Skip to main content

The Wnt Signal Transduction Pathway

  • Chapter
Signaling Networks and Cell Cycle Control

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 284 Accesses

Abstract

Wnt signaling plays a central role in the development of many phylogenetically diverse organisms including Drosophila, Caenorhabditis elegans, Xenopus, and higher vertebrates. In addition, genetic alterations of components in the pathway are associated with tumorigenesis in mice and humans, particularly melanomas and carcinomas of the breast and colon. This chapter reviews the characteristics of individual components of the pathway and discusses some of its unresolved issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982; 31: 99–109.

    Article  PubMed  CAS  Google Scholar 

  2. Brown AM, Papkoff J, Fung YK, Shackleford GM, Varmus GV. Identification of protein products encoded by the proto-oncogene int-1. Mol Cell Biol 1987; 7: 3971–3977.

    PubMed  CAS  Google Scholar 

  3. Bradley RS, Brown AM. The proto-oncogene int-1 encodes a secreted protein associated with the extracellular matrix. EMBO J 1990; 9: 1569–1575.

    PubMed  CAS  Google Scholar 

  4. Papkoff J, Brown AM, Varmus AV. The int-1 proto-oncogene products are glycoproteins that appear to enter the secretory pathway. Mol Cell Biol 1987; 7: 3978–3984.

    PubMed  CAS  Google Scholar 

  5. Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 1987; 50: 649–657.

    Article  PubMed  CAS  Google Scholar 

  6. Sharma RP, Chopra VL. Effect of the Wingless (wgl) mutation on wing and haltere development in Drosophila melanogaster. Dev Biol 1976; 48: 461–465.

    Article  PubMed  CAS  Google Scholar 

  7. Nusse R, Brown A, Papkoff J, Scambler P, Shackleford G, McMahon A, Moon R, Varmus H. A new nomenclature for int-1 and related genes: the Wnt gene family. Cell 1991; 64: 231.

    Article  PubMed  CAS  Google Scholar 

  8. Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature 1980; 287: 795–801.

    Article  PubMed  CAS  Google Scholar 

  9. Hammerschmidt M, Brook A, McMahon AM. The world according to hedgehog. Trends Genet 1997; 13: 14–21.

    Article  PubMed  CAS  Google Scholar 

  10. DiNardo S, Heemskerk J, Dougan S, O’Farrell SO. The making of a maggot: patterning the Drosophila embryonic epidermis. Curr Opin Genet Dev 1994; 4: 529–534.

    Article  PubMed  CAS  Google Scholar 

  11. Munsterberg AE, Kitajewski J, Bumcrot DA, McMahon AP, Lassar AL. Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite. Genes Dev 1995; 9: 2911–2922.

    Article  PubMed  CAS  Google Scholar 

  12. Yang Y, Niswander L. Interaction between the signaling molecules WNT7a and SHH during vertebrate limb development: dorsal signals regulate anteroposterior patterning. Cell 1995; 80: 939–947.

    Article  PubMed  CAS  Google Scholar 

  13. Harris J, Honigberg L, Robinson N, Kenyon C. Neuronal cell migration in C. elegans: regulation of Hox gene expression and cell position. Development 1996; 122: 3117–3131.

    PubMed  CAS  Google Scholar 

  14. Herman MA, Vassilieva LL, Horvitz HR, Shaw JE, Herman JH. The C. elegans gene lin-44, which controls the polarity of certain asymmetric cell divisions, encodes a Wnt protein and acts cell nonautonomously. Cell 1995; 83: 101–110.

    Article  PubMed  CAS  Google Scholar 

  15. Lin R, Hill RJ, Priess RP. POP-1 and anterior-posterior fate decisions in C. elegans embryos. Cell 1998; 92: 229–239.

    Article  PubMed  CAS  Google Scholar 

  16. Lin R, Thompson S, Priess SP. POP-1 encodes an HMG box protein required for the specification of a mesoderm precursor in early C. elegans embryos. Cell 1995; 83: 599–609.

    Article  PubMed  CAS  Google Scholar 

  17. Rocheleau CE, Downs WD, Lin R, Wittmann C, Bei Y, Cha YH, Ali M, Priess JR, Mello JM. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos [see comments]. Cell 1997; 90: 707–716.

    Article  PubMed  CAS  Google Scholar 

  18. Thorpe CJ, Schlesinger A, Carter JC, Bowerman B. Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell 1997; 90: 695–705.

    Article  PubMed  CAS  Google Scholar 

  19. McMahon AP, Moon RT. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 1989; 58: 1075–1084.

    Article  PubMed  CAS  Google Scholar 

  20. Brown AM, Wildin RS, Prendergast TJ, Varmus TV. A retrovirus vector expressing the putative mammary oncogene int-1 causes partial transformation of a mammary epithelial cell line. Cell 1986; 46: 1001–1009.

    Article  PubMed  CAS  Google Scholar 

  21. Miller JR, Moon RT. Signal transduction through beta-catenin and specification of cell fate during embryogenesis. Genes Dev 1996; 10: 2527–2539.

    Article  PubMed  CAS  Google Scholar 

  22. Pai LM, Orsulic S, Bejsovec A, Peifer M. Negative regulation of Armadillo, a Wingless effector in Drosophila. Development 1997; 124: 2255–2266.

    PubMed  CAS  Google Scholar 

  23. Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon DM. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 1996; 10: 1443–1454.

    Article  PubMed  CAS  Google Scholar 

  24. Dale TC. Signal transduction by the Wnt family of ligands. Biochem J 1998; 329: 209–223.

    PubMed  CAS  Google Scholar 

  25. Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev 1997; 11: 3286–3305.

    Article  PubMed  CAS  Google Scholar 

  26. Sidow A. Diversification of the Wnt gene family on the ancestral lineage of vertebrates. Proc Natl Acad Sci USA 1992; 89: 5098–5102.

    Article  PubMed  CAS  Google Scholar 

  27. Nusse R, Varmus HE. Wnt genes. Cell 1992; 69: 1073–1087.

    CAS  Google Scholar 

  28. Blasband A, Schryver B, Papkoff J. The biochemical properties and transforming potential of human Wnt-2 are similar to Wnt-1. Oncogene 1992; 7: 153–161.

    PubMed  CAS  Google Scholar 

  29. Kitajewski J, Mason JO, Varmus JV. Interaction of Wnt-1 proteins with the binding protein BiP. Mol Cell Biol 1992; 12: 784–790.

    PubMed  CAS  Google Scholar 

  30. Austin TW, Solar GP, Ziegler FC, Liem L, Matthews W. A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood 1997; 89: 3624–3635.

    PubMed  CAS  Google Scholar 

  31. Bradley RS, Brown AM. A soluble form of Wnt-1 protein with mitogenic activity on mammary epithelial cells. Mol Cell Biol 1995; 15: 4616–4622.

    PubMed  CAS  Google Scholar 

  32. van Leeuwen F, Samos CH, Nusse R. Biological activity of soluble wingless protein in cultured Drosophila imaginal disc cells. Nature 1994; 368: 342–344.

    Article  PubMed  Google Scholar 

  33. Binari RC, Staveley BE, Johnson WA, Godavarti R, Sasisekharan R, Manoukian AS. Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 1997; 124: 2623–2632.

    PubMed  CAS  Google Scholar 

  34. Hacker U, Lin X, Perrimon N. The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 1997; 124: 3565–3573.

    PubMed  CAS  Google Scholar 

  35. Haerry TE, Heslip TR, Marsh JL, O’Connor JO. Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development 1997; 124: 3055–3064.

    PubMed  CAS  Google Scholar 

  36. Itoh K, Sokol SS. Heparan sulfate proteoglycans are required for mesoderm formation in Xenopus embryos. Development 1994; 120: 2703–2711.

    PubMed  CAS  Google Scholar 

  37. Reichsman F, Smith L, Cumberledge S. Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction. J Cell Biol 1996; 135: 819–827.

    Article  PubMed  CAS  Google Scholar 

  38. Wong GT, Gavin BJ, McMahon BM. Differential transformation of mammary epithelial cells by Wnt genes. Mol Cell Biol 1994; 14: 6278–6286.

    Article  PubMed  CAS  Google Scholar 

  39. Christiansen JH, Monkley SJ, Wainwright SW. Murine WNT11 is a secreted glycoprotein that morphologically transforms mammary epithelial cells. Oncogene 1996; 12: 2705 2711.

    Google Scholar 

  40. Shimizu H, Julius MA, Giarre M, Zheng Z, Brown AM, Kitajewski J. Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth Differ 1997; 8: 1349–1358.

    PubMed  CAS  Google Scholar 

  41. Sokol S, Christian JL, Moon RT, Melton RM. Injected Wnt RNA induces a complete body axis in Xenopus embryos. Cell 1991; 67: 741–752.

    Article  PubMed  CAS  Google Scholar 

  42. Landesman Y, Sokol SY. Xwnt-2b is a novel axis-inducing Xenopus Wnt, which is expressed in embryonic brain. Mech Dev 1997; 63: 199–209.

    Article  PubMed  CAS  Google Scholar 

  43. Wolda SL, Moody CJ, Moon CM. Overlapping expression of Xwnt-3A and Xwnt-1 in neural tissue of Xenopus laevis embryos. Dev Biol 1993; 155: 46–57.

    Article  PubMed  CAS  Google Scholar 

  44. Ungar AR, Kelly GM, Moon GM. Wnt4 affects morphogenesis when misexpressed in the zebrafish embryo. Mech Dev 1995; 52: 153–164.

    Article  PubMed  CAS  Google Scholar 

  45. Du SJ, Purcell SM, Christian JL, McGrew LL, Moon LM. Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos. Mol Cell Biol 1995; 15: 2625–2634.

    PubMed  CAS  Google Scholar 

  46. Christian JL, McMahon JA, McMahon AP, Moon AM. Xwnt-8, a Xenopus Wnt-1/int-1related gene responsive to mesoderm-inducing growth factors, may play a role in ventral mesodermal patterning during embryogenesis. Development 1991; 111: 1045–1055.

    PubMed  CAS  Google Scholar 

  47. Smith WC, Harland RM. Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell 1991; 67: 753–765.

    Article  PubMed  CAS  Google Scholar 

  48. Cui Y, Brown JD, Moon RT, Christian RC. Xwnt-8b: a maternally expressed Xenopus Wnt gene with a potential role in establishing the dorsoventral axis. Development 1995; 121: 2177–2186.

    PubMed  CAS  Google Scholar 

  49. Ku M, Melton MD. Xwnt-11: a maternally expressed Xenopus wnt gene. Development 1993; 119: 1161–1173.

    PubMed  CAS  Google Scholar 

  50. Tones MA, Yang-Snyder J, Purcell SM, DeMarais AA, McGrew LL, Moon LM. Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J Cell Biol 1996; 133: 1123–1137.

    Article  Google Scholar 

  51. Slusarski DC, Yang-Snyder J, Busa WB, Moon WM. Modulation of embryonic intracellular Ca2+ signaling by Wnt-5A. Dev Biol 1997; 182: 114–120.

    Article  PubMed  CAS  Google Scholar 

  52. He X, Saint-Jeannet JP, Wang Y, Nathans J, Dawid I, Varmus H. A member of the Frizzled protein family mediating axis induction by Wnt-5A. Science 1997; 275: 1652 1654.

    Google Scholar 

  53. Bhanot P, Brink M, Harryman Samos C, Hsieh J, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 1996; 382: 225–230.

    Article  PubMed  CAS  Google Scholar 

  54. Vinson CR, Adler PN. Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature 1987; 329: 549–551.

    Article  PubMed  CAS  Google Scholar 

  55. Adler PN. The genetic control of tissue polarity in Drosophila. BioEssays 1992; 14: 735–741.

    Article  PubMed  CAS  Google Scholar 

  56. Tomlinson A, Strapps WR, Heemskerk J. Linking Frizzled and Wnt signaling in Drosophila development. Development 1997; 124: 4515–4521.

    PubMed  CAS  Google Scholar 

  57. Zheng L, Zhang J, Carthew JC. frizzled regulates mirror-symmetric pattern formation in the Drosophila eye. Development 1995; 121: 3045–3055.

    PubMed  CAS  Google Scholar 

  58. Eaton S. Planar polarization of Drosophila and vertebrate epithelia. Curr Opin Cell Biol 1997; 9: 860–866.

    Article  PubMed  CAS  Google Scholar 

  59. Chan SD, Karpf DB, Fowlkes ME, Hooks M, Bradley MS, Vuong V, Bambino T, Liu MY, Arnaud CD, Strewler GJ, et al. Two homologs of the Drosophila polarity gene frizzled (fz) are widely expressed in mammalian tissues. J Biol Chem 1992; 267:25, 20225, 207.

    Google Scholar 

  60. Zhao Z, Lee CC, Baldini A, Caskey AC. A human homologue of the Drosophila polarity gene frizzled has been identified and mapped to 17g21.1. Genomics 1995; 27: 370–373.

    Article  PubMed  CAS  Google Scholar 

  61. Blankesteijn WM, Essers-Janssen YP, Ulrich MM, Smits MS. Increased expression of a homologue of Drosophila tissue polarity gene `frizzled“ in left ventricular hypertrophy in the rat, as identified by subtractive hybridization. J Mol Cell Cardiol 1996; 28: 1187–1191.

    Article  PubMed  CAS  Google Scholar 

  62. Wang Y, Macke JP, Abella BS, Andreasson K, Worley P, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J. A large family of putative transmembrane receptors homologous to the product of the Drosophila tissue polarity gene frizzled. J Biol Chem 1996; 271: 44684476.

    Google Scholar 

  63. Wang YK, Samos CH, Peoples R, Perez-Jurado LA, Nusse R, Francke U. A novel human homologue of the Drosophila frizzled wnt receptor gene binds wingless protein and is in the Williams syndrome deletion at 7q11.23. Hum Mol Genet 1997; 6: 465–472.

    Article  PubMed  CAS  Google Scholar 

  64. Yang-Snyder J, Miller JR, Brown JD, Lai C, Moon JL. A frizzled homolog functions in a vertebrate Wnt signaling pathway. Curr Biol 1996; 6: 1302–1306.

    Article  PubMed  CAS  Google Scholar 

  65. Sawa H, Lobel L, Horvitz LH. The Caenorhabditis elegans gene lin-17, which is required for certain asymmetric cell divisions, encodes a putative seven-transmembrane protein similar to the Drosophila frizzled protein. Genes Dev 1996; 10: 2189–2197.

    Article  PubMed  CAS  Google Scholar 

  66. Boume HR. How receptors talk to trimeric G proteins. Curr Opin Cell Biol 1997; 9: 134–142.

    Article  Google Scholar 

  67. Slusarski DC, Corces VG, Moon VM. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 1997; 390: 410–413.

    Article  PubMed  CAS  Google Scholar 

  68. Saras J, Heldin CH. PDZ domains bind carboxy-terminal sequences of target proteins. Trends Biochem Sci 1996; 21: 455–458.

    Article  PubMed  CAS  Google Scholar 

  69. Cabral JH, Petosa C, Sutcliffe MJ, Raza S, Byron O, Poy F, Marfatia SM, Chishti AH, Liddington AL. Crystal structure of a PDZ domain. Nature 1996; 382: 649–652.

    Article  CAS  Google Scholar 

  70. Doyle DA, Lee A, Lewis J, Kim E, Sheng M, MacKinnon R. Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 1996; 85: 1067–1076.

    Article  PubMed  CAS  Google Scholar 

  71. Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, Crompton A, Chan AC, Anderson JM, Cantley JC. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 1997; 275: 73–77.

    Article  PubMed  CAS  Google Scholar 

  72. Leyns L, Bouwmeester T, Kim SH, Piccolo S, De Robertis SD. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 1997; 88: 747756.

    Google Scholar 

  73. Finch PW, He X, Kelley MJ, Uren A, Schaudies RP, Popescu NC, Rudikoff S, Aaronson SA, Varmus HE, Rubin HR. Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proc Natl Acad Sci USA 1997; 94: 6770–6775.

    Article  PubMed  CAS  Google Scholar 

  74. Mayr T, Deutsch U, Kuhl M, Drexler HC, Lottspeich F, Deutzmann R, Wedlich D, Risau W. Fritz: a secreted frizzled-related protein that inhibits Wnt activity. Mech Dev 1997; 63: 109–125.

    Article  PubMed  CAS  Google Scholar 

  75. Pfeffer PL, De Robertis EM, Izpisua-Belmonte JC. Crescent, a novel chick gene encoding a Frizzled-like cysteine-rich domain, is expressed in anterior regions during early embryo-genesis. Int J Dev Biol 1997; 41: 449–458.

    PubMed  CAS  Google Scholar 

  76. Rattner A, Hsieh JC, Smallwood PM, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J. A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc Natl Acad Sci USA 1997; 94: 2859–2863.

    Article  PubMed  CAS  Google Scholar 

  77. Shirozu M, Tada H, Tashiro K, Nakamura T, Lopez ND, Nazarea M, Hamada T, Sato T, Nakano T, Honjo T. Characterization of novel secreted and membrane proteins isolated by the signal sequence trap method. Genomics 1996; 37: 273–280.

    Article  PubMed  CAS  Google Scholar 

  78. Salic AN, Kroll KL, Evans LM, Kirschner LK. Sizzled: a secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos. Development 1997; 124: 47394748.

    Google Scholar 

  79. Wang S, Krinks M, Lin K, Luyten FP, Moos Jr, M. Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 1997; 88: 757–766.

    Article  PubMed  CAS  Google Scholar 

  80. Wolf V, Ke G, Dharmarajan AM, Bielke W, Artuso L, Saurer S, Friis R. DDC-4, an apoptosis-associated gene, is a secreted frizzled relative. FEBS Lett 1997; 417: 385–389.

    Article  PubMed  CAS  Google Scholar 

  81. Guthrie S. Axon guidance: netrin receptors are revealed. Curr Biol 1997; 7: R6–9.

    Article  PubMed  CAS  Google Scholar 

  82. Song L, Fricker LD. Cloning and expression of human carboxypeptidase Z, a novel metallocarboxypeptidase. J Biol Chem 1997; 272:10, 543–10, 550.

    Google Scholar 

  83. Rehn M, Pihlajaniemi T. Identification of three N-terminal ends of type XVIII collagen chains and tissue-specific differences in the expression of the corresponding transcripts. The longest form contains a novel motif homologous to rat and Drosophila frizzled proteins. J Biol Chem 1995; 270: 4705–4711.

    Article  PubMed  CAS  Google Scholar 

  84. Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 1998; 391: 357–362.

    Article  PubMed  CAS  Google Scholar 

  85. Theisen H, Purcell J, Bennett M, Kansagara D, Syed A, Marsh AM. dishevelled is required during wingless signaling to establish both cell polarity and cell identity. Development 1994; 120: 347–360.

    PubMed  CAS  Google Scholar 

  86. Klingensmith J, Nusse R, Perrimon N. The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal. Genes Dev 1994; 8: 118–130.

    Article  PubMed  CAS  Google Scholar 

  87. Rothbacher U, Laurent MN, Blitz IL, Watabe T, Marsh JL, Cho JC. Functional conservation of the Wnt signaling pathway revealed by ectopic expression of Drosophila dishevelled in Xenopus. Dev Biol 1995; 170: 717–721.

    Article  PubMed  CAS  Google Scholar 

  88. Sokol SY, Klingensmith J, Perrimon N, Itoh K. Dorsalizing and neuralizing properties of Xdsh, a maternally expressed Xenopus homolog of dishevelled. Development 1995; 121: 3487.

    PubMed  CAS  Google Scholar 

  89. Krasnow RE, Wong LL, Adler LA. Dishevelled is a component of the frizzled signaling pathway in Drosophila. Development 1995; 121: 4095–4102.

    PubMed  CAS  Google Scholar 

  90. Axelrod JD, Matsuno K, Artavanis-Tsakonas S, Perrimon N. Interaction between Wingless and Notch signaling pathways mediated by dishevelled. Science 1996; 271: 1826–1832.

    Article  PubMed  CAS  Google Scholar 

  91. Couso JP, Martinez Arias A. Notch is required for wingless signaling in the epidermis of Drosophila. Cell 1994; 79: 259–272.

    Article  PubMed  CAS  Google Scholar 

  92. Micchelli CA, Rulifson EJ, Blair EB. The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate. Development 1997; 124: 1485–1495.

    PubMed  CAS  Google Scholar 

  93. Rulifson EJ, Blair SS. Notch regulates wingless expression and is not required for reception of the paracrine wingless signal during wing margin neurogenesis in Drosophila. Development 1995; 121: 2813–2824.

    PubMed  CAS  Google Scholar 

  94. Yanagawa S, van Leeuwen F, Wodarz A, Klingensmith J, Nusse R. The dishevelled protein is modified by wingless signaling in Drosophila. Genes Dev 1995; 9: 1087 1097.

    Google Scholar 

  95. Willert K, Brink M, Wodarz A, Varmus H, Nusse R. Casein kinase 2 associates with and phosphorylates dishevelled. EMBO J 1997; 16: 3089–3096.

    Article  PubMed  CAS  Google Scholar 

  96. Yang Y, Lijam N, Sussman DJ, Tsang M. Genomic organization of mouse Dishevelled genes. Gene 1996; 180: 121–123.

    Article  PubMed  CAS  Google Scholar 

  97. Tsang M, Lijam N, Yang Y, Beier DR, Wynshaw-Boris A, Sussman DJ. Isolation and characterization of mouse dishevelled-3. Dev Dyn 1996; 207: 253–262.

    Article  PubMed  CAS  Google Scholar 

  98. Sussman DJ, Klingensmith J, Salinas P, Adams PS, Nusse R, Perrimon N. Isolation and characterization of a mouse homolog of the Drosophila segment polarity gene dishevelled. Dev Biol 1994; 166: 73–86.

    Article  PubMed  CAS  Google Scholar 

  99. Semenov MV, Snyder M. Human dishevelled genes constitute a DHR-containing multigene family. Genomics 1997; 42: 302–210.

    Article  PubMed  CAS  Google Scholar 

  100. Lijam N, Sussman DJ. Organization and promoter analysis of the mouse dishevelled-1 gene. Genome Res 1995; 5: 116–124.

    Article  PubMed  CAS  Google Scholar 

  101. Klingensmith J, Yang Y, Axelrod JD, Beier DR, Perrimon N, Sussman NS. Conservation of dishevelled structure and function between flies and mice: isolation and characterization of Dv12. Mech Dev 1996; 58: 15–26.

    Article  PubMed  CAS  Google Scholar 

  102. Greco TL, Sussman DJ, Camper DC. Dishevelled-2 maps to human chromosome 17 and distal to Wnt3a and vestigial tail (vt) on mouse chromosome 11. Mamm Genome 1996; 7: 475–476.

    Article  PubMed  CAS  Google Scholar 

  103. Bui TD, Beier DR, Jonssen M, Smith K, Dorrington SM, Kaklamanis L, Kearney L, Regan R, Sussman DJ, Harris DH. cDNA cloning of a human dishevelled DVL-3 gene, mapping to 3q27, and expression in human breast and colon carcinomas. Biochem Biophys Res Commun 1997; 239: 510–516.

    Article  PubMed  CAS  Google Scholar 

  104. Sokol SY. Analysis of Dishevelled signalling pathways during Xenopus development. Curr Biol 1996; 6: 1456–1467.

    Article  PubMed  CAS  Google Scholar 

  105. Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ, Perry WLR, Lee JJ, Tilghman SM, Gumbiner BM, Costantini F. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 1997; 90: 181–192.

    Article  PubMed  CAS  Google Scholar 

  106. Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, Kuhl M, Wedlich D, Birchmeier W. Functional interaction of an axin homolog, conductin, with B-catenin, APC, and GSK3B. Science 1998; 280: 596–599.

    Article  PubMed  CAS  Google Scholar 

  107. Ponting CP, Bork P. Pleckstrin’s repeat performance: a novel domain in G-protein signaling? Trends Biochem Sci 1996; 21: 245–246.

    PubMed  CAS  Google Scholar 

  108. Strutt DI, Weber U, Mlodzik M The role of RhoA in tissue polarity and Frizzled signalling. Nature 1997; 387: 292–295.

    Article  PubMed  CAS  Google Scholar 

  109. Plyte SE, Hughes K, Nikolakaki E, Pulverer BJ, Woodgett BW. Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim Biophys Acta 1992; 1114: 147–162.

    PubMed  CAS  Google Scholar 

  110. Peifer M, Pai LM, Casey M. Phosphorylation of the Drosophila adherens junction protein Armadillo: roles for wingless signal and zeste-white 3 kinase. Dev Biol 1994; 166: 543–556.

    Article  PubMed  CAS  Google Scholar 

  111. Siegfried E, Wilder EL, Perrimon N. Components of wingless signalling in Drosophila. Nature 1994; 367: 76–80.

    Article  PubMed  CAS  Google Scholar 

  112. Harwood AJ, Plyte SE, Woodgett J, Strutt H, Kay HK. Glycogen synthase kinase 3 regulates cell fate in Dictyostelium. Cell 1995; 80: 139–148.

    Article  PubMed  CAS  Google Scholar 

  113. Plyte SE, Feoktistova A, Burke JD, Woodgett JR, Gould JG. Schizosaccharomyces pombe skpl+ encodes a protein kinase related to mammalian glycogen synthase kinase 3 and complements a cdc14 cytokinesis mutant. Mol Cell Biol 1996; 16: 179–191.

    PubMed  CAS  Google Scholar 

  114. Bianchi MW, Plyte SE, Kreis M, Woodgett MW. A Saccharomyces cerevisiae protein-serine kinase related to mammalian glycogen synthase kinase-3 and the Drosophila melanogaster gene shaggy product. Gene 1993; 134: 51–56.

    Article  PubMed  CAS  Google Scholar 

  115. Bianchi MW, Guivarc’h D, Thomas M, Woodgett JR, Kreis M. Arabidopsis homologs of the shaggy and GSK-3 protein kinases: molecular cloning and functional expression in Escherichia coli. Mol Gen Genet 1994; 242: 337–345.

    Article  PubMed  CAS  Google Scholar 

  116. Dominguez I, Itoh K, Sokol KS. Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc Natl Acad Sci USA 1995; 92: 8498–8502.

    Article  PubMed  CAS  Google Scholar 

  117. He X, Saint-Jeannet JP, Woodgett JR, Varmus HE, Dawid HD. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 1995; 374: 617–622.

    Article  PubMed  CAS  Google Scholar 

  118. Pierce SB, Kimelman, D. Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3. Development 1995; 121: 755–765.

    PubMed  CAS  Google Scholar 

  119. Cook D, Fry MJ, Hughes K, Sumathipala R, Woodgett JR, Dale JD. Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C. EMBO J 1996; 15: 4526–4536.

    PubMed  CAS  Google Scholar 

  120. Goode N, Hughes K, Woodgett JR, Parker JP. Differential regulation of glycogen synthase kinase-3 beta by protein kinase C isotypes. J Biol Chem 1992; 267:16, 878–16, 882.

    Google Scholar 

  121. Ginsburg GT, Kimmel AR. Autonomous and nonautonomous regulation of axis formation by antagonistic signaling via 7-span cAMP receptors and GSK3 in Dictyostelium. Genes Dev 1997; 11: 2112–2123.

    Article  PubMed  CAS  Google Scholar 

  122. Stambolic V, Woodgett JR. Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J 1994; 303: 701–704.

    PubMed  CAS  Google Scholar 

  123. Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 1996; 93: 8455–8459.

    Article  PubMed  CAS  Google Scholar 

  124. Stambolic V, Ruel L, Woodgett LW. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 1996; 6: 1664–1668.

    Article  PubMed  CAS  Google Scholar 

  125. Kao KR, Masui Y, Elinson YE. Lithium induced respecification of pattern in Xenopus laevis embryos. Nature 1986; 322: 371–373.

    Article  PubMed  CAS  Google Scholar 

  126. Beals CR, Sheridan CM, Turck CW, Gardner P, Crabtree PC. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 1997; 275: 1930–1934.

    Article  PubMed  CAS  Google Scholar 

  127. Sakanaka C, Weiss JB, Williams JW. Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. Proc Natl Acad Sci USA 1998; 95: 3020–3023.

    Article  PubMed  CAS  Google Scholar 

  128. Yamamoto H, Kishida S, Uochi T, Ikeda S, Koyama S, Asashima M, Kikuchi A. Axil, a member of the axin family, interacts with glycogen synthase kinase 3B and B-catenin and inhibits axis formation of Xenopus embryos. Mol Cell Biol 1998; 18: 2867–2875.

    PubMed  CAS  Google Scholar 

  129. Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J 1998; 17: 1371–1384.

    Article  PubMed  CAS  Google Scholar 

  130. Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, Koyama K, Utsunomiya J, Baba S, Hedge P. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991; 253: 665–669.

    Article  PubMed  CAS  Google Scholar 

  131. Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, Joslyn G, Stevens J, Spirio L, Robertson M, and et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991; 66: 589–600.

    Article  PubMed  CAS  Google Scholar 

  132. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1996; 87: 159170.

    Google Scholar 

  133. Sparks AB, Morin PJ, Vogelstein B, Kinzler BK. Mutational analysis of the APC/betacatenin/Tcf pathway in colorectal cancer. Cancer Res 1998; 58: 1130–1134.

    PubMed  CAS  Google Scholar 

  134. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B, Clevers H. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 1997; 275: 1784–1787.

    Article  PubMed  CAS  Google Scholar 

  135. Munemitsu S, Albert I, Souza B, Rubinfeld B, Polakis P Regulation of intracellular betacatenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci USA 1995; 92: 3046–3050.

    Article  PubMed  CAS  Google Scholar 

  136. Shoemaker AR, Gould KA, Luongo C, Moser AR, Dove AD. Studies of neoplasia in the Min mouse. Biochim Biophys Acta 1997; 1332: F25–48.

    PubMed  CAS  Google Scholar 

  137. Peifer M, Berg S, Reynolds SR. A repeating amino acid motif shared by proteins with diverse cellular roles [letter]. Cell 1994; 76: 789–791.

    Article  PubMed  CAS  Google Scholar 

  138. Su LK, Burrell M, Hill DE, Gyuris J, Brent R, Wiltshire R, Trent J, Vogelstein B, Kinzler BK. APC binds to the novel protein EB1. Cancer Res 1995; 55: 2972–2977.

    PubMed  CAS  Google Scholar 

  139. Matsumine A, Ogai A, Senda T, Okumura N, Satoh K, Baeg GH, Kawahara T, Kobayashi S, Okada M, Toyoshima K, Akiyama T. Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science 1996; 272: 1020–1023.

    Article  PubMed  CAS  Google Scholar 

  140. Munemitsu S, Souza B, Muller O, Albert I, Rubinfeld B, Polakis P. The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res 1994; 54: 3676–3681.

    PubMed  CAS  Google Scholar 

  141. Smith KJ, Levy DB, Maupin P, Pollard TD, Vogelstein B, Kinzler BK. Wild-type but not mutant APC associates with the microtubule cytoskeleton. Cancer Res 1994; 54: 36723675.

    Google Scholar 

  142. Vleminckx K, Wong E, Guger K, Rubinfeld B, Polakis P, Gumbiner PG. Adenoma-tous polyposis coli tumor suppressor protein has signaling activity in Xenopus laevis embryos resulting in the induction of an ectopic dorsoanterior axis. J Cell Biol 1997; 136: 411–420.

    Article  PubMed  CAS  Google Scholar 

  143. Hayashi S, Rubinfeld B, Souza B, Polakis P, Wieschaus E, Levine EL. A Drosophila homolog of the tumor suppressor gene adenomatous polyposis coli down-regulates betacatenin but its zygotic expression is not essential for the regulation of Armadillo. Proc Natl Acad Sci USA 1997; 94: 242–247.

    Article  PubMed  CAS  Google Scholar 

  144. Vasicek TJ, Zeng L, Guan XJ, Zhang T, Costantini F, Tilghman FT. Two dominant mutations in the mouse fused gene are the result of transposon insertions. Genetics 1997; 147: 777–786.

    PubMed  CAS  Google Scholar 

  145. Perry WLI, Vasicek TJ, Lee JJ, Rossi JM, Zeng L, Zhang T, Tilghman SM, Costantini R. Phenotypic and molecular analysis of a transgenic insertional allele of the mouse Fused locus. Genetics 1995; 141: 321–332.

    PubMed  CAS  Google Scholar 

  146. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 1996; 382: 638–642.

    Article  PubMed  CAS  Google Scholar 

  147. Koelle MR. A new family of G-protein regulators-the RGS proteins. Curr Opin Cell Biol 1997; 9: 143–147.

    Article  PubMed  CAS  Google Scholar 

  148. Cowin P, Kapprell HP, Franke WW, Tamkun J, Hynes JH. Plakoglobin: a protein common to different kinds of intercellular adhering junctions. Cell 1986; 46: 1063–1073.

    Article  PubMed  CAS  Google Scholar 

  149. Ozawa M, Baribault H, Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J 1989; 8: 1711–1717.

    PubMed  CAS  Google Scholar 

  150. Nagafuchi A, Takeichi, M. Transmembrane control of cadherin-mediated cell adhesion: a 94 kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin. Cell Regul 1989; 1: 37–44.

    PubMed  CAS  Google Scholar 

  151. McCrea PD, Turck CW, Gumbiner B. A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science 1991; 254: 1359–1361.

    Article  PubMed  CAS  Google Scholar 

  152. Peifer M, McCrea PD, Green KJ, Wieschaus E, Gumbiner EG. The vertebrate adhesive junction proteins beta-catenin and plakoglobin and the Drosophila segment polarity gene armadillo form a multigene family with similar properties. J Cell Biol 1992; 118: 68 1691

    Google Scholar 

  153. Funayama N, Fagotto F, McCrea P, Gumbiner PG. Embryonic axis induction by the armadillo repeat domain of beta-catenin: evidence for intracellular signaling. J Cell Biol 1995; 128: 959–968.

    Article  PubMed  CAS  Google Scholar 

  154. Karnovsky A, Klymkowsky MW. Anterior axis duplication in Xenopus induced by the over-expression of the cadherin-binding protein plakoglobin. Proc Natl Acad Sci USA 1995; 92: 4522–4536.

    Article  PubMed  CAS  Google Scholar 

  155. Barth AI, Nathke IS, Nelson IN. Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol 1997; 9: 683–690.

    Article  PubMed  CAS  Google Scholar 

  156. Cowin P, Burke B. Cytoskeleton-membrane interactions. Curr Opin Cell Biol 1996; 8: 56–65.

    Article  PubMed  CAS  Google Scholar 

  157. Orsulic S, Peifer M. An in vivo structure-function study of armadillo, the beta-catenin homologue, reveals both separate and overlapping regions of the protein required for cell adhesion and for wingless signaling. J Cell Biol 1996; 134: 1283–1300.

    Article  PubMed  CAS  Google Scholar 

  158. Nagafuchi A, Takeichi M. Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J 1988; 7: 3679–3684.

    PubMed  CAS  Google Scholar 

  159. Haegel H, Lame L, Ohsugi M, Fedorov L, Herrenknecht K, Kemler R. Lack of betacatenin affects mouse development at gastrulation. Development 1995; 121: 3529–3537.

    PubMed  CAS  Google Scholar 

  160. Peifer M. Cell adhesion and signal transduction: the Armadillo connection. Trends in Cell Biology 1995; 5: 224–229.

    Article  PubMed  CAS  Google Scholar 

  161. Bierkamp C, McLaughlin KJ, Schwarz H, Huber O, Kemler R. Embryonic heart and skin defects in mice lacking plakoglobin. Dev Biol 1996; 180: 780–785.

    Article  PubMed  CAS  Google Scholar 

  162. Ruiz P, Brinkmann V, Ledermann B, Behrend M, Grund C, Thalhammer C, Vogel F, Birchmeier C, Gunthert U, Franke WW, Birchmeier W. Targeted mutation of plakoglobin in mice reveals essential functions of desmosomes in the embryonic heart. J Cell Biol 1996; 135: 215–225.

    Article  PubMed  CAS  Google Scholar 

  163. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 1997; 16: 3797–3804.

    Article  PubMed  CAS  Google Scholar 

  164. Orford K, Crockett C, Jensen JP, Weissman AM, Byers AB. Serine phosphorylationregulated ubiquitination and degradation of beta-catenin. J Biol Chem 1997; 272:24, 73524, 738.

    Google Scholar 

  165. Clevers H, van de Wetering, M. TCF/LEF factor earn their wings. Trends Genet 1997; 13: 485–489.

    Article  PubMed  CAS  Google Scholar 

  166. Ilyas M, Tomlinson IP, Rowan A, Pignatelli M, Bodmer MB. Beta-catenin mutations in cell lines established from human colorectal cancers. Proc Natl Acad Sci USA 1997; 94:10, 330–10, 334.

    Google Scholar 

  167. Peifer M. Beta-catenin as oncogene: the smoking gun. Science 1997; 275: 1752–1753.

    Article  PubMed  CAS  Google Scholar 

  168. Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P. Stabilization of betacatenin by genetic defects in melanoma cell lines. Science 1997; 275: 1790–1792.

    Article  PubMed  CAS  Google Scholar 

  169. Takahashi M, Fukuda K, Sugimura T, Wakabayashi K. Beta-catenin is frequently mutated and demonstrates altered cellular location in azoxymethane-induced rat colon tumors. Cancer Res 1998; 58: 42–46.

    PubMed  CAS  Google Scholar 

  170. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler BK. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997; 275: 1787–1790.

    Article  PubMed  CAS  Google Scholar 

  171. Fagotto F, Gluck U, Gumbiner B. Nuclear localization signal-independent and importin/ karyopherin-independent nuclear import of 13-catenin. Curr Biol 1998; 8: 181–190.

    Article  PubMed  CAS  Google Scholar 

  172. Jiang J, Struhl G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 1998; 391: 493–496.

    Article  PubMed  CAS  Google Scholar 

  173. Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge JE. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 1996; 86: 263–274.

    Article  PubMed  CAS  Google Scholar 

  174. Margottin F, Benichou S, Durand H, Richard V, Liu LX, Gomas E, Benarous R. Interaction between the cytoplasmic domains of HIV-1 Vpu and CD4: role of Vpu residues involved in CD4 interaction and in vitro CD4 degradation. Virology 1996; 223: 381–386.

    Article  PubMed  CAS  Google Scholar 

  175. Neer EJ, Schmidt CJ, Nambudripad R, Smith RS. The ancient regulatory-protein family of WD-repeat proteins. Nature 1994; 371: 297–300.

    Article  PubMed  CAS  Google Scholar 

  176. Margottin F, Bour SP, Durand H, Selig L, Benichou S, Richard V, Thomas D, Strebel K, Benarous R. A novel human WD protein, h-BTrCP, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol Cell 1998; 1: 565–574.

    Article  PubMed  CAS  Google Scholar 

  177. Hudson JW, Alarcon VB, Elinson VE. Identification of new localized RNAs in the Xenopus oocyte by differential display PCR. Dev Genet 1996; 19: 190–198.

    Article  PubMed  CAS  Google Scholar 

  178. Spevak W, Keiper BD, Stratowa C, Castanon CC. Saccharomyces cerevisiae cdc 15 mutants arrested at a late stage in anaphase are rescued by Xenopus cDNAs encoding N-ras or a protein with beta-transducin repeats. Mol Cell Biol 1993; 13: 4953–4966.

    PubMed  CAS  Google Scholar 

  179. Chen MY, Maldarelli F, Karczewski MK, Willey RL, Strebel K. Human immunodeficiency virus type 1 Vpu protein induces degradation of CD4 in vitro: the cytoplasmic domain of CD4 contributes to Vpu sensitivity. J Virol 1993; 67: 3877–3884.

    PubMed  CAS  Google Scholar 

  180. Oosterwegel M, van de Wetering M, Dooijes D, Klomp L, Winoto A, Georgopoulos K, Meijlink F, Clevers H. Cloning of murine TCF-1, a T cell-specific transcription factor interacting with functional motifs in the CD3-epsilon and T cell receptor alpha enhancers. J Exp Med 1991; 173: 1133–1142.

    Article  PubMed  CAS  Google Scholar 

  181. Travis A, Amsterdam A, Belanger C, Grosschedl R. LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function. Genes Dev 1991; 5: 880–894.

    Article  PubMed  CAS  Google Scholar 

  182. van de Wetering M, Oosterwegel M, Dooijes D, Clevers H. Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J 1991; 10: 123–132.

    PubMed  Google Scholar 

  183. Waterman ML, Fischer WH, Jones WJ. A thymus-specific member of the HMG protein family regulates the human T cell receptor C alpha enhancer. Genes Dev 1991; 5: 656–669.

    Article  PubMed  CAS  Google Scholar 

  184. Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destree O, Clevers H. XTcf-3 transcription factor mediates beta-catenininduced axis formation in Xenopus embryos. Cell 1996; 86: 391–399.

    Article  PubMed  CAS  Google Scholar 

  185. Brunner E, Peter O, Schweizer L, Basler K. pangolin encodes a LEF-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 1997; 385: 829–833.

    Article  PubMed  CAS  Google Scholar 

  186. van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J, Ypma A, Hursh D, Jones T, Bejsovec A, Peifer M, Mortin M, Clevers H. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 1997; 88: 789–799.

    Article  PubMed  Google Scholar 

  187. Verbeek S, Izon D, Hofhuis F, Robanus-Maandag E, to Riele H, van de Wetering M, Oosterwegel M, Wilson A, MacDonald HR, Clevers H. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 1995; 374: 70–74.

    Article  PubMed  CAS  Google Scholar 

  188. van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, Bruhn L, Grosschedl R. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 1994; 8: 2691–2703.

    Article  PubMed  Google Scholar 

  189. Korinek V, Barker N, Willert K, Molenaar M, Roose J, Wagenaar G, Markman M, Lamers W, Destree O, Clevers H. Two members of the Tcf family implicated in Wnt/beta-catenin signaling during embryogenesis in the mouse. Mol Cell Biol 1998; 18: 1248–1256.

    PubMed  CAS  Google Scholar 

  190. Merriam JM, Rubenstein AB, Klymkowsky MW. Cytoplasmically anchored plakoglobin induces a WNT-like phenotype in Xenopus. Dev Biol 1997; 185: 67–81.

    Article  PubMed  CAS  Google Scholar 

  191. Miller JR, Moon RT. Analysis of the signaling activities of localization mutants of 13catenin during axis specification in Xenopus. J Cell Biol 1997; 139: 229–243.

    Article  PubMed  CAS  Google Scholar 

  192. Salomon D, Sacco PA, Roy SG, Simcha I, Johnson KR, Wheelock MJ, Ben-Ze’ev A. Regulation of beta-catenin levels and localization by overexpression of plakoglobin and inhibition of the ubiquitin-proteasome system. J Cell Biol 1997; 139: 1325–1335.

    Article  PubMed  CAS  Google Scholar 

  193. Giese K, Pagel J, Grosschedl R. Functional analysis of DNA bending and unwinding by the high mobility group domain of LEF-1. Proc Natl Acad Sci USA 1997; 94:12, 84512, 850.

    Google Scholar 

  194. Klingensmith J, Nusse R. Signaling by wingless in Drosophila. Dev Biol 1996; 166: 396414.

    Google Scholar 

  195. Brook WJ, Diaz-Benjumea FJ, Cohen FC. Organizing spatial pattern in limb development. Annu Rev Cell Dev Biol 1996; 12: 161–180.

    Article  PubMed  CAS  Google Scholar 

  196. Riese J, Yu X, Munnerlyn A, Eresh S, Hsu SC, Grosschedl R, Bienz M. LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell 1997; 88: 777–787.

    Article  PubMed  CAS  Google Scholar 

  197. Lemaire P, Garrett N, Gurdon NG. Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell 1995; 81: 85–94.

    Article  PubMed  CAS  Google Scholar 

  198. Brannon M, Kimelman D. Activation of Siamois by the Wnt pathway. Dev Biol 1996; 180: 344–347.

    Article  PubMed  CAS  Google Scholar 

  199. Carnac G, Kodjabachian L, Gurdon JB, Lemaire P. The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm. Development 1996; 122: 3055–3065.

    PubMed  CAS  Google Scholar 

  200. Cho KW, Blumberg B, Steinbeisser H, De Robertis RR. Molecular nature of Spemann’s organizer: the role of the Xenopus homeobox gene goosecoid. Cell 1991; 67: 1111 1120.

    Google Scholar 

  201. Steinbeisser H, De Robertis EM, Ku M, Kessler DS, Melton DM. Xenopus axis formation: induction of goosecoid by injected Xwnt-8 and activin mRNAs. Development 1993; 118: 499–507.

    PubMed  CAS  Google Scholar 

  202. Niehrs C, Keller R, Cho KW, De Robertis KD. The homeobox gene goosecoid controls cell migration in Xenopus embryos. Cell 1993; 72: 491–503.

    Article  PubMed  CAS  Google Scholar 

  203. McKendry R, Hsu SC, Harland RM, Grosschedl R. LEF-1/TCF proteins mediate wntinducible transcription from the Xenopus nodal-related 3 promoter. Dev Biol 1997; 192: 420–431.

    Article  PubMed  CAS  Google Scholar 

  204. Brannon M, Gomperts M, Sumoy L, Moon RT, Kimelman D. A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev 1997; 11: 2359–2370.

    Article  PubMed  CAS  Google Scholar 

  205. van den Heuvel M, Ingham PW. smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature 1996; 382: 547–551.

    Article  PubMed  Google Scholar 

  206. Alcedo J, Ayzenzon M, Von Ohlen T, Noll M, Hooper MH. The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 1996; 86: 221–232.

    Article  PubMed  CAS  Google Scholar 

  207. Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL, Scott MP, Pennica D, Goddard A, Phillips H, Noll M, Hooper JE, de Sauvage F, Rosenthal A. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 1996; 384: 129–134.

    Article  PubMed  CAS  Google Scholar 

  208. Lee CH, Gumbiner BM. Disruption of gastrulation movements in Xenopus by a dominant-negative mutant for C-cadherin. Dev Biol 1995; 171: 363–373.

    Article  PubMed  CAS  Google Scholar 

  209. Huber O, Bierkamp C, Kemler R. Cadherins and catenins in development. Curr Opin Cell Biol 1996; 8: 685–691.

    Article  PubMed  CAS  Google Scholar 

  210. Fagotto F, Funayama N, Gluck U, Gumbiner UG. Binding to cadherins antagonizes the signaling activity of beta-catenin during axis formation in Xenopus. J Cell Biol 1996; 132: 1105–1114.

    Article  PubMed  CAS  Google Scholar 

  211. Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R. Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech Dev 1996; 59: 3–10.

    Article  PubMed  CAS  Google Scholar 

  212. Schena M, Shalon D, Davis RW, Brown RB. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270: 467–470.

    Article  PubMed  CAS  Google Scholar 

  213. DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y, Su YA, Trent YS. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 1996; 14: 457–460.

    Article  PubMed  CAS  Google Scholar 

  214. McMahon AP, Bradley A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 1990; 62: 1073–1085.

    Article  PubMed  CAS  Google Scholar 

  215. Thomas KR, Capecchi MR. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 1990; 346: 847850.

    Google Scholar 

  216. Thomas KR, Musci TS, Neumann PE, Capecchi PC. Swaying is a mutant allele of the proto-oncogene Wnt-1. Cell 1991; 67: 969–976.

    Article  PubMed  CAS  Google Scholar 

  217. Monkley SJ, Delaney SJ, Pennisi DJ, Christiansen JH, Wainwright BJ. Targeted disruption of the Wnt2 gene results in placentation defects. Development 1996; 122: 3343–3353.

    PubMed  CAS  Google Scholar 

  218. Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JA, McMahon JM. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 1994; 8: 174–189.

    Article  PubMed  CAS  Google Scholar 

  219. Greco TL, Takada S, Newhouse MM, McMahon JA, McMahon AP, Camper AC. Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development. Genes Dev 1996; 10: 313–324.

    Article  PubMed  CAS  Google Scholar 

  220. Stark K, Vainio S, Vassileva G, McMahon GM. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 1994; 372: 679–683.

    Article  PubMed  CAS  Google Scholar 

  221. Parr BA, McMahon AP. Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 1995; 374: 350–353.

    Article  PubMed  CAS  Google Scholar 

  222. Lijam N, Paylor R, McDonald MP, Crawley JN, Deng CX, Herrup K, Stevens KE, Maccaferri G, McBain CJ, Sussman DJ, Wynshaw-Boris A. Social interaction and sensori-motor gating abnormalities in mice lacking Dvll. Cell 1997; 90: 895–905.

    Article  PubMed  CAS  Google Scholar 

  223. Shibata H, Toyama K, Shioya H, Ito M, Hirota M, Hasegawa S, Matsumoto H, Takano H, Akiyama T, Toyoshima K, Kanamaru R, Kanegae Y, Saito I, Nakamura Y, Shiba K, Noda T. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 1997; 278: 120–123.

    Article  PubMed  CAS  Google Scholar 

  224. Moser AR, Pitot HC, Dove HD. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 1990; 247: 322–324.

    Article  PubMed  CAS  Google Scholar 

  225. Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR, Luongo C, Gould KA, Dove KD. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 1992; 256: 668–670.

    Article  PubMed  CAS  Google Scholar 

  226. Fodde R, Edelmann W, Yang K, van Leeuwen C, Carlson C, Renault B, Breukel C, Alt E, Lipkin M, Khan PM, and et al. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc Natl Acad Sci USA 1994; 91: 8969–8973.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Barish, G.D., Williams, B.O. (2000). The Wnt Signal Transduction Pathway. In: Gutkind, J.S. (eds) Signaling Networks and Cell Cycle Control. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-218-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-218-0_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9695-6

  • Online ISBN: 978-1-59259-218-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics