Skip to main content

Signaling Pathways Controlled by Rho Family GTP-Binding Proteins

  • Chapter
  • 284 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The current Rho family picture contains 11 mammalian members, which can be subdivided into five groups on the basis of sequence and functional differences: (1) RhoA, RhoB, and RhoC; (2) Rac1, Rac2, and RhoG; (3) Cdc42 and TC10; (4) RhoD; and (5) RhoE and TTF (1,2). In addition, homologs of several of these GTPases have been identified and functionally characterized in lower organisms ranging from yeast to the fruit fly (1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ridley AJ. Rho: Theme and variations. Cur Biol 1996; 6: 1256–1264.

    Article  CAS  Google Scholar 

  2. Khosravi-Far R, Campbell S, Rossman KL, Der CJ. Increasing complexity of Ras signal transduction: Involvement of Rho family proteins. Adv Cancer Res 1998; 72: 57–107.

    Article  PubMed  CAS  Google Scholar 

  3. Van Aelst L, D’Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev 1997; 11: 2295–2322.

    Article  PubMed  Google Scholar 

  4. Hall A. Rho GTPases and the actin cytoskeleton. Science 1998; 279: 509–514.

    Article  PubMed  CAS  Google Scholar 

  5. Tanaka K, Takai Y Control of reorganization of the actin cytoskeleton by Rho family small GTP-binding proteins in yeast. Curr Opin Cell Biol 1998; 10: 112–116.

    Article  PubMed  CAS  Google Scholar 

  6. Whitehead IP, Campbell S, Rossman KL, Der CJ. Dbl family proteins. Biochim Biophys Acta 1997; 1332: F1 - F23.

    PubMed  CAS  Google Scholar 

  7. Shaw G. The pleckstrin homology domain: An intriguing multifunctional protein module. BioEssays 1996; 18: 35–46.

    Article  PubMed  CAS  Google Scholar 

  8. Boguski MS, McCormick F. Proteins regulating Ras and its relatives. Nature 1993; 366: 643–654.

    Article  PubMed  CAS  Google Scholar 

  9. Kozma R, Ahmed S, Best A, Lim L. The GTPase-activating protein n-chimaerin cooperates with Racl and Cdc42Hs to induce the formation of lamellipodia and filopodia. Mol Cell Biol 1996; 16: 5069–5080.

    PubMed  CAS  Google Scholar 

  10. Takai Y, Sasaki T, Tanaka K, Nakanishi H. Rho as a regulator of the cytoskeleton. TIBS 1995; 20: 227–231.

    PubMed  CAS  Google Scholar 

  11. Hart MJ, Mani Y, Leonard D, Witte ON, Evans T, Cerione RA. Science 1992; 258: 812–815.

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi K, Sasaki T, Mammoto A, Takaishi K, Kameyama T, Tsukita S, Takai Y. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J Biol Chem 1997; 272:23, 371–23, 375.

    Google Scholar 

  13. Mackay DJ, Esch F, Furthmayr H, Hall A. Rho-and rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: An essential role for ezrin/radixin/moesin proteins. J Cell Biol 1997; 138: 927–938.

    Article  PubMed  CAS  Google Scholar 

  14. Hawkins PT, Eguinoa A, Qiu R-Q, Stokoe D, Cooke F, Walters R, Wennstrom S, ClaessonWelsh L, Evans T, Symons M, Stephens L. PDGF stimulates an increase in GTP-Rac via activation of phosphoinositide 3-kinase. Curr Biol 1995; 5: 393–403.

    Article  PubMed  CAS  Google Scholar 

  15. Crespo P, et al. Phosphotyrosine-dependent activation of Rac1 GDP/GTP exchange by the Vav proto-oncogene product. Nature 1997; 385: 169–172.

    Article  PubMed  CAS  Google Scholar 

  16. Laudanna C, Campbell JJ, Butcher EC. Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science 1996; 271: 981–983.

    Article  PubMed  CAS  Google Scholar 

  17. Taylor S, Shalloway D. Cell cycle-dependent activation of Ras. Curr Biol 1996; 6: 1621–1627.

    Article  PubMed  CAS  Google Scholar 

  18. Franke B, Akkerman JW, Bos JL. Rapid Cat+-mediated activation of Rap1 in human platelets. EMBO J 1997; 16: 252–259.

    Article  PubMed  CAS  Google Scholar 

  19. Manser E, Loo T-H, Koh C-G, Zhao Z-S, Chen X-Q, Tan L, Tan I, Leung T, Lim L. PAK Kinases Are Directly Coupled to the PIX Family of Nucleotide Exchange Factors. Mol Cell 1998; 1: 183–192.

    Article  PubMed  CAS  Google Scholar 

  20. White MA, Nicolette C, Minden A, Polverino A, Van Aelst L, Karin M, Wigler MH. Multiple Ras functions can contribute to mammalian cell transformation. Cell 1995; 80: 533–541.

    Article  PubMed  CAS  Google Scholar 

  21. Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A, Downward J. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 1997; 89: 457–467.

    Article  PubMed  CAS  Google Scholar 

  22. Freeman JL, Abo A, Lambeth JD. Rac “insert region” is a novel effector region that is implicated in the activation of NADPH oxidase, but not PAK65. J Biol Chem 1996; 271:19, 794–19, 801.

    Google Scholar 

  23. Lamarche N, Tapon N, Stowers L, Burbelo PD, Aspenström P, Bridges T, Chant J, Hall A. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 1996; 87: 519–529.

    Article  PubMed  CAS  Google Scholar 

  24. Joneson T, McDonough M, Bar-Sagi D, Van Aelst L. Rac regulation of actin polymerization by a pathway distinct from jun kinase. Science 1996; 274: 1374–1376.

    Article  PubMed  CAS  Google Scholar 

  25. Westwick JK, Lambert QT, Clark GJ, Symons M, Aelst LV, Pestell RG, Der CJ. Rac regulation of transformation, gene expression and actin organization by multiple, PAKindependent pathways. Mol Cell Biol 1997; 17: 1324–1335.

    Google Scholar 

  26. Ridley AJ, Paterson HF, Johnston CL, Diekman D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992; 70: 401–410.

    Article  PubMed  CAS  Google Scholar 

  27. Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992; 70: 389–399.

    Article  PubMed  CAS  Google Scholar 

  28. Kozma R, Ahmed S, Best A, Lim L. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 1995; 15: 1942–1952.

    PubMed  CAS  Google Scholar 

  29. Hooley R, Yu C-Y, Symons M, Barber DL. Gal 3 stimulates Na+-H+ exchange through distinct Cdc42-dependent and RhoA-dependent pathways. J Biol Chem 1996; 271: 6152–6156.

    Article  PubMed  CAS  Google Scholar 

  30. Coso OA, Teramoto H, Simonds WF, Gutkind JS. Signaling from G protein-coupled receptors to c-Jun kinase involves beta gamma subunits of heterotrimeric G proteins acting on a Ras and Rac 1 -dependent pathway. J Biol Chem 1996; 271: 3963–3966.

    Article  PubMed  CAS  Google Scholar 

  31. Nobes CD, Hall A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell 1995; 81: 53–62.

    Article  PubMed  CAS  Google Scholar 

  32. Whitehead I, Kirk H, Tognon C, Trigo-Gonzalez G, Kay R. Expression cloning of lfc, a novel oncogene with structural similarities to guanine nucleotide exchange factors and to the regulatory region of protein kinase C. J Biol Chem 1995; 270:18, 388–18, 395.

    Google Scholar 

  33. Schmidt A, Bickle M, Beck T, Hall M. The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell 1997; 88: 531–542.

    Article  PubMed  CAS  Google Scholar 

  34. Michiels F, Habets, G.G.M., Stam JC, van der Kammen RA, Collard JG. A role for Rac in Tiaml-induced membrane ruffling and invasion. Nature 1995; 375: 338–340.

    Article  PubMed  CAS  Google Scholar 

  35. Stam JC, Sander EE, Michiels F, van Leeuwen FN, Kain HE, van der Kammen RA, Collard JG. Targeting of Tiaml to the plasma membrane requires the cooperative function of the N-terminal pleckstrin homology domain and an adjacent protein interaction domain. J Biol Chem 1997; 272:28, 447–28, 454.

    Google Scholar 

  36. Kreis T, Vale R. 1998. Oxford University Press, Oxford, UK.

    Google Scholar 

  37. Leung T, Chen X-Q, Manser E, Lim L. The p160 RhoA-binding kinase ROKa is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol 1996; 16: 5313–5327.

    PubMed  CAS  Google Scholar 

  38. Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibuchi K. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 1997; 275: 1308–1311.

    Article  PubMed  CAS  Google Scholar 

  39. Ishizaki T, Naito M, Fujisawa K, Maekawa M, Watanabe N, Saito Y, Narumiya S. p16OROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett 1997; 404: 118–124.

    Article  PubMed  CAS  Google Scholar 

  40. Narumiya S, Ishizaki T, Watanabe N. Rho effectors and reorganization of actin cytoskeleton. FEBS Lett 1997; 410: 68–72.

    Article  PubMed  CAS  Google Scholar 

  41. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K. Regulation of myosin phosphatase by rho and Rho-associated kinase (Rho-kinase). Science 1996; 273: 245–248.

    Article  PubMed  CAS  Google Scholar 

  42. Machesky LM, Hall A. Role of actin polymerization and adhesion to extracellular matrix in Rac-and Rho-induced cytoskeletal reorganization. J Cell Biol 1997; 138: 913–926.

    Article  PubMed  CAS  Google Scholar 

  43. Chrzanowska-Wodnicka M, Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 1996; 133: 1403–1415.

    Article  PubMed  CAS  Google Scholar 

  44. Burridge K, Chrzanowska-Wodnicka M, Zhong C. Focal adhesion assembly. Trends Cell Biol 1997; 7: 342–347.

    Article  PubMed  CAS  Google Scholar 

  45. Tominaga T, Ishizaki T, Narumiya S, Barber D. p16OROCK mediates RhoA activation of Na-H exchange. EMBO J 1998; 17: 4712–4722.

    Article  PubMed  CAS  Google Scholar 

  46. Vexler SZ, Symons M, Barber DL. Activation of Na+-H’ exchange is necessary for RhoAinduced stress fiber formation. J Biol Chem 1996; 271:22, 281–22, 284.

    Google Scholar 

  47. Frazier JA, Field CM. Actin cytoskeleton: Are FH proteins local organizers? Curr Biol 1997; 7: R414–7.

    Article  PubMed  CAS  Google Scholar 

  48. Theriot JA, Mitchison TJ. Three faces of profilin. Cell 1993; 75: 835–838.

    Article  PubMed  CAS  Google Scholar 

  49. Watanabe N, Madaule P, Reid T, Ishizaki T, Watanabe G, Kakizuka A, Saito Y, Nakao K, Jockusch BM, Narumiya S. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is ligand for profilin. EMBO J 1997; 16: 3044–3056.

    Article  PubMed  CAS  Google Scholar 

  50. Imamura H, Tanaka K, Hihara T, Umikawa M, Kamei T, Takahashi K, Sasaki T, Takai Y. Bnilp and Bnrlp: Downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J 1997; 16: 2745–2755.

    Article  CAS  Google Scholar 

  51. Hartwig JH, Bokoch GM, Carpenter CL, Janmey PA, Taylor LA, Toker A, Stossel TP. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 1995; 82: 643–653.

    Article  PubMed  CAS  Google Scholar 

  52. Arcaro A. The small GTP-binding protein rac promotes the dissociation of gelsolin from actin filaments in neutrophils. J Biol Chem 1998; 273: 805–813.

    Article  PubMed  CAS  Google Scholar 

  53. Azuma T, Witke W, Stossel TP, Hartwig JH, Kwiatkowski DJ. Gelsolin is a downstream effector of Rac for fibroblast motility. EMBO J 1998; 17: 1362–1370.

    Article  PubMed  CAS  Google Scholar 

  54. Kirchhausen T, Rosen FS. Unravelling Wiskott-Aldrich syndrome. Curr Biol 1996; 6: 676–678.

    Article  PubMed  CAS  Google Scholar 

  55. Symons M, Deny JMJ, Karlak B, Jiang S, Lemahieu V, McCormick F, Francke U, Abo A. Wiskott-Aldrich Syndrome protein, a novel effector for the GTPase Cdc42Hs, is implicated in actin polymerization. Cell 1996; 84: 723–734.

    Article  PubMed  CAS  Google Scholar 

  56. Mild H, Sasaki T, Takai Y, Takenawa T. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 1998; 391: 93–96.

    Article  Google Scholar 

  57. Li R. Beel, a yeast protein with homology to Wiscott-Aldrich syndrome protein, is critical for the assembly of cortical actin cytoskeleton. J Cell Biol 1997; 136: 649–658.

    Article  PubMed  CAS  Google Scholar 

  58. Ramesh N, Anton IM, Hartwig JH, Geha RS. WIP, a protein associated with WiskottAldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells. Proc Natl Acad Sci USA 1997; 94:14, 671–14, 676.

    Google Scholar 

  59. Leung T, Chen XQ, Tan I, Manser E, Lim L. Myotonic dystrophy kinase-related Cdc42binding kinase acts as a Cdc42 effector in promoting cytoskeletal reorganization. Mol Cell Biol 1998; 18: 130–140.

    PubMed  CAS  Google Scholar 

  60. Luo L, Lee T, Tsai L, Tang G, Jan LY, Jan YN. Genghis Khan (Gek) as a putative effector for Drosophila Cdc42 and regulator of actin polymerization. Proc Natl Acad Sci USA 1997; 94:12, 963–12, 968.

    Google Scholar 

  61. Dedhar S, Hannigan GE. Integrin cytoplasmic interactions and bidirectional transmembrane signalling. Curr Opin Cell Biol 1996; 8: 657–669.

    Article  PubMed  CAS  Google Scholar 

  62. Schwartz MA. Integrins, oncogenes, and anchorage independence. J Cell Biol 1997; 139: 575–578.

    Article  PubMed  CAS  Google Scholar 

  63. Clark EA, Hynes RO. 1997 keystone symposium on signal transduction by cell adhesion receptors. Biochim Biophys Acta 1997; 1333: R9–16.

    PubMed  CAS  Google Scholar 

  64. Eaton S, Auvinen P, Luo L, Jan YN, Simons K. CDC42 and Rac1 control different actin-dependent processes in the Drosophila wing disc epithelium. J Cell Biol 1993; 131: 15 1164.

    Google Scholar 

  65. Braga VM, Machesky LM, Hall A, Hotchin NA. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 1997; 137: 1421–1431.

    Article  PubMed  CAS  Google Scholar 

  66. Takaishi K, Sasaki T, Kotani H, Nishioka H, Takai Y Regulation of cell-cell adhesion by rac and rho small G proteins in MDCK cells. J Cell Biol 1997; 139: 1047–1059.

    Article  PubMed  CAS  Google Scholar 

  67. Keely PJ, Westwick JK, Whitehead IP, Der CJ, Parise LV. Cdc42 and Rac 1 induce integrinmediated cell motility and invasiveness through PI(3)K. Nature 1997; 390: 632–636.

    Article  PubMed  CAS  Google Scholar 

  68. Hordijk PL, ten Klooster JP, van der Kammen RA, Michiels F, Oomen LC, Collard JG. Inhibition of invasion of epithelial cells by Tiaml-Rac signaling. Science 1997; 278: 1464–1466.

    Article  PubMed  CAS  Google Scholar 

  69. Nusrat A, Giry M, Turner JR, Colgan SP, Parkos CA, Carnes D, Lemichez E, Boquet P, Madara JL. Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc Natl Acad Sci USA 1995; 92: 5027–5031.

    Article  Google Scholar 

  70. Qiu R-G, Chen J, Kirn D, McCormick F, Symons M. An essential role for Rac in Ras transformation. Nature 1995; 374: 457–459.

    Article  PubMed  CAS  Google Scholar 

  71. Prendergast GC, Khosravi-Far R, Solski PA, Kurzawa H, Lebowitz PF, Der CJ. Critical role for Rho in cell transformation by oncogenic Ras. Oncogene 1995; 10: 2289–2296.

    PubMed  CAS  Google Scholar 

  72. Khosravi-Far R, Solski PA, Clark GJ, Kinch MS, Der CJ. Activation of Racl and RhoA, and mitogen activated protein kinases, is required for Ras transformation. Mol Cell Biol 1995; 15: 6443–6453.

    PubMed  CAS  Google Scholar 

  73. Qiu R-G, Chen J, McCormick F, Symons M. A role for Rho in Ras transformation. Proc Natl Acad Sci USA 1995; 92:11, 781–11, 785.

    Google Scholar 

  74. Qiu R-G, Abo A, McCormick F, Symons M. Cdc42 regulates anchorage-independent growth and is necessary for Ras transformation. Mol Cell Biol 1997; 17: 3449–3458.

    PubMed  CAS  Google Scholar 

  75. Roux P, Gauthier-Rouviere C, Doucet-Brutin S, Fort P. The small GTPases Cdc42Hs, Rac 1 and RhoG delineate Raf-independent pathways that cooperate to transform NIH 3T3 cells. Curr Biol 1997; 7: 629–637.

    Article  PubMed  CAS  Google Scholar 

  76. Perona R, Esteve P, Jimenez B, Ballestro RP, Ramon y Cajal S, Lacal JC. Tumorigenic activity of rho genes from Aplysia californica. Oncogene 1993; 8: 1285–1292.

    CAS  Google Scholar 

  77. Lin R, Bagrodia S, Cerione R, Manor D. A novel Cdc42Hs mutant induces cellular transformation. Curr Biol 1997; 7: 794–797.

    Article  PubMed  CAS  Google Scholar 

  78. Lebowitz P, Casey P, Prendergast G, Thissen J. Farnesyltransferase inhibitors alter the prenylation and growth-stimulating function of RhoB. J Biol Chem 1997; 272:15, 59115, 594.

    Google Scholar 

  79. Olson MF, Ashworth A, Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 1995; 269: 1270–1272.

    Article  PubMed  CAS  Google Scholar 

  80. Coso OA, Chiariello M, Yu J-C, Teramoto H, Crespo P, Xu N, Mild T, Gutkind JS. The small GTP-binding proteins Racl and Cdc42 regulate the activity of the JNK/SAPK signalling pathway. Cell 1995; 81: 1137–1146.

    Article  PubMed  CAS  Google Scholar 

  81. Minden A, Lin A, Claret F-X, Abo A, Karin M. Selective activation of the JNK signalling pathway and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 1995; 81: 1147–1157.

    Article  PubMed  CAS  Google Scholar 

  82. O’Hagan RC, Tozer RG, Symons M, McCormick F, Hassell JA. The activity of the Ets transcription factor PEA3 is regulated by two distinct MAPK cascades. Oncogene 1996; 13: 1323–1333.

    PubMed  Google Scholar 

  83. Frost JA, Steen H, Shapiro P, Lewis T, Aim N, Shaw PE, Cobb MH. Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J 1997; 16: 6426–6438.

    Article  PubMed  CAS  Google Scholar 

  84. Renshaw MW, Lea-Chou E, Wang JYJ. Rac is required for v-Abl tyrosine kinase to activate mitogenesis. Curr Biol 1996; 6: 76–83.

    Article  PubMed  CAS  Google Scholar 

  85. Sulciner DJ, Irani K, Yu ZX, Ferrans VJ, Goldschmidt-Clermont P, Finkel T. rad 1 regulates a cytokine-stimulated, redox-dependent pathway necessary for NF-kappaB activation. Mol Cell Biol 1996; 16: 7115–7121.

    PubMed  CAS  Google Scholar 

  86. Perona R, Montaner S, Saniger L, Sanchez-Perez I, Bravo R, Lacal JC. Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins. Genes Dey 1997; 11: 463–475.

    Article  CAS  Google Scholar 

  87. Hill CS, Wynne J, Treisman R. The Rho family GTPases RhoA, Rac1 and CDC42hs regulate transcriptional activation by SRF. Cell 1995; 81: 1159–1170.

    Article  PubMed  CAS  Google Scholar 

  88. Treisman R. Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 1996; 8: 205–215.

    Article  PubMed  CAS  Google Scholar 

  89. Teramoto H, Crespo P, Coso OA, Igishi T, Xu N, Gutkind JS. The small GTP-binding protein rho activates c-Jun N-terminal kinases/stress-activated protein kinases in human kidney 293T cells. Evidence for a Pak-independent signaling pathway. J Biol Chem 1996; 271:25, 731–25, 734.

    Google Scholar 

  90. Manser E, Leung T, Salihuddin H, Zhao Z-S, Lim L. A brain serine/threonine protein kinase activated by Cdc42 and Racl. Nature 1994; 367: 40–46.

    Article  PubMed  CAS  Google Scholar 

  91. Bagrodia S, Derijard B, Davis RJ, Cerione RA. Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. J Biol Chem 1995; 270:27, 995–27, 998.

    Google Scholar 

  92. Zhang S, Han J, Sells MA, Chernoff J, Knaus UG, Ulevitch RJ, Bokoch GM. Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pakl. J Biol Chem 1995; 270:23, 934–23, 936.

    Google Scholar 

  93. Teramoto H, Coso OA, Miyata H, Igishi T, Miki T, Gutkind JS. Signaling from the small GTP-binding proteins Rac1 and Cdc42 to the c-Jun N-terminal kinase/stress-activated protein kinase pathway. A role for mixed lineage kinase 3/protein-tyrosine kinase 1, a novel member of the mixed lineage kinase family. J Biol Chem 1996; 271:27, 225–27, 228.

    Google Scholar 

  94. Tibbles LA, Ing YL, Kiefer F, Chan J, Iscove N, Woodgett JR, Lassam NJ. MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. EMBO J 1996; 15: 7026–7035.

    PubMed  CAS  Google Scholar 

  95. Fanger GR, Johnson NL, Johnson GL. MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42. EMBO J 1997; 16: 4961–4972.

    Article  PubMed  CAS  Google Scholar 

  96. Ridley AJ, Comoglio PM, Hall A. Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac and Rho in MDCK cells. Mol Cell Biol 1995; 15: 1110–1122.

    PubMed  CAS  Google Scholar 

  97. Anand-Apte B, Zetter BR, Viswanathan A, Qiu RG, Chen J, Ruggieri R, Symons M. Platelet-derived growth factor and fibronectin-stimulated migration are differentially regulated by the rac and extracellular signal-regulated kinase pathways. J Biol Chem 1997; 272:30, 688–30, 692.

    Google Scholar 

  98. Hooshmand-Rad R, Claesson-Welsh L, Wennstrom S, Yokote K, Siegbahn A, Heldin CH. Involvement of phosphatidylinositide 3’-kinase and Rac in platelet-derived growth factor-induced actin reorganization and chemotaxis. Exp Cell Res 1997; 234: 434–441.

    Article  PubMed  CAS  Google Scholar 

  99. Royal I, Park M. Hepatocyte growth factor-induced scatter of Madin-Darby canine kidney cells requires phosphatidylinositol 3-kinase. J Biol Chem 1995; 270:27, 780–27, 787.

    Google Scholar 

  100. Murphy A, Montell D. Cell type-specific roles for Cdc42, Rac, and RhoL in Drosophila oogenesis. J Cell Biol 1996; 133: 617–630.

    Article  PubMed  CAS  Google Scholar 

  101. Harden N, Loh HY, Chia W, Lim L. A dominant inhibitory version of the small GTPbinding protein Rac disrupts cytoskeletal structures and inhibits developmental cell shape changes in Drosophila. Devlopment 1995; 121: 903–914.

    CAS  Google Scholar 

  102. Riesgo-Escovar J, Jenni M, Fritz A, Hafen E. The Drosophila Jun-N-terminal kinase is required for cell morphogenesis but not for DJun-dependent cell fate specification in the eye. Genes Dev 1996; 10: 2759–2768.

    Article  PubMed  CAS  Google Scholar 

  103. Knust E. Drosophila morphogenesis: Follow-my-leader in epithelia. Curr Biol 1996; 6: 379–381.

    CAS  Google Scholar 

  104. Habets GGM, Scholtes EHM, Zuydgeest D, van der Kammen RA, Stam JC, Berns A, Collard JG. Identification of an invasion-inducing gene Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell 1994; 77: 537–549.

    Article  PubMed  CAS  Google Scholar 

  105. Shaw LM, Rabinovitz I, Wang HH, Toker A, Mercurio AM. Activation of phosphoinositide 3-OH kinase by the alpha6beta4 integrin promotes carcinoma invasion. Cell 1997; 91: 949–960.

    Article  PubMed  CAS  Google Scholar 

  106. del Peso L, Hernandez-Alcoceba R, Embade N, Carnero A, Esteve P, Paje C, Lacal JC. Rho proteins induce metastatic properties in vivo. Oncogene 1997; 15: 3047–3057.

    Article  PubMed  Google Scholar 

  107. Adam T, Giry M, Boquet P, Sansonetti P. Rho-dependent membrane folding causes Shigella entry into epithelial cells. EMBO J 1996; 15: 3315–3321.

    PubMed  CAS  Google Scholar 

  108. Chen L-M, Hobbie S, Galan JE. Requirement of CDC42 for Salmonella-induced cytoskeletal and nuclear responses. Science 1996; 274: 2115–2118.

    Article  PubMed  CAS  Google Scholar 

  109. Lamaze C, Chuang T-H, Terlecky L, Bokoch GM, L SS. Regulation of receptor-mediated endocytosis by Rho and Rac. Nature 1996; 382: 177–179.

    Article  PubMed  CAS  Google Scholar 

  110. Norman JC, Price LS, Ridley AJ, Koffer A. The small GTP-binding proteins, Rac and Rho, regulate cytoskeletal reorganization and exocytosis in mast cells by parallel pathways. Mol Biol Cell 1996; 7: 1429–1442.

    PubMed  CAS  Google Scholar 

  111. Mariot P, O’Sullivan AJ, Brown AM, Tatham PER. Rho guanine nucleotide dissociation inhibitor protein (RhoGDI) inhibits exocytosis in mast cells. EMBO J 1996; 15: 6476–6482.

    Google Scholar 

  112. Chong LD, Traynor-Kaplan A, Bokoch GM, Schwartz MA. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 1994; 79: 507–513.

    Article  PubMed  CAS  Google Scholar 

  113. Zhang Z-F, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS, Bruder JT, Rapp UR, Avruch J. Normal and oncogenic p21Ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 1993; 364: 308–313.

    Article  PubMed  CAS  Google Scholar 

  114. Zheng Y, Bagrodia S, Cerione RA. Activation of phosphoinositide-3-kinase activity by Cdc42Hs binding to p85. J Biol Chem 1994; 269:18, 727–18, 730.

    Google Scholar 

  115. Tolias KF, Cantley LC, Carpenter CL. Rho family GTPases bind to phosphoinositide kinases. J Biol Chem 1995; 270:17, 656–17, 659.

    Google Scholar 

  116. Symons M. The Rac and Rho pathways as a source of drug targets for Ras-mediated malignancies. Curr Opin Biotechnol 1995; 6: 668–674.

    Article  PubMed  CAS  Google Scholar 

  117. Abo A et al. Activation of the NADPH oxidase involves the small GTP-binding protein p2lrac1. Nature 1991; 353: 668–669.

    Article  PubMed  CAS  Google Scholar 

  118. Voncken JW, van Schaick H, Kaartinen V, Deemer K, Coates T, Landing B, Pattengale P, Dorseuil O, Bokoch GM, Groffen J, et al. Increased neutrophil respiratory burst in bcrnull mutants. Cell 1995; 80: 719–728.

    Article  PubMed  CAS  Google Scholar 

  119. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension [see comments]. Nature 1997; 389: 990–994.

    Article  PubMed  CAS  Google Scholar 

  120. Kumar CC, Kim JH, Bushel P, Armstrong L, Catino JJ. Activation of smooth muscle alpha-actin promoter in ras-transformed cells by treatments with antimitotic agents: Correlation with stimulation of SRF:SRE mediated gene transcription. J Biochem (Tokyo) 1995; 118: 1285–1292.

    CAS  Google Scholar 

  121. Walsh AB, Dhanasekaran M, Bar-Sagi D, Kumar CC. SCH 51344-induced reversal of RAS-transformation is accompanied by the specific inhibition of the RAS and RAC-dependent cell morphology pathway. Oncogene 1997; 15: 2553–2560.

    Article  PubMed  CAS  Google Scholar 

  122. Symons M. Rho family GTPases: The cytoskeleton and beyond. Trends Biol Sci 1996; 21: 178–181.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Symons, M. (2000). Signaling Pathways Controlled by Rho Family GTP-Binding Proteins. In: Gutkind, J.S. (eds) Signaling Networks and Cell Cycle Control. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-218-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-218-0_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9695-6

  • Online ISBN: 978-1-59259-218-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics