Skip to main content

Inhibitors of Protein Kinase C and Related Receptors for the Lipophilic Second-Messenger sn-1,2-Diacylglycerol

  • Chapter
Signaling Networks and Cell Cycle Control

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 282 Accesses

Abstract

Toxic natural products, selected by evolution both for activity against crucial biological targets and for potency, have made major contributions in highlighting such targets and in defining their functions. The phorbol esters, initially isolated on the basis of their activity as tumor promoters and as acute irritants, were found to have dramatic biological effects in virtually every system in which they were examined (1). We now appreciate that the phorbol esters function as ultrapotent analogs of the lipophilic second messenger sn-1,2-diacylglycerol (DAG) and that phorbol ester receptors identify high-affinity targets in DAG signaling (2), of which protein kinase C (PKC) has been most thoroughly studied (3–7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blumberg PM. In vitro studies on the mode of action of the phorbol esters, potent tumor promoters. Crit Rev Toxicol 1980; 8: 153–234.

    Article  PubMed  CAS  Google Scholar 

  2. Hurley JH, Newton AC, Parker PJ, Blumberg PM, Nishizuka Y. Taxonomy and function of Cl protein kinase C homology domains. Protein Sci 1997; 6: 477–480.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992; 258: 607–614.

    Article  PubMed  CAS  Google Scholar 

  4. Newton AC. Protein kinase C: Structure, function, and regulation. J Biol Chem 1995; 270: 28495–28498.

    Article  PubMed  CAS  Google Scholar 

  5. Asaoka Y, Nakamura S, Yoshida K, Nishizuka, Y. Protein kinase C, calcium and phospholipid degradation. Trends Biochem Sci 1992; 17: 414–417.

    Article  PubMed  CAS  Google Scholar 

  6. Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J, 1995; 9: 484–496.

    PubMed  CAS  Google Scholar 

  7. Newton AC. Cofactor regulation of protein kinase C, in Protein Kinase C ( Dekker LV, Parker PJ, eds), RG Landes, Austin, TX, 1997, 25–44.

    Google Scholar 

  8. Rhee SG, Bae YS. Regulation of phosphoinositide-specific phospholipase C isozymes. J Biol Chem 1997; 272:15, 045–15, 048.

    Google Scholar 

  9. Exton JH. Phospholipase D: Enzymology, mechanisms of regulation, and function. Physiol Rev 1997; 77: 303–320.

    PubMed  CAS  Google Scholar 

  10. Sossin WS, Schwartz JH. Cat+-independent protein kinase Cs contain an amino-terminal domain similar to the C2 consensus sequence. Trends Biochem Sci 1993; 18: 207, 208.

    Google Scholar 

  11. Nishizuka Y. Protein kinase C and lipid signalling for sustained cellular responses. Curr Opin Struct Biol 1995; 5: 396–402.

    Article  Google Scholar 

  12. Kazanietz MG, Bustelo XR, Barbacid M, Kolch W, Mischak H, Wong G, Bruns JD, Blumberg PM. Zinc finger domains and the phorbol ester pharmacophore: Analysis of binding to a mutated form of PKC and the vav and c-raf protooncogene products. J Biol Chem 1994; 269:11, 590–11, 594.

    Google Scholar 

  13. Dekker LV, Palmer RH, Parker PJ. The protein kinase C and protein kinase C related gene families. Curr Opin Struct Biol 1995; 5: 396–402.

    Article  PubMed  CAS  Google Scholar 

  14. Lim L. N-chimaerin and neuronal signal transduction mechanisms. Biochem Soc Trans 1992; 20: 611–614.

    PubMed  CAS  Google Scholar 

  15. Hall C, Monfries C, Smith P, Lim HH, Kozma R, Ahmed S, Vanniasingham V, Leung T, Lim L. Novel human-brain cDNA-encoding a 34,000 Mr protein n-chimaerin, related to both the regulatory domain of protein kinase C and BCR, the product of the breakpoint cluster region gene. J Mol Biol 1990; 211: 11–16.

    Article  PubMed  CAS  Google Scholar 

  16. Hall C, Sin WC, Teo M, Michael GJ, Smith P, Dong JM, Lim HH, Manser E, Spurr NK, Jones TA, Lim L. a2-chimaerin, a SH2-containing GTPase-activating protein for the Ras-related protein p21RAC derived by alternate splicing of the human n-chimaerin gene, is selectively expressed in brain-regions and testes. Mol Cell Biol 1993; 13: 49864998.

    Google Scholar 

  17. Leung T, How BE, Manser E, Lim L. Germ cell (3-chimaerin, a new GTPase-activating protein for p2lrac, is specifically expressed during the acrosomal assembly stage in rat testis. J Biol Chem 1993; 268: 3813–3816.

    PubMed  CAS  Google Scholar 

  18. Leung T, How BE, Manser E, Lim L. Cerebellar (3-chimaerin, a GTPase-activating protein for the p21RAS-related Rac, is specifically expressed in granule cells and has a unique N-terminal SH2 domain. J Biol Chem 1994; 269:12, 888–12, 892.

    Google Scholar 

  19. Ahmed S, Maruyana IN, Kozma R, Lee J, Brenner S, Lim L. The Caenorhabditis elegans Unc-13 gene-product is a phospholipid-dependent high affinity phorbol ester receptor. Biochem J 1992; 287: 995–999.

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Betz A, Telemanakis I, Hofmann K, Broze N. Mammalian Unc-13 homologues as possible regulators of neurotransmitter release. Biochem Soc Trans 1996; 24: 661–666.

    PubMed  CAS  Google Scholar 

  21. Ebinu JO, Bottorff DA, Chan EYW, Stang SL, Dunn RJ, Stone JC. RasGRP, a Ras Guanyl nucleotide-releasing protein with calcium-and diacylglycerol-binding motifs. Science 1998; 280: 1082–1086.

    Article  PubMed  CAS  Google Scholar 

  22. Tognon CE, Kirk HE, Passmore LA, Whitehead IP, Der CJ, Kay RJ. Regulation of RasGRP via a phorbol ester-responsive C 1 domain. Mol Cell Biol 1998; 18: 6995–7008.

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Yuan S, Miller DW, Barnett GH, Hahn JF, Williams BR. Identification and characterization of human beta 2-chimaerin: Association with malignant transformation in astrocytoma. Cancer Res 1995; 55: 3456–3461.

    PubMed  CAS  Google Scholar 

  24. Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, Kaplan DR, Tsichlis PN. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGFactivated phosphatidylinositol 3-kinase. Cell 1995; 81: 727–736.

    Article  PubMed  CAS  Google Scholar 

  25. Burgering BMT, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 1995; 376: 599–602.

    Article  PubMed  CAS  Google Scholar 

  26. Singer WD, Brown HA, Jiang X, and Sternweis PC. Regulation of phospholipase D by protein kinase C is synergistic with ADP-ribosylation factor and independent of protein kinase activity. J Biol Chem 1996; 271: 4504–4510.

    Article  PubMed  CAS  Google Scholar 

  27. Li W, Yu JC, Shin DY, Pierce JH. Characterization of a protein kinase C-S (PKC-S) ATP binding mutant. An inactive enzyme that competitively inhibits wild type PKC-S enzymatic activity. J Biol Chem 1995; 270: 8311–8318.

    Article  PubMed  CAS  Google Scholar 

  28. Liao L, Hyatt SL, Chapline C, Jaken S. Protein kinase C domains involved in interactions with other proteins. Biochemistry 1994; 33: 1229–1233.

    Article  PubMed  CAS  Google Scholar 

  29. House C, Kemp BE. Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science 1987; 238: 1729–1728.

    Article  Google Scholar 

  30. Quest AFG. Regulation of protein kinase C: A tale of lipids and proteins. Enzyme Protein 1996; 49: 231–261.

    PubMed  CAS  Google Scholar 

  31. Mochly-Rosen D, Khaner H, Lopez J. Identification of intracellular receptor proteins for activated protein kinase C. Proc Natl Acad Sci USA 1991; 88: 3987–4000.

    Article  Google Scholar 

  32. Zhang G, Kazanietz MG, Blumberg PM, Hurley JH. Crystal structure of the cys2 activator-binding domain of protein kinase CS in complex with phorbol ester. Cell 1995; 81: 917–924.

    Article  PubMed  CAS  Google Scholar 

  33. Wang S, Kazanietz MG, Blumberg PM, Marquez VE, Milne WA. Molecular modeling and site-directed mutagenesis studies of a phorbol ester-binding site in protein kinase C. J Med Chem 1996; 39: 2541–2553.

    Article  PubMed  CAS  Google Scholar 

  34. Zayed S, Sorg B, Hecker E. Structure activity relations of polyfunctional diterpenes of the tigliane type, VI. Irritant and tumor promoting activities of semi-synthetic mono and diesters of 12-deoxyphorbol. Planta Med 1984; 1: 65–69.

    Article  Google Scholar 

  35. Slaga T, Fisher SM, Nelson K, Gleason GL. Studies on the mechanism of skin tumor promotion: Evidence for several stages in promotion. Proc Natl Acad Sci USA 1980; 77: 3659–3663.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Argyris TS. Nature of the epidermal hyperplasia produced by mezerein, a weak tumor promoter, in initiated skin of mice. Cancer Res 1983; 43: 1768–1773.

    PubMed  CAS  Google Scholar 

  37. Szallasi Z, Blumberg PM. Prostratin, a non-promoting phorbol ester, inhibits induction of phorbol 12-myristate 13-acetate of ornithine decarboxylase, edema, and hyperplasia in CD-1 mouse skin. Cancer Res 1991; 51: 5355–5360.

    PubMed  CAS  Google Scholar 

  38. Szallasi Z, Krsmanovich L, Blumberg PM. Non-promoting 12-deoxyphorbol 13-esters inhibit phorbol 12-myristate 13-acetate induced tumor promotion in CD-1 mouse skin. Cancer Res 1993; 53: 2507–2512.

    PubMed  CAS  Google Scholar 

  39. Szallasi Z, Bogi K, Gohari S, Biro T, Acs P, Blumberg PM. Non-equivalent roles for the first and second zinc fingers of protein kinase C. Effect of their mutation on phorbol ester-induced translocation in NIH 3T3 cells. J Biol Chem 1996; 271:18, 299–18, 301.

    Google Scholar 

  40. Bogi K, Lorenzo PS, Szallasi Z, Acs P, Wagner GS, Blumberg PM. Differential selectivity of ligands for the C1a and Clb phorbol ester binding domains of protein kinase CS: Possible correlation with tumor-promoting activity. Cancer Res 1998; 58: 1423–1428.

    PubMed  CAS  Google Scholar 

  41. Bogi K, Lorenzo PS, Acs P, Szallasi Z, Wagner GS, Blumberg PM. Comparison of the roles of the C1a and C1b domains of protein kinase C alpha in ligand induced translocation in NIH3T3 cells. FEBS Lett 1999; 456: 27–30.

    Article  PubMed  CAS  Google Scholar 

  42. Shieh HL, Hansen H, Zhu J, Riedel H. Differential protein kinase C ligand regulation detected in vivo by a phenotypic yeast assay. Mol Carcinog 1995; 12: 166–176.

    Article  PubMed  CAS  Google Scholar 

  43. Slater SJ, Ho C, Kelly, MB, Larkin JD, Taddeo FJ, Yeager MD, Stubbs CD. Protein kinase C a contains two activator binding sites that bind phorbol esters and diacylglycerol with opposite affinities. J Biol Chem 1996; 271: 4627–4631.

    Article  PubMed  CAS  Google Scholar 

  44. Hunn M, Quest AF. Cysteine-rich regions of protein kinase C8 are functionally nonequivalent. Differences between cysteine-rich regions of non-calcium dependent protein kinase C8 and calcium-dependent protein kinase Cy. FEBS Lett 1997; 400: 226–232.

    Article  PubMed  CAS  Google Scholar 

  45. Kazanietz MG, Areces LB, Bahador A, Mischak H, Goodnight J, Mushinski JF, Blumberg PM. Characterization of ligand and substrate specificity for the calcium-dependent and calcium-independent PKC isozymes. Mol Pharmacol 1993; 44: 298–307.

    PubMed  CAS  Google Scholar 

  46. Kazanietz MG, Lewin NE, Bruns JD, Blumberg PM. Characterization of the cysteine-rich region of the Caenorhabditis elegans protein Unc-13 as a high affinity phorbol ester receptor: analysis of ligand-binding interactions, lipid cofactor requirements, and inhibitor-sensitivity. J Biol Chem 1995; 270:10, 777–10, 783.

    Google Scholar 

  47. Acs P, Bogi K, Lorenzo PS, Marquez VE, Biro T, Szallasi Z, Blumberg PM. The catalytic domain of protein kinase C chimeras modulates the affinity and targeting of phorbol ester-induced translocation. J Biol Chem 1997; 272:22, 148–22, 153.

    Google Scholar 

  48. Szallasi Z, Smith CB, Pettit, GR, Blumberg PM. Differential regulation of protein kinase C isozymes by bryostatin 1 and phorbol 12-myristate 13-acetate in NIH 3T3 fibroblasts. J Biol Chem 1994; 269: 2118–2124.

    PubMed  CAS  Google Scholar 

  49. Szallasi Z, Denning MF, Smith, CB, Dlugosz AA, Yuspa SH, Pettit GR, Blumberg PM. Bryostatin 1 protects PKC 8 from down-regulation in mouse keratinocytes in parallel with its inhibition of phorbol ester induced differentiation. Mol Pharmacol 1994; 46: 840–850.

    PubMed  CAS  Google Scholar 

  50. Szallasi Z, Kosa K, Smith CB, Dlugosz AA, Williams EK, Yuspa SH, Blumberg PM. Differential regulation by the anti-promoting 12-deoxyphorbol 13-phenylacetate reveals distinct roles of the classical and novel protein kinase C isozymes in biological responses of primary mouse keratinocytes. Mol Pharmacol 1995; 47: 258–265.

    PubMed  CAS  Google Scholar 

  51. Tsutakawa SE, Medzihradszky KF, Flint AJ, Burlingame AL, Koshland DE. Determination of in vitro phosphorylation sites in protein kinase C. JBiol Chem 1995; 45: 26, 807–26, 812.

    Google Scholar 

  52. Li W, Yu, J, Michieli P, Beeler JF, Ellmore N, Heidaran MA, Pierce JH. Stimulation of the platelet-derived growth factor beta receptor signaling pathway activates protein kinase C-8. Mol Cell Biol 1994; 14: 6727–6735.

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Szallasi Z, Denning MF, Chang E-Y, Rivera J, Yuspa SH, Lehel C, Olah Z, Anderson WB, Blumberg PM. Development of a rapid approach to identification of tyrosine phosphorylation sites: application to PKC phosphorylated upon activation of the high affinity receptor for IgE in rat basophilic leukemia cells. Biochem Biophys Res Commun 1995; 214: 888–894.

    Article  PubMed  CAS  Google Scholar 

  54. Denning MF, Dlugosz AA, Threadgill DW, Magnuson T, Yuspa SH. Activation of the epidermal growth factor receptor signal transduction pathway stimulates tyrosine phosphorylation of protein kinase C-8. J Biol Chem 1996; 271: 5325–5331.

    Article  PubMed  CAS  Google Scholar 

  55. Li W, Chen X-H, Kelley CA, Alimandi M, Zhang J, Chen Q, Bottaro DP, Pierce JH. Identification of tyrosine 187 as a protein kinase C-8 phosphorylation site. J Biol Chem 1996; 271:26, 404–26, 409.

    Google Scholar 

  56. Acs P, Wang QJ, Bogi K, Marquez VE, Lorenzo PS, Biro T, Szallasi Z, Mushinski JF, Blumberg PM. Both the catalytic and the regulatory domains of protein kinase C chimeras modulate the proliferation properties of NIH 3T3 cells. J Biol Chem 1997; 272:28, 79328, 799.

    Google Scholar 

  57. Brodie C, Bogi K, Acs P, Lorenzo PS, Baskin L, Blumberg PM. Protein kinase CS (PKCS) inhibits the expression of glutamine synthetase in glial cells via the PKCS regulatory domain and its tyrosine phosphorylation. J Biol Chem 1998; 273:30, 713–30, 718.

    Google Scholar 

  58. Haleem-Smith H, Chang E-Y, Szallasi Z, Blumberg PM, Rivera J. Tyrosine phosphorylation of protein kinase C-S in response to the activation of the high affinity receptor for immunoglobulin E modifies its substrate recognition. Proc Natl Acad Sci USA 1995; 92: 9112–9116.

    Article  CAS  Google Scholar 

  59. Konishi H, Tanaka M, Takemura Y, Matsuzaki H, Ono Y, Kikkawa U, Nishizuka Y. Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc Natl Acad Sci USA 1997; 94:11, 233–11, 237.

    Google Scholar 

  60. Mochly-Rosen D, Gordon AS. Anchoring proteins for protein kinase C: A means for isozyme selectivity. FASEB J 1998; 12: 35–42.

    PubMed  CAS  Google Scholar 

  61. Keenan C, and Kelleher D. Protein kinase C and the cytoskeleton. Cell Signal 1993; 10: 225–232.

    Article  Google Scholar 

  62. Gomez J, Martinez de Aragon A, Bonay P, Pitton C, Garcia A, Silvia A, Fresno M, Alvarez F, Rebollo A. Physical association and functional relationship between protein kinase C Ç and the actin cytoskeleton. Eur J Immunol 1995; 25: 2673–2678.

    Article  PubMed  CAS  Google Scholar 

  63. Hu YL, Chien S. Effects of shear stress on protein kinase C distribution in endothelial cells. J Histochem Cytochem 1997; 45: 237–249.

    Article  PubMed  CAS  Google Scholar 

  64. Oka, N, Yamamoto, M, Schwencke, C, Kwabe, J, Ebina, T, Ohno, S, Couet, S, Lisanti, M.P., Ishikawa, Y. Caveolin interaction with protein kinase C: Isoenzyme-dependent regulation of kinase activity by the caveolin scaffolding domain peptide. J Biol Chem 1997; 272:33, 416–33, 421.

    Google Scholar 

  65. Faux MC, Scott JD. Molecular glue: Kinase anchoring and scaffold proteins. Cell 1996; 85: 9–12.

    Article  PubMed  CAS  Google Scholar 

  66. Klauck TM, Faux MC, Labudda K, Langeberg LK, Jaken S, Scott JD. Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science 1996; 271: 1589–1592.

    Article  PubMed  CAS  Google Scholar 

  67. Susuki K, Saido TC, Hirai S. Modulation of cellular signals by calpain. Ann NY Acad Sci 1992; 31: 218–227.

    Article  Google Scholar 

  68. Ghayur T, Hugunin M, Talanian RV, Ratnofky S, Quinlan C, Emoto Y, Pandey P, Datta R, Huang Y, Kharbanda S, Allen H, Kamen R, Wong W, Kufe D. Proteolytic activation of protein kinase C S by an ICE/CED 2-like protease induces characteristics of apoptosis. J Exp Med 1996; 184: 2399–2404.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Lee H-W, Smith L, Pettit GR, Vinitsky A, Smith JB. Ubiquitination of protein kinase Ca and degradation by the proteasome. J Biol Chem 1996; 271:20, 973–20, 976.

    Google Scholar 

  70. Nakakuma H, Willingham MC, Blumberg PM. Effect of microinjected catalytic fragment of protein kinase C on morphological change in Swiss 3T3 cells. Cancer Comm 1989; 1: 127–132.

    CAS  Google Scholar 

  71. Muramatsu M, Kaibuchi K, Irai K. A protein kinase C cDNA without the regulatory domain is active after transfection in vivo in the absence of phorbol ester. Mol Cell Biol 1989; 9: 831–836.

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Parissenti AM, Kirwan AF, Colantonio CM, Schimmer BP. Molecular strategies for the dominant negative inhibition of protein kinase C. Endocr Res 1996; 22: 621–630.

    PubMed  CAS  Google Scholar 

  73. Edwards AS, Newton AC. Phosphorylation at conserved carboxyl-terminal hydrophobic motif regulates the catalytic and regulatory domains of protein kinase C. J Biol Chem 1997; 272:18, 382–18, 390.

    Google Scholar 

  74. Ozawa K, Szallasi Z, Kazanietz MG, Blumberg PM, Mischak H, Mushinski JF, Beaven MA. Ca’-dependent and Ca++-independent isozymes of protein kinase C mediate exocytosis in antigen-stimulated rat basophilic RBL-2H3 cells: Reconstitution of secretory responses with Ca++ and purified isozymes in washed permeabilized cells. J Biol Chem 1993; 268: 1749–1756.

    PubMed  CAS  Google Scholar 

  75. Ozawa K, Yamada K, Kazanietz MG, Blumberg PM, Beaven MA. Different isozymes of protein kinase C mediate feedback inhibition of phospholipase C and stimulatory signals for exocytosis in rat RBL-2H3 cells. J Biol Chem 1993; 268: 2280–2283.

    PubMed  CAS  Google Scholar 

  76. Razin E, Szallasi Z, Kazanietz MG, Blumberg PM, Rivera J. Protein kinase C-ß and e link the mast cell high affinity receptor for IgE to the expression of c-fos and c-jun. Proc Natl Acad Sci USA 1994; 91: 7722–7726.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Germano P, Gomez J, Kazanietz MG, Blumberg PM, and Rivera J. Phosphorylation of the y chain of the high affinity receptor for immunoglobulin E by receptor-associated protein kinase C-5. J Biol Chem 1994; 269:23, 102–23, 107.

    Google Scholar 

  78. Mischak H, Pierce JH, Goodnight J, Kazanietz MG, Blumberg PM, and Mushinski JF. Phorbol ester-induced myeloid differentiation is mediated by protein kinase C-a and -S and not by protein kinase C- 3II, -e, -~, and -ri. J Biol Chem 1993; 268:20, 110–20, 115.

    Google Scholar 

  79. Mischak H, Goodnight J, Kolch W, Martiny-Baron G, Schaechtele C, Kazanietz MG, Blumberg PM, Pierce JH, Mushinski JF. Overexpression of protein kinase C-S and -e in NIH 3T3 cells induces opposite effects on growth, morphology, anchorage dependence, and tumorigenicity. J Biol Chem 1993; 268: 6090–6096.

    PubMed  CAS  Google Scholar 

  80. Malmberg AB, Chen C, Tonegawa S, Basbaum AI. Preserved acute pain and reduced neuropathic pain in mice lacking PKC-y. Science 1997; 278: 279–283.

    Article  PubMed  CAS  Google Scholar 

  81. Leitges M, Schmedt C, Guinamard R, Davoust J, Schaal S, Stabel S, and Tarakhovsky A. Immunodeficiency in protein kinase C-ß-deficient mice. Science 1996; 273: 788–791.

    Article  PubMed  CAS  Google Scholar 

  82. Baumgartner RA, Ozawa K, Cunha-Melo JR, Yamada K, Gusovsky F, Beaven MA. Studies with transfected and permeabilized RBL-2H3 cells reveal unique inhibitory properties of protein kinase C-y. Mol Biol Cell 1994; 5: 475–484.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Driedger PE, Blumberg PM. Specific binding of phorbol ester tumor promoters. Proc Natl Acad Sci USA 1980; 77: 567–571.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Areces LB, Kazanietz MG, Blumberg PM. Close similarity of baculovirus expressed nchimaerin and protein kinase C a as phorbol ester receptors. JBiol Chem 1994; 269:19, 55319, 558.

    Google Scholar 

  85. Caloca MJ, Fernandez MN, Lewin NE, Ching D, Modali R, Blumberg PM, Kazanietz MG. f32-Chimaerin is a high affinity receptor for the phorbol ester tumor promoters. Analysis of phorbol ester binding and subcellular distribution after phorbol ester treatment. J Biol Chem 1997; 227:26, 488–26, 496.

    Google Scholar 

  86. Pettit GR, Herald CL, Doubek DL, Herald DL, Arnold E, Clardy J. Isolation and structure of bryostatin 1. J Am Chem Soc 1982; 104: 6846–6848.

    Article  CAS  Google Scholar 

  87. Blumberg PM, Pettit GR. The bryostatins, a family of protein kinase C activators with therapeutic potential, in New Leads and Targets in Drug Research, Alfred Benzon Symposium 33 ( Krogsgaard-Larsen P, Christensen SB, Kofod H, eds), Munksgaard International, Copenhagen, Denmark, 1992; pp 273–285.

    Google Scholar 

  88. Lorenzo PS, Bogi K, Acs P, Pettit GR, Blumberg PM. The catalytic domain of protein kinase CS confers protection from down-regulation induced by bryostatin 1. J Biol Chem 1997; 272:33, 338–33, 343.

    Google Scholar 

  89. Dell’Aquila ML, Herald CL, Kamano Y, Petit GR, Blumberg PM. Differential effects of bryostatins and phorbol esters in arachidonic acid metabolite release and epidermal growth factor binding in C3H10T1/2 cells. Cancer Res 1988; 48: 3702–3708.

    PubMed  Google Scholar 

  90. Szallasi Z, Krausz K, Blumberg PM. Non-promoting 12-deoxyphorbol 13-esters as potent inhibitors of phorbol 12-myristate 13-acetate induced acute and chronic biological responses in CD-1 mouse skin. Carcinogenesis 1992; 13: 2161–2167.

    Article  PubMed  CAS  Google Scholar 

  91. Gordge PC, Ryves WJ. Inhibition of protein kinase C. Cell Signal 1994; 6: 871–872.

    Article  PubMed  CAS  Google Scholar 

  92. Hannun YA, Merrill AH Jr, Bell RM. Use of sphingosine as an inhibitor of protein kinase C. Methods Enzymol 1991; 201: 316–328.

    Article  PubMed  CAS  Google Scholar 

  93. Kobayashi E, Nakano H, Morimoto M, Tamaoki T. Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 1989; 159: 548–553.

    Article  PubMed  CAS  Google Scholar 

  94. Tamaoki T, Takahashi I, Kobayashi E, Nakano H, Akinaga S, Suzuki K. Calphostin (UCN1028) and calphostin related compounds, a new class of specific and potent inhibitor of protein kinase C. Adv Second Messenger Phosphoprotein Res 1990; 24: 497–501.

    PubMed  CAS  Google Scholar 

  95. Bottega R, Epand RM, Ball EH. Inhibition of protein kinase C by sphingosine correlates with the presence of positive charge. Biochem Biophys Res Commun 1989; 164: 102–107.

    Article  PubMed  CAS  Google Scholar 

  96. Bazzi MD, Nelsestuen GL. Mechanism of protein kinase C inhibition by sphingosine. Biochem Biophys Res Commun 1987; 146: 203–207.

    Article  PubMed  CAS  Google Scholar 

  97. Gamou S, Shimizu N. Light-dependent induction of early-response gene expression by calphostin-C. Cell Struct Funct 1994; 19: 195–200.

    Article  PubMed  CAS  Google Scholar 

  98. Gopalakrishna R, Chen ZH, Gundimeda U. Irreversible oxidative inactivation of protein kinase C by photosensitive inhibitor calphostin C. FEBS Lett 1992; 314: 149–154.

    Article  PubMed  CAS  Google Scholar 

  99. Rotenberg SA, Huang MH, Zhu J, Su L, Riedel H. Deletion analysis of protein kinase C inactivation by calphostin C. Mol Carcinog 1995; 12: 42–49.

    Article  PubMed  CAS  Google Scholar 

  100. Herbert JM, Augereau JM, Gleye J, Maffrand JP. Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 1990; 172: 993–999.

    Article  PubMed  CAS  Google Scholar 

  101. Drsata J, Ulrichova J, Walterova D. Sanguinarine and chelerythrine as inhibitors of aromatic amino acid decarboxylase. J Enzyme Inhib 1996; 10: 231–237.

    Article  PubMed  CAS  Google Scholar 

  102. Hofmann J. The potential for isoenzyme-selective modulation of protein kinase C. FASEB J 1997; 11: 649–669.

    PubMed  CAS  Google Scholar 

  103. Bradshaw D, Hill CH, Nixon JS, Wilkinson SE. Therapeutic potential of protein kinase C inhibitors. Agents Actions 1993; 38: 135–147.

    Article  PubMed  CAS  Google Scholar 

  104. Hu H. Recent discovery and development of selective protein kinase C inhibitors. Drug Discov Today 1996; 1: 438–447.

    Article  CAS  Google Scholar 

  105. Hidaka H, Inagaki M, Kawamoto S, Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry 1984; 23: 5036–5041.

    Article  PubMed  CAS  Google Scholar 

  106. Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca** dependent protein kinase. Biochem Biophys Res Commun 1986; 135: 397–402.

    Article  PubMed  CAS  Google Scholar 

  107. Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-Perret T, Ajakane M, Baudet V, Boissin P, Boursier E, Loriolle F. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 1991; 266:15, 771–15, 781.

    Google Scholar 

  108. Alessi DR. The protein kinase C inhibitors Ro 318220 and GF 109203X are equally potent inhibitors of MAPKAP kinase-13 (RSK-2) and p70 S6 kinase. FEBS Lett 1997; 402: 12 1123.

    Google Scholar 

  109. Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, Bursell SE, Kern TS, Ballas LM, Heath WF, Stramm LE, Feener EP, King GL. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC-(3 inhibitor. Science 1996; 277: 728–731.

    Article  Google Scholar 

  110. Ishii H, Koya D, King GL. Protein kinase C activation and its role in the development of vascular complications in diabetes mellitus. J Mol Med 1998; 76: 21–31.

    Article  PubMed  CAS  Google Scholar 

  111. Lai YS, Mendoza JS, Jagdmann GE Jr, Menaldino DS, Biggers CK, Heerding JM, Wilson JW, Hall SE, Jiang JB, Janzen WP, Ballas LM. Synthesis and protein kinase C inhibitory activities of balanol analogswith replacement of the perhydroazepine moiety. J Med Chem 1997; 40: 226–235.

    Article  PubMed  CAS  Google Scholar 

  112. Defauw JM, Murphy MM, Jagdmann GE Jr, Hu H, Lampe JW, Hollinshead SP, Mitchell TJ, Crane HM, Heerding JM, Mendoza JS, Davis JE, Darges JW, Hubbard FR, Hall SE. Synthesis and protein kinase C inhibitory activities of acyclic balanol analogs that are highly selective for protein kinase C over protein kinase A. J Med Chem 1996; 39: 5215–5227.

    Article  PubMed  CAS  Google Scholar 

  113. Martiny-Baron G, Kazanietz MG, Mischak H, Blumberg PM, Kochs G, Hug H, Manne D, Schaechtele C. Selective inhibition of protein kinase C isozymes by the indolocarbazole Gä6976. J Biol Chem 1993; 268: 9194–9197.

    PubMed  CAS  Google Scholar 

  114. McGraw K, McKay R, Miraglia L, Boggs RT, Pribble JP, Muller M, Geiger T, Fabbro D, Dean NM. Antisense oligonucleotide inhibitors of isozymes of protein kinase C: In vitro and in vivo activity and clinical development as anti-cancer therapeutics. Anticancer Drug Design 1997; 12: 315–326.

    CAS  Google Scholar 

  115. Dean N, McKay R, Miraglia L, Howard R, Cooper S, Giddings J, Nicklin P, Meister L, Ziel R, Geiger T, Muller M, Fabbro D. Inhibition of growth of human tumor cell lines in nude mice by an antisense oligonucleotide inhibitor of protein kinase C-a expression. Cancer Res 1996; 56: 3499–3507.

    PubMed  CAS  Google Scholar 

  116. Soderling TR. Protein kinases. Regulation by autoinhibitory domains. J Biol Chem 1990; 265: 1823–1826.

    PubMed  CAS  Google Scholar 

  117. Nishikawa K, Toker A, Johannes FJ, Songyang Z, Cantley LC. Determination of the specific substrate sequence motifs of protein kinase C isozymes. J Biol Chem 1997; 272: 952–956.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Blumberg, P.M., Acs, P., Bhattacharyya, D.K., Lorenzo, P.S. (2000). Inhibitors of Protein Kinase C and Related Receptors for the Lipophilic Second-Messenger sn-1,2-Diacylglycerol. In: Gutkind, J.S. (eds) Signaling Networks and Cell Cycle Control. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-218-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-218-0_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9695-6

  • Online ISBN: 978-1-59259-218-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics