Skip to main content

Ras Signaling and Transformation

  • Chapter
  • 280 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The Ras proto-oncogene proteins are the founding members and prototypes for a large superfamily of small GTPases whose mammalian members now number more than 70. At least seven distinct branches can be defined on the basis of sequence identity and protein function: Ras, Rab, Rho, Ran, Gem/Rad, Rit/Rin, Rheb, and Arf/Arl. The Ras family includes the three Ras proteins (H-Ras, N-Ras and K-Ras4A/4B), as well as the closely related (~50% amino acid identity) Rap (1A, 1B, 2A, and 2B), Ral (lA and IB), and R-Ras (R-Ras, TC21/R-Ras2, and M-Ras/R-Ras3) proteins (1–3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Khosravi-Far R, Campbell S, Rossman KL, Der CJ. Increasing complexity of Ras signal transduction: Involvement of Rho family proteins. Adv Cancer Res 1998; 72: 57–107.

    Article  PubMed  CAS  Google Scholar 

  2. Matsumoto K, Asano T, Endo T. Novel small GTPase M-Ras participates in reorganization of actin cytoskeleton. Oncogene 1997; 15: 2409–2418.

    Article  PubMed  CAS  Google Scholar 

  3. Kimmelman A, Tolkacheva T, Lorinzi MV, Osada M, Chan AM-L. Identification and characterization of R-ras3: A novel member of the RAS gene family with a non-ubiquitous pattern of tissue distribution. Oncogene 1997; 15: 2675–2686.

    Article  PubMed  CAS  Google Scholar 

  4. Barbacid M. ras genes. Annu Rev Biochem 1987; 56:779–827.

    Google Scholar 

  5. Bos JL. ras oncogenes in human cancer: A review. Cancer Res 1989; 49:4682–4689.

    Google Scholar 

  6. Clark GJ, Der CJ, Dickey BF, Birnbaumer L, editors. GTPases, in Biology Vol I, 18: Oncogenic Activation of Ras Proteins. Springer-Verlag, Berlin, 1993; pp. 259–288.

    Google Scholar 

  7. Graham SM, Cox AD, Drivas G, Rush MR, D’Eustachio P, Der CJ. Aberrant function of the Ras-related TC21/R-Ras2 protein triggers malignant transformation. Mol Cell Biol 1994; 14: 4108–4115.

    PubMed  CAS  Google Scholar 

  8. Cox AD, Brtva TR, Lowe DG, Der CJ. R-Ras induces malignant, but not morphologic, transformation of NIH3T3 cells. Oncogene 1994; 9: 3281–3288.

    PubMed  CAS  Google Scholar 

  9. Chan AM-L, Miki T, Meyers KA, Aaronson SA. A human oncogene of the ras superfamily unmasked by expression cDNA cloning. Proc Natl Acad Sci USA 1994; 91: 7558–7562.

    Article  PubMed  CAS  Google Scholar 

  10. Saez R, Chan AM-L, Miki T, Aaronson SA. Oncogenic activation of human R-ras by point mutations analogous to those of prototype H-ras oncogenes. Oncogene 1994; 9: 2977 2982.

    Google Scholar 

  11. Kitayama H, Sugimoto Y, Matsuzaki T, Ikawa Y, Noda M. A ras-related gene with transformation suppressor activity. Cell 1989; 56: 77–84.

    Article  PubMed  CAS  Google Scholar 

  12. Urano T, Emkey R, Feig LA. Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J 1996; 15: 810–816.

    PubMed  CAS  Google Scholar 

  13. Egan SE, Weinberg RA. The pathway to signal achievement. Nature 1993; 365: 781–783.

    Article  PubMed  CAS  Google Scholar 

  14. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: Conserved structure and molecular mechanism. Nature 1990; 349: 117–126.

    Article  Google Scholar 

  15. Boguski MS, McCormick F. Proteins regulating Ras and its relatives. Nature 1993; 366: 643–654.

    Article  PubMed  CAS  Google Scholar 

  16. Quilliam LA, Khosravi-Far R, Huff SY, Der CJ. Activators of Ras superfamily proteins. BioEssays 1995; 17: 395–404.

    Article  PubMed  CAS  Google Scholar 

  17. Tong L, de Vos AM, Milburn MV, Jancarik J, Noguchi S, Nishimura S, Miura K, Ohtsuka E, Kim S-H. Structural differences between a RAS oncogene protein and the normal protein. Nature 1989; 337: 90–93.

    Article  PubMed  CAS  Google Scholar 

  18. Milburn MV, Tong L, DeVos AM, Brunger A, Yamaizumi Z, Nishimura S, Kim S-H. Molecular switch for signal transduction: Structural differences between active and inactive forms of protooncogenic ras proteins. Science 1990; 247: 939–945.

    Article  PubMed  CAS  Google Scholar 

  19. Krengel U, Schlichting L, Scherer A, Schumann R, Frech M, John J, Kabsch W, Pai EF, Wittinghofer A. Three-dimensional structures of H-ras p21 mutants: Molecular basis for their inability to function as signal switch molecules. Cell 1990; 62: 539–548.

    Article  PubMed  CAS  Google Scholar 

  20. Khosravi-Far R, Der CJ. The Ras signal transduction pathway. Cancer Metastasis Rev 1994; 13: 67–89.

    Article  PubMed  CAS  Google Scholar 

  21. Pawson T. Protein modules and signalling networks. Nature 1995; 373: 573–580.

    Article  PubMed  CAS  Google Scholar 

  22. Bonfini L, Migliaccio E, Pelicci G, Lanfrancone L, Pelicci PG. Not all Shc’s roads lead to Ras. Trends Biochem Sci 1996; 21: 259–261.

    Google Scholar 

  23. Gotoh N, Tojo A, Muroya K, Hashimoto Y, Hattori S, Nakamura S, Takenawa T, Yazaki Y, Shibuya M. Epidermal growth factor-receptor mutant lacking the autophosphorylation sites induces phosphorylation of Shc protein and Shc-Grb2/ASH association and retains mitogenic activity. Proc Natl Acad Sci USA 1994; 91: 167–171.

    Article  PubMed  CAS  Google Scholar 

  24. Li N, Schlessinger J, Margolis B. Autophosphorylation mutants of the EGF-receptor signal through auxiliary mechanisms involving SH2 domain proteins. Oncogene 1997; 9: 3457–3465.

    Google Scholar 

  25. Meyer S, LaBudda K, McGlade J, Hayman MJ. Analysis of the role of the Shc and Grb2 proteins in signal transduction by the v-ErbB protein. Mol Cell Biol 1994; 14: 3253–3263.

    PubMed  CAS  Google Scholar 

  26. Soler C, Alvarez CV, Beguinot L, Carpenter G. Potent SHC tyrosine phosphorylation by epidermal growth factor at low receptor density or in the absence of receptor autophosphorylation sites. Oncogene 1994; 9: 2207–2215.

    PubMed  CAS  Google Scholar 

  27. Alberola-Ila J, Takaki S, Kemer JD, Perlmutter RM. Differential signaling by lymphocyte antigen receptors. Ann Rev Immunol 1997; 15: 125–154.

    Article  CAS  Google Scholar 

  28. Weiss A. T cell antigen receptor signal transduction: A tale of tails and cytoplasmic protein-tyrosine kinases. Cell 1993; 73: 209–212.

    Article  PubMed  CAS  Google Scholar 

  29. Mainiero F, Murgia C, Wary KK, Curatola AM, Pepe A, Blumemberg M, Westwick JK, Der CJ, Giancotti FG. The coupling of alpha6beta4 integrin to Ras-MAP kinase pathways mediated by Shc controls keratinocyte proliferation. EMBO J 1997; 16: 2365–2375.

    Article  PubMed  CAS  Google Scholar 

  30. Aplin AE, Howe A, Alahari SK, Juliano RL. Signal transduction and signal modulation by cell adhesion receptors: The role of integrin, cadherin, Ig-CAMs and selectins. Pharm Rev 1998; (in press).

    Google Scholar 

  31. Clark EA, Brugge JS. Integrins and signal transduction pathways: The road taken. Science 1995; 268: 233–239.

    Article  PubMed  CAS  Google Scholar 

  32. Mainiero F, Pepe A, Wary KK, Spinardi L, Mohammadi M, Schlessinger J, Giancotti FG. Signal transduction by the 6 4 integrin: Distinct 4 subunit sites mediate recruitment of Shc/Grb2 and association with the cytoskeleton of hermidesmosomes. EMBO J 1995; 14: 4470–4481.

    PubMed  CAS  Google Scholar 

  33. Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE, Giancotti FG. The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 1996; 87: 733–743.

    Article  PubMed  CAS  Google Scholar 

  34. Hanks SK, Polte TR. Signaling through focal adhesion kinase. BioEssays 1997; 19: 137145.

    Google Scholar 

  35. Chen Q, Lin TH, Der CJ, Juliano RL. Integrin-mediated activation of MEK and mitogenactivated protein kinase is independent of Ras. J Biol Chem 1996; 271:18, 122–18, 127.

    Google Scholar 

  36. Gutkind JS. The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 1998; 273: 1839–1842.

    Article  PubMed  CAS  Google Scholar 

  37. van Biesen T, Luttrell LM, Hawes BE, Lefkowitz RJ. Mitogenic signaling via G protein-coupled receptors. Endocrine Rev 1996; 17: 698–714.

    Article  Google Scholar 

  38. Daub H, Weiss FU, Wallasch C, Ullrich A. Role of transactivation of the EGF receptor in signaling by G-protein-coupled receptors. Nature 1996; 557–560.

    Google Scholar 

  39. Huang X, Li Y, Tanaka K, Moore G, Hayashi JI. Cloning and characterization of Lnk, a signal transduction protein that linked T-cell receptor activation signal to phospholipase Cgamma,, Grb2 and phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 1995; 92:11, 618–11, 622.

    Google Scholar 

  40. Yokouchi M, Suzuki R, Masuhara M, Komiya S, Inoue A, Yoshimura A. Cloning and characterization of APS, as adaptor molecule containing PH and SH2 domains that is tyrosine phosphorylated upon B-cell receptor stimulation. Oncogene 1997; 15: 7–15.

    Article  PubMed  CAS  Google Scholar 

  41. Hu Q, Milfay D, Williams LT. Binding of NCK to SOS and activation of ras-dependent gene expression. Mol Cell Biol 1995; 15: 1169–1174.

    PubMed  CAS  Google Scholar 

  42. Rivero-Lezcano OM, Marcilla A, Sameshima JH, Robbins KC. Wiskott-Aldrich Syndrome protein physically associates with Nck through Src homology 3 domains. Mol Cell Biol 1995; 15: 5725–5731.

    PubMed  CAS  Google Scholar 

  43. Sells MA, Knaus UG, Bagrodia S, Ambrose DM, Bokoch GM, Chernoff J. Human p21-activated kinase (Pakl) regulates actin organization in mammalian cells. Curr Biol 1997; 7: 202–210.

    Article  PubMed  CAS  Google Scholar 

  44. Quilliam LA, Lambert QT, Westwick JK, Mickelson-Young LA, Sparks AB, Kay BK, Jenkins NA, Gilbert DJ, Copeland NG, Der CJ. Isolation of a NCK-associated kinase, PRK2, and SH3-binding protein and potential effector of Rho protein signaling. J Biol Chem 1996; 271:28, 772–28, 776.

    Google Scholar 

  45. Lussier G, Larose L. A casein kinase I activity is constitutively associated with Nck. J Biol Chem 1997; 272: 2688–2694.

    Article  PubMed  CAS  Google Scholar 

  46. Kitamura T, Kitamura Y, Yonezawa K, Totty NF, Gout I, Hara K, Waterfield MD, Sakaue M, Ogawa W, Kasuga M. Molecular cloning of p125Napi, a protein that associates with an SH3 domain of Nck. Biochem Biophys Res Commun 1996; 219: 509–514.

    Article  PubMed  CAS  Google Scholar 

  47. Birge RB, Knudsen BS, Besser D, Hanafusa H. SH2 and SH3-containing adaptor proteins: Redundant of independent mediators of intracellular signal transduction. Genes Cells 1996; 1: 595–613.

    Google Scholar 

  48. Tanaka S, Morishita T, Hashimoto Y, Hattori S, Nakamura S, Shibuya M, Matuoka K, Takenawa T, Kurata T, Nagashima K, Matsuda M. C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ ASH proteins. Proc Natl Acad Sci USA 1994; 91: 3443–3447.

    Article  PubMed  CAS  Google Scholar 

  49. Gotoh T, Hattori S, Nakamura S, Kitayama H, Noda M, Takai Y, Kaibuchi K, Matsui H, Hatase 0, Takahashi H, Kurata T, Matsuda M. Identification of Rapt as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G. Mol Cell Biol 1995; 15: 6746–6753.

    Google Scholar 

  50. Kazlauskas A, Ellis C, Pawson T, Cooper JA. Binding of GAP to activated PDGF receptors. Science 1990; 247: 1578–1581.

    Google Scholar 

  51. Plas DR, Johnson R, Pingel JT, Matthews RJ, Dalton M, Roy G, Chan SC, Thomas ML. Direct regulation of ZAP-70 by Shp-1 in T cell antigen receptor signaling. Science 1996; 272: 1173–1176.

    Article  PubMed  CAS  Google Scholar 

  52. Marengére LEM, Waterhouse P, Duncan GS, Mittrücker H-W, Feng G-S, Mak TW. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 1996; 272: 1170–1173.

    Article  PubMed  Google Scholar 

  53. Van Aelst L, Barr M, Marcus S, Polverino A, Wigler M. Complex formation between RAS and RAF and other protein kinases. Proc Natl Acad Sci USA 1993; 90: 6213–6217.

    Article  PubMed  Google Scholar 

  54. Moodie SA, Willumsen BM, Weber MJ, Wolfman A. Complexes of Ras-GTP with Raf1 and mitogen-activated protein kinase kinase. Science 1993; 260: 1658–1661.

    Article  PubMed  CAS  Google Scholar 

  55. Zhang X, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS, Bruder JT, Rapp UR, Avruch J. Normal and oncogenic p21 `as proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 1993; 364: 308–313.

    Article  PubMed  CAS  Google Scholar 

  56. Warne PH, Viciana PR, Downward J. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 1993; 364: 352–355.

    Article  CAS  Google Scholar 

  57. Vojtek AB, Hollenberg SM, Cooper JA. Mammalian Ras interacts directly with the serine/ threonine kinase Raf. Cell 1993; 74: 205–214.

    Article  PubMed  CAS  Google Scholar 

  58. Leevers SJ, Paterson HF, Marshall CJ. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 1994; 369: 411–414.

    Article  PubMed  CAS  Google Scholar 

  59. Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF. Activation of Raf as a result of recruitment to the plasma membrane. Science 1994; 264: 1463–1467.

    Article  PubMed  CAS  Google Scholar 

  60. Hirsch DD, Stork PJS. Mitogen-activated protein kinase phosphatases inactivate stress-activated protein kinase pathways in vivo. J Biol Chem 1997; 272: 4568–4575.

    Article  PubMed  CAS  Google Scholar 

  61. Brtva TR, Drugan JK, Ghosh S, Terrell RS, Campbell-Burk S, Bell RM, Der CJ. Two distinct Raf domains mediate interaction with Ras. J Biol Chem 1995; 270: 9809–9812.

    Article  PubMed  CAS  Google Scholar 

  62. Drugan JK, Khosravi-Far R, White MA, Der CJ, Sung Y-J, Huang Y-W, Campbell SL. Ras interaction with two distinct binding domains in Raf-1 may be required for Ras transformation. J Biol Chem 1996; 271: 233–237.

    Article  PubMed  CAS  Google Scholar 

  63. Clark GJ, Drugan JK, Terrell RS, Bradham C, Der CJ, Bell RM, Campbell-Burk S. Peptides containing a consensus Ras binding sequence from Raf-1 and NFl-GAP inhibit Ras function. Proc Natl Acad Sci USA 1995; 93: 1577–1581.

    Article  Google Scholar 

  64. Luo Z, Diaz B, Marshall MS, Avruch J. An intact Raf zinc finger is required for optimal binding to processed Ras and for Ras-dependent Raf activation in situ. Mol Cell Biol 1997; 17: 46–53.

    PubMed  CAS  Google Scholar 

  65. Hu C, Kariya K, Tamada M, Akasaka K, Shirouzu M, Yokoyama S, Kataoka T. Cysteinerich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras. J Biol Chem 1995; 270:30, 274–30, 277.

    Google Scholar 

  66. Roy S, Lane A, Yan J, McPherson R, Hancock JF. Activity of plasma membrane-recruited Raf-1 is regulated by Ras via the Raf zinc finger. J Biol Chem 1997; 272:20, 139–20, 145.

    Google Scholar 

  67. Mineo C, Anderson RGW, White MA. Physical association with Ras enhances activation of membrane-bound Raf (RafCAAX). J Biol Chem 1997; 272:10, 345–10, 348.

    Google Scholar 

  68. Clark GJ, Drugan JK, Rossman KL, Carpenter JW, Rogers–Graham K, Fu H, Der CJ, Campbell SL. 14–3–3 zeta negatively regulates Raf–1 activity by interactions with the Raf1 cysteine–rich domain. J Biol Chem 1997; 272:20, 990–20, 993.

    Google Scholar 

  69. Minden A, Lin A, McMahon M, Lange-Carter C, Derijard B, Davis RJ, Johnson GL, Karin M. Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 1994; 266: 1719–1723.

    Article  PubMed  CAS  Google Scholar 

  70. Olson MF, Ashworth A, Hall A. An essential role for Rho, Rac and Cdc42 GTPases in cell cycle progression through G,. Science 1995; 269: 1270–1272.

    Article  PubMed  CAS  Google Scholar 

  71. Oldham SM, Clark GJ, Gangarosa LM, Coffey RJ Jr, Der CJ. Activation of the Raf-1/ MAP kinase cascade is not sufficient for Ras transformation of RIE-1 epithelial cells. Proc Natl Acad Sci USA 1996; 93: 6924–6928.

    Article  PubMed  CAS  Google Scholar 

  72. Gangarosa LM, Sizemore N, Graves-Deal R, Oldham SM, Der CJ, Coffey RJ. A Rafindependent epidermal growth factor receptor autocrine loop is necessary for Ras transformation of rat intestinal epithelial cells. J Biol Chem 1997; 272:18, 926–18, 931.

    Google Scholar 

  73. White MA, Nicolette C, Minden A, Polverino A, Van Aelst L, Karin M, Wigler MH. Multiple Ras functions can contribute to mammalian cell transformation. Cell 1995; 80: 533–541.

    Article  PubMed  CAS  Google Scholar 

  74. Khosravi-Far R, White MA, Westwick JK, Solski PA, Chrzanowska-Wodnicka M, Van Aelst L, Wigler MH, Der CJ. Oncogenic Ras activation of Raf/MAP kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol Cell Biol 1996; 16: 3923–3933.

    PubMed  CAS  Google Scholar 

  75. Graham SM, Vojtek AB, Huff SY, Cox AD, Clark GJ, Cooper JA, Der CJ. TC21 causes transformation by Raf-independent signaling pathways. Mol Cell Biol 1996; 16: 6132–6140.

    PubMed  CAS  Google Scholar 

  76. Huff SY, Quilliam LA, Cox AD, Der CJ. R-Ras is regulated by activators and effectors distinct from those that control Ras function. Oncogene 1997; 14: 133–143.

    Article  PubMed  CAS  Google Scholar 

  77. Marshall CJ. Ras effectors. Curr Opin Cell Biol 1996; 8: 197–204.

    Article  PubMed  CAS  Google Scholar 

  78. Pomerance M, Thang MN, Tocque B, Pierre M. The Ras-GTPase-activating protein SH3 domain is required for Cdc2 activation and mos induction by oncogenic Ras in Xenopusoocytes independently of mitogen-activated protein kinase activation. Mol Cell Biol 1996; 16:3179–3186.

    Google Scholar 

  79. Clark GJ, Quilliam LA, Hisaka MM, Der CJ. Differential antagonism of Ras biological activity by catalytic and Src homology domains of Ras GTPase activation protein. Proc Natl Acad Sci USA 1993; 90: 4887–4891.

    Article  PubMed  CAS  Google Scholar 

  80. Andersen LB, Fountain JW, Gutmann DH, Tarlé SA, Glover TW, Dracopoli NC, Housman DE, Collins FS. Mutations in the neurofibromatosis 1 gene in sporadic malignant melanoma cell lines. Nature Genet 1993; 3: 118–126.

    Article  PubMed  CAS  Google Scholar 

  81. The I, Murthy AE, Hannigan GE, Jacoby LB, Menon AG, Gusella JF, Bernards A. Neurofibromatosis type 1 gene mutations in neuroblastoma. Nature Genet 1993; 3: 6266.

    Article  Google Scholar 

  82. Johnson MR, Look AT, DeClue JE, Valentine MB, Lowy DR. Inactivation of the NF1 gene in human melanoma and neuroblastoma cell lines without impaired regulation of GTP-Ras. Proc Natl Acad Sci USA 1993; 90: 5539–5543.

    Article  PubMed  CAS  Google Scholar 

  83. Johnson MR, DeClue JE, Felzmann S, Vass WC, Xu G, White R, Lowy DR. Neurofibromin can inhibit Ras-dependent growth by a mechanism independent of its GTPase-accelerating function. Mol Cell Biol 1994; 14: 641–645.

    PubMed  CAS  Google Scholar 

  84. Carpenter CL, Cantley LC. Phosphoinositide kinases. Curr Opin Cell Biol 1996; 8: 153158.

    Google Scholar 

  85. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 1994; 370: 527–532.

    Article  PubMed  CAS  Google Scholar 

  86. Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD, Downward J. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J 1996; 15: 2442–2451.

    PubMed  CAS  Google Scholar 

  87. Marte BM, Rodriguez-Viciana P, Wennström S, Warne PH, Downward J. R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways. Curr Biol 1996; 7: 63–70.

    Article  Google Scholar 

  88. Franke TF, Ynag S-I, Chan TO, Datta K, Kazlauskas A, Morrison DK, Kaplan DR, Tsichlis PN. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 1995; 81: 727–736.

    Article  PubMed  CAS  Google Scholar 

  89. Klippel A, Reinhard C, Kavanaugh M, Apell G, Escobedo M-A, Williams LT. Membrane localization phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol Cell Biol 1996; 16: 4117–4127.

    PubMed  CAS  Google Scholar 

  90. Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P, Downward J, Evan G. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 1997; 385: 544–548.

    Article  PubMed  CAS  Google Scholar 

  91. Kikuchi A, Demo SD, Ye Z-H, Chen Y-W, Williams LT. ralGDS family members interact with the effector loop of ras p21. Mol Cell Biol 1994; 14: 7483–7491.

    PubMed  CAS  Google Scholar 

  92. Hofer F, Fields S, Schneider C, Martin GS. Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator. Proc Natl Acad Sci USA 1994; 91:11, 089–11, 093.

    Google Scholar 

  93. Spaargaren M, Bischoff JR. Identification of the guanine nucleotide dissociation stimulator for Ral as a putative effector molecule of R-ras, H-ras, K-ras and Rap. Proc Natl Acad Sci USA 1994; 91:12, 609–12, 613.

    Google Scholar 

  94. Peterson SN, Trabalzini L, Brtva TR, Fischer T, Altschuler DL, Martelli P, Lapetina EG, Der CJ, White II GC. Identification of a novel Ra1GDS-related protein as a candidate effector for Ras and Rap1. J Biol Chem 1996; 271:29, 903–29, 908.

    Google Scholar 

  95. López-Barahona M, Bustelo XR, Barbacid M. The TC21 oncoprotein interacts with the Ral guanosine nucleotide dissociation factor. Oncogene 1996; 12: 463–470.

    PubMed  Google Scholar 

  96. Kikuchi A, Williams LT. Regulation of interaction of ras p21 with Ra1GDS and Raf-1 by cyclic AMP-dependent protein kinase. J Biol Chem 1996; 271: 588–594.

    Article  PubMed  CAS  Google Scholar 

  97. White MA, Vale T, Camonis JH, Schaefer E, Wigler MH. A role for the Ral guaninenucleotide dissociation stimulator in mediating Ras-induced transformation. J Biol Chem 1996; 271:16,439–16,442.

    Google Scholar 

  98. Hunter T. Oncoprotein networks. Cell 1997; 88: 333–346.

    Article  PubMed  CAS  Google Scholar 

  99. Prasad R, Gu Y, Alder H, Nakamura T, Canaani O, Saito H, Huebner K, Gale RP, Nowell PC, Kuriyama K, Miyazaki Y, Croce CM, Canaani E. Cloning of the ALL-1 fusion partner, the AF-6 gene, involved in acute myeloid leukemias with the t(6;11) chromosome translocation. Cancer Res 1993; 53: 5624–5628.

    PubMed  CAS  Google Scholar 

  100. Tanabe S, Zeleznik-Le NJ, Kobayashi H, Vignon C, Espinosa RI, LeBeau MM, Thirman MJ, Rowley JD. Analysis of the t(6;11)(g27;g23) in leukemia shows a consistent breakpoint in AF6 in three patients and in the ML-2 cell line. Genes Chromosom Cancer 1996; 15: 206216.

    Google Scholar 

  101. Taki T, Hayashi Y, Taniwaki M, Seto M, Ueda R, Hanada R, Suzukawa K, Yokota J, Morishita K. Fusion of the MLL gene with two different genes, AF-6 and AF-5, by a complex translocation involving chromosomes 5, 6, 8 and 11 in infant leukemia. Oncogene 1996; 13: 2121–2130.

    PubMed  CAS  Google Scholar 

  102. Kuriyama M, Harada N, Kuroda S, Yamamoto T, Nakafuku M, Iwamatsu A, Yamamoto D, Prasad R, Croce C, Canaani E, Kaibuchi K. Identification of AF-6 and Canoe as putative targets for Ras. J Biol Chem 1996; 271: 607–610.

    Article  PubMed  CAS  Google Scholar 

  103. Han L, Colicelli J. A human protein selected for interference with Ras function interacts directly with Ras and competes with Rafl. Mol Cell Biol 1995; 15: 1318–1323.

    PubMed  CAS  Google Scholar 

  104. Han L, Wong D, Dhaka A, Afar D, White M, Xie W, Herschman H, Witte O, Colicelli J. Protein binding and signaling properties of RIN1 suggest a unique effector function. Proc Natl Acad Sci USA 1997; 94: 4954–4959.

    Article  PubMed  CAS  Google Scholar 

  105. Afar DE, Han L, McLaughlin J, Wong S, Dhada A, Parmar K, Rosenberg N, Witte ON, Colicelli J. Immunity 1997; 6: 773–782.

    Article  CAS  Google Scholar 

  106. Dominguez I, Diaz-Meco MT, Municio MM, Berra E, Garcia de Herreros A, Cornet ME, Sanz L, Moscat J. Evidence for a role of protein kinase C zeta subspecies in maturation of Xenopus laevis oocytes. Mol Cell Biol 1992; 12: 3776–3783.

    PubMed  CAS  Google Scholar 

  107. Berra E, Diaz-Meco MT, Dominguez I, Municio MM, Sanz L, Lozano J, Chapkin RS, Moscat J. Protein kinase C zeta isoform is critical for mitogenic signal transduction. Cell 1993; 74: 555–563.

    Article  PubMed  CAS  Google Scholar 

  108. Diaz-Meco MT, Lozano J, Municio MM, Berra E, Frutos S, S., Sanz L, Moscat J. Evidence for the in vitro and in vivo interaction of Ras with protein kinase C1. J Biol Chem 1994; 269:31, 706–31, 710.

    Google Scholar 

  109. Van Aelst L, D’Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev 1997; 11: 2295–2322.

    Article  PubMed  Google Scholar 

  110. Hall A. Rho GTPases and the actin cytoskeleton. Science 1998; 279: 509–514.

    Article  PubMed  CAS  Google Scholar 

  111. Zohn IE, Campbell S, Khosravi-Far R, Rossman K, Der CJ. Rho family proteins and Ras transfomation: The RHOad least traveled gets congested. Oncogene 1998; (in press).

    Google Scholar 

  112. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992; 70: 401–410.

    Article  PubMed  CAS  Google Scholar 

  113. Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992; 70: 389–399.

    Article  PubMed  CAS  Google Scholar 

  114. Chang EC, Barr M, Wang Y, Jung V, Xu, H.-P., Wigler MH. Cooperative interaction of S. pombe proteins required for mating and morphogenesis. Cell 1994; 79: 131–141.

    Article  PubMed  CAS  Google Scholar 

  115. Qiu R-G, Chen J, Kirn D, McCormick F, Symons M. An essential role for Rac in Ras transformation. Nature 1995; 374: 457–459.

    Article  PubMed  CAS  Google Scholar 

  116. Khosravi-Far R, Solski PA, Kinch MS, Burridge K, Der CJ. Activation of Rac and Rho, and mitogen activated protein kinases, are required for Ras transformation. Mol Cell Biol 1995; 15: 6443–6453.

    PubMed  CAS  Google Scholar 

  117. Prendergast GC, Khosravi-Far R, Solski PA, Kurzawa H, Lebowitz PF, Der CJ. Critical role of RhoB in cell transformation by oncogenic Ras. Oncogene 1995; 10: 2289–2296.

    PubMed  CAS  Google Scholar 

  118. Qiu R-G, Chen J, McCormick F, Symons M. A role for Rho in Ras transformation. Proc Natl Acad Sci USA 1995; 92:11, 781–11, 785.

    Google Scholar 

  119. Qiu R-G, Abo A, McCormick F, Symons M. Cdc42 regulates anchorage-independent growth and is necessary for Ras transformation. Mol Cell Biol 1997; 17: 3449–3458.

    PubMed  CAS  Google Scholar 

  120. Roux P, Gauthier-Rouvière C, Doucet-Brutin S, Fort P. The small GTPases Cdc42Hs, Rac1 and RhoG delineate Raf-independent pathways that cooperate to transform NIH3T3 cells. Curr Biol 1997; 7: 629–637.

    Article  PubMed  CAS  Google Scholar 

  121. Lebowitz PF, Du W, Prendergast GC. Prenylation of RhoB is required for its cell transforming function but not its ability to activate serum response element-dependent transcription. J Biol Chem 1997; 272:16, 093–16, 095.

    Google Scholar 

  122. Nimnual AS, Yatsula BA, Bar-Sagi D. Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science 1998; 279: 560–563.

    Article  PubMed  CAS  Google Scholar 

  123. Han J, Luby-Phelps K, Das B, Shu X, Xia Y, Mosteller RD, Krishna UM, Falck JR, White MA, Broek D. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vay. Science 1998; 279: 558–560.

    Article  PubMed  CAS  Google Scholar 

  124. Whitehead IP, Campbell S, Rossman KL, Der CJ. Dbl family proteins. Biochim Biophys Acta 1997; 1332: F1 - F23.

    PubMed  CAS  Google Scholar 

  125. Feig LA, Urano T, Cantor S. Evidence for a Ras/Ral signaling cascade. Trends Biochem Sci 1996; 21: 438–441.

    Article  PubMed  CAS  Google Scholar 

  126. Cox AD, Der CJ. Famesyltransferase inhibitors and cancer treatment: Targeting simply Ras? Biochim Biophys Acta 1997; 1333: F51 - F71.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Clark, G.J., O’Bryan, J.P., Der, C.J. (2000). Ras Signaling and Transformation. In: Gutkind, J.S. (eds) Signaling Networks and Cell Cycle Control. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-218-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-218-0_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9695-6

  • Online ISBN: 978-1-59259-218-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics