G, Hickey TE, Bentel JM. Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin Cancer Res 1997; 2: 277–285.

    Google Scholar 

  187. Fenton MA, Shuster TD, Fertig AM, Taplin ME, Kolvenbag G, Bubley GJ, Balk SP. Functional characterization of mutant androgen receptors from androgen-independent prostate cancer. Clin Cancer Res 1997; 3: 1383–1388.

    PubMed  CAS  Google Scholar 

  188. Elo JP, Kvist L, Leinonen K, Isomaa V, Henttu P, Lukkarinen O, Vihko P. Mutated human androgen receptor gene detected in a prostatic cancer patient is also activated by estradiol. J Clin Endocrinol Metab 1995; 80: 3494–3500.

    Article  PubMed  CAS  Google Scholar 

  189. Culig Z, Stober J, Gast A, Peterziel H, Hobisch A, Radmayr C, Hittmair A, Bartsch G, Cato AC, Klocker H. Activation of two mutant androgen receptors from human prostatic carcinoma by adrenal androgens and metabolic derivatives of testosterone. Cancer Detect Prey 1996; 20: 68–75.

    CAS  Google Scholar 

  190. Newmark JR, Hardy DO, Tonb DC, Carter BS, Epstein JI, Isaacs WB, Brown TR, Barrack ER. Androgen receptor gene mutations in human prostate cancer. Proc Natl Acad Sci USA 1992; 89: 6319–6323.

    Article  PubMed  CAS  Google Scholar 

  191. Culig Z, Klocker H, Eberle J, Kaspar F, Hobisch A, Cronauer MV, Bartsch G. DNA sequence of the androgen receptor in prostatic tumor cell lines and tissue specimens assessed by means of the polymerase chain reaction. Prostate 1993; 22 (1): 11–22.

    Article  PubMed  CAS  Google Scholar 

  192. Suzuki H, Sato N, Watabe Y, Masai M, Seino S, Shimazaki J. Androgen receptor gene mutations in human prostate cancer. J Steroid Biochem Mol Biol 1993; 46 (6): 759–765.

    Article  PubMed  CAS  Google Scholar 

  193. Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO, Cunha GR, Donjacour AA, Matusik RJ, Rosen JM. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 1995; 92: 3439–3443.

    Article  PubMed  CAS  Google Scholar 

  194. Shibata MA, Jorcyk CL, Liu ML, Yoshidome K, Gold LG, Green JE. The C3(1)/SV40 T antigen transgenic mouse model of prostate and mammary cancer Toxicol Pathol 1998; 26: 177–182.

    CAS  Google Scholar 

  195. Kasper S, Sheppard PC, Yan Y, Pettigrew N, Borowsky AD, Prins GS, et al. Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Lab Invest 1998; 78 (3): 319–333.

    PubMed  CAS  Google Scholar 

  196. Barrack ER, Tindall DJ. A critical evaluation of the use of androgen receptor assays to predict androgen responsiveness of prostatic cancer. In: Coffey DS, Bruchovsky N, Gardener WA, Resnick MI, Karr JP, eds. Current Concepts and Approaches to the Study of Prostate Cancer. Alan R. Liss, New York, 1987, pp. 155–187.

    Google Scholar 

  197. McPhaul MJ. The androgen receptor and prostate cancer. In: Pasqualini JR, Katzenellenbogen BS, eds. Hormone-Dependent Cancer. Marcel Dekker, New York, 1996, pp. 307–321.

    Google Scholar 

  198. Sadi MV, Barrack ER. Image analysis of androgen receptor immunostaining in metastatic prostate cancer: heterogeneity as a predictor of response to hormonal therapy. Cancer 1993; 71 (8): 2574–2580.

    Article  PubMed  CAS  Google Scholar 

  199. Tilley WD, Lim-Tio SS, Horsfall DJ, Aspinall JO, Marshall VR, Skinner JM. Detection of discrete androgen receptor epitopes in prostate cancer by immunostaining: measurement by color video image analysis. Cancer Res 1994; 54: 4096–4102.

    PubMed  CAS  Google Scholar 

  200. Prins GS, Sklarew RJ, Pertschuk LP. Image analysis of androgen receptor immunostaining in prostate cancer accurately predicts response to hormonal therapy. J Urol 1998; 159: 641–649.

    Article  PubMed  CAS  Google Scholar 

  201. Hobisch A, Culig Z, Radmayr C, Bartsch G, Klocker H, Hittmair A. Distant metastases from prostatic carcinoma express androgen receptor protein. Cancer Res 1995; 55: 3068–3072.

    PubMed  CAS  Google Scholar 

  202. Hobisch A, Culig Z, Radmayr C, Bartsch G, Klocker H, Hittmair A. Androgen receptor status of lymph node metastases from prostate cancer. Prostate 1996; 28: 129–135.

    Article  PubMed  CAS  Google Scholar 

  203. Koiviso P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J, Trapman J, Cleutjens K, Noordzij A, Visakorpi T, Kallioniemi OP. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 1997; 57: 314–319.

    Google Scholar 

  204. Koivisto P. Aneuploidy and rapid cell proliferation in recurrent prostate cancers with androgen receptor gene amplification. Prostate Cancer Prostatic Dis 1997; 1: 21–25.

    Article  PubMed  Google Scholar 

  205. Chamberlain NL, Driver ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res 1994; 22 (15): 3181–3186.

    Article  PubMed  CAS  Google Scholar 

  206. Mhatre AN, Trifiro MA, Kaufman M, Kazemi-Esfarjani P, Figlewicz D, Rouleau G, Pinsky L. Reduced transcriptional regulatory competence of the androgen receptor in X-linked spinal and bulbar muscular atrophy. Nat Genetics 1993; 5 (2): 184–188.

    Article  CAS  Google Scholar 

  207. Trifiro M, Gottlieb B, Pinsky L, Kaufman M, Prior L, Belsham DD, Wrogemann K, Brown CJ, Willard HF, Trapman J, et al. The 56/58 kDa androgen-binding protein in male genital skin fibroblasts with a deleted androgen receptor gene. Mol Cell Endocrinol 1991; 75: 37–47.

    Article  PubMed  CAS  Google Scholar 

  208. Quigley CA, Friedman KJ, Johnson A, Lafreniere RG, Silverman LM, Lubahn DB, Brown TR, Wilson EM, Willard HF, French FS. Complete deletion of the androgen receptor gene: definition of the null phenotype of the androgen insensitivity syndrome and determination of carrier status. J Clin Endocrinol Metab 1992; 74: 927–933.

    Article  PubMed  CAS  Google Scholar 

  209. Neuschmid-Kaspar F, Gast A, Peterziel H, Schneikert J, Muigg A, Ransmayr G, Klocker H, Bartsch G, Cato AC. CAG-repeat expansion in androgen receptor in Kennedy’s disease is not a loss of function mutation. Mol Cell Endocrinol 1996; 117: 149–156.

    Article  PubMed  CAS  Google Scholar 

  210. Brooks BP, Fischbeck KH. Spinal and bulbar muscular atrophy: a trinucleotide-repeat expansion neurodegenerative disease. Trends Neurosci 1995; 18 (10): 459–461.

    Article  PubMed  CAS  Google Scholar 

  211. Butler R, Leigh PN, McPhaul MJ, Gallo JM. Truncated forms of the androgen receptor are associated with polyglutamine expansion in X-linked spinal and bulbar muscular atrophy. Hum Mol Genetics 1998; 7 (1): 12l - 127.

    Article  Google Scholar 

  212. Abdullah A, Trifiro MA, Panet-Raymond V, Alvarado C, de Tourreil S, Frankel D, Schipper HM, Pinsky L. Spinobulbar muscular atrophy: polyglutamine-expanded androgen receptor is proteolytically resistant in vitro and processed abnormally in transfected cells. Hum Mol Genetics 1998; 7 (3): 379–384.

    Article  CAS  Google Scholar 

  213. Li M, Miwa S, Kobayashi Y, Merry DE, Yamamoto M, Tanaka F, Doyu M, Hashizume Y, Fischbeck KH, Sobue G. Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy. Ann Neurol 1998; 44 (2): 249–254.

    Article  PubMed  CAS  Google Scholar 

  214. Merry DE, Kobayashi Y, Bailey CK, Taye AA, Fischbeck KH. Cleavage, aggregation and toxicity of the expanded androgen receptor in spinal and bulbar muscular atrophy. Hum Mol Genetics 1998; 7 (4): 693–701.

    Article  CAS  Google Scholar 

  215. Schoenberg MP, Hakimi JM, Wang S, Bova GS, Epstein JI, Fischbeck KH, Isaacs WB, Walsh PC, Barrack ER. Microsatellite mutation (CAG24–18) in the androgen receptor gene in human prostate cancer. Biochem Biophys Res Commun 1994; 198 (1): 74–80.

    Article  PubMed  CAS  Google Scholar 

  216. Paz A, Lindner A, Zisman A, Siegel Y. A genetic sequence change in the 3’-noncoding region of the androgen receptor gene in prostate carcinoma. Eur Urol 1997; 31: 209–215.

    PubMed  CAS  Google Scholar 

  217. Suzuki H, Komiya A, Aida S, Akimoto S, Shiraishi T, Yatani R, Igarashi T, Shimazaki J. Microsatellite instability and other molecular abnormalities in human prostate cancer. Jpn J Cancer Res 1995; 86: 959–961.

    Google Scholar 

  218. Crocitto LE, Henderson BE, Coetzee GA. Identification of two germline point mutations in the 5’UTR of the androgen receptor gene in men with prostate cancer. J Urol 1997; 58: 1599–601.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

McPhaul, M.J. (2000). The Androgen Receptor, Androgen Insensitivity, and Prostate Cancer. In: Shupnik, M.A. (eds) Gene Engineering in Endocrinology. Contemporary Endocrinology, vol 22. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-221-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-221-0_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-147-9

  • Online ISBN: 978-1-59259-221-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics