Skip to main content

Abstract

Hydroxyapatite (HA) is one of the most biocompatible materials known and is a bioactive ceramic that has been used as a coating for metal implants, because it enhances bone healing adjacent to implants, and establishes a high interfacial bone—implant strength (1,2). The rationale for the use of HA coatings on metallic implants include stimulation of bone healing, thereby expediting bone—implant stability (Fig. 1), improving the rate of osseointegration, and enhancing the bone—implant interfacial strength (3–10). Thus, the use of HA coatings would speed rehabilitation of patients by decreasing the time from implant insertion to final reconstruction. However, for the past 10 yr, the use of HA-coated dental implants has initiated substantial controversy in dental implantology. The strongest argument against the routine use of HA-coated implants is the general lack of long-term documentation on HA-coated implant survival, as well as the lack of well-characterized coating prior to use. In addition, large degrees of variability between studies, involving the definition and length of implant survival/success, implant case and the site selection, surgeon experience, surgical protocols, postoperative regimens, and prosthetic restoration, makes direct interstudy comparisons problematic (11,12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kay JF. Bioactive surface coatings: cause for encouragement and concern. J Oral Implants 1988; 14: 43–50.

    CAS  Google Scholar 

  2. Bell R and Beirne O. Effect of hydroxyapatite tricalcium phosphate, and collagen on the healing of defects in the rat mandible. J Oral Maxillofac Surg 1988; 46: 589–594.

    Article  CAS  Google Scholar 

  3. Cook SD, Kay JF, and Thomas KA. Interface mechanics and histology of titanium and HA-coated titanium for dental implant applications. Int J Oral Maxillofac Implants 1987; 2: 15–22.

    CAS  Google Scholar 

  4. de Lange GL and Donath K. Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite-coated titanium implants. Biomaterials 1989; 10: 121–125.

    Article  Google Scholar 

  5. LeGeros R. Calcium phosphate materials in restorative dentistry: a review. Adv Dent Mater 1988; 2: 164–173.

    CAS  Google Scholar 

  6. Jarcho M. Retrospective analysis of hydroxyapatite development for oral implant applications. Dent Clin North Am 1992; 36: 19–27.

    CAS  Google Scholar 

  7. Piattelli A, Trisi P, and Emanuelli M. Bone reactions to hydroxyapatite-coated dental implants in humans: histology study using SEM, light microscopy, and laser scanning microscopy. Int J Oral Maxillofac Implants 1993a; 8: 69–74.

    Google Scholar 

  8. Piattelli A, Cordioli GP, Trisi P, Passi P, Favero GA, and Meffert RM. Light and confocal laser scanning microscopic evaluation of hydroxyapatite resorption patterns in medullary and cortical bone. Int J Oral Maxillofac Implants 1993; 8: 309–315.

    CAS  Google Scholar 

  9. Beirne O. Reaction to the symposium, Hydroxyapatite coating on dental implants: Benefits and risks. J Oral Implantol 1994; 20: 240–243.

    Google Scholar 

  10. Ozawa S and Kasugai S. Evaluation of implant materials (hydroxyapatite, glass-ceramics, titanium) in rat bone marrow stromal cell culture. Biomaterials 1996; 17: 23–29.

    Article  CAS  Google Scholar 

  11. Krauser JT. Hydroxyapatite-coated dental implants: Biologic rational and surgical technique. Dent Clin North Am 1989; 33: 879–890.

    CAS  Google Scholar 

  12. Zablotsky MH. Surgical management of osseous defects associated with endosteal hydroxyapatitecoated and titanium dental implants. Dent Clin North Am 1992a; 36: 117–150.

    CAS  Google Scholar 

  13. Young RA. Biological apatite versus hydroxyapatite at the atomic level. Clin Orthop Rel Res 1975; 113: 249–262.

    Article  CAS  Google Scholar 

  14. Bonel G, Heughebaert JC, Heughebaert M, Lacout JL, and Lebugle A. Apatitic calcium orthophosphates and related compounds for biomaterials, in Bioceramics: Materia Characteristics Versus In Vivo Behavior 1988; (Ducheyne P and Lemons JE, eds), NY Academy of Sciences, New York, pp. 115–139.

    Google Scholar 

  15. Van Mullem PJ and Maltha JC. Histology of bone: a synopsis, in Bioceramics of Calcium Phosphate 1983; CRC, Boca Raton, FL, pp. 53–78.

    Google Scholar 

  16. Posner AS. Crystal chemistry of bone mineral. Physiol Rev 1969; 49: 760–792.

    CAS  Google Scholar 

  17. Posner AS. Bone mineral on the molecular level. Fed Proc 1973; 32: 1933–1937.

    CAS  Google Scholar 

  18. Little MF and Casciani FS. Nature of water in sound human enamel. Arch Oral Biol 1966; 11: 565–571.

    Article  CAS  Google Scholar 

  19. Termine JD. Mineral chemistry and skeletal biology. Clin Orthop Rel Res 1972; 85: 207–241.

    Article  CAS  Google Scholar 

  20. Herman H. Plasma spray deposition processes. MRS Bull 1988; 12: 60–67.

    Google Scholar 

  21. Solieau RL. Characterization of electrocodeposited hydroxylapatite coatings 1991; ( Master’s thesis), University of Alabama, Birmingham, AL.

    Google Scholar 

  22. Coupe K. Properties of Ca-P thin films produced using RF sputtering techniques 1991; ( Master’ s thesis), University of Alabama, Birmingham, AL.

    Google Scholar 

  23. Dasarathy H, Riley C, and Coble HD. Analysis of apatite deposits on subtrates. J Biomed Mater Res 1993; 27: 477–482.

    Article  CAS  Google Scholar 

  24. Ong JL, Lucas LC, Lacefield WR, and Rigney ED. Structure, solubility and bond strength of thin calcium phosphate coatings produced by ion beam sputter deposition. Biomaterials 1992; 13: 249254.

    Google Scholar 

  25. Haman JD, Lucas LC, and Crawmer D. Characterization of high velocity oxy-fuel combustion sprayed hydroxyapatite. Biomaterials 1995; 16: 229–237.

    Article  CAS  Google Scholar 

  26. Bunshah RF. Deposition technologies: an overview, in (Bunshah RF, ed), Deposition Technologies for Films and Coatings: Developments and Applications 1982; Noyes, Park Ridge, NJ, pp. 1–18.

    Google Scholar 

  27. Lacefield WR. Hydroxylapatite coatings, in Bio-ceramics: Material Characteristics Versus In Vivo Behavior 1988; (Ducheyne P and Lemons JE, eds), New York Academy of Science, New York, pp. 72–80.

    Google Scholar 

  28. Filiaggi MJ and Pilliar RM. Interfacial characterization of a plasma-sprayed hydroxyapatite/Ti6A1–4V implant system. Transactions of the Tenth annual meeting of the Canadian Society for Biomaterials June 1989; Toronto, 23–25.

    Google Scholar 

  29. Filiaggi MJ, Coombs NA, and Pilliar RM. Characterization of the interface in the plasma-sprayed HA coating/Ti-6A1–4V implant system. J Biomed Mater Res 1991; 25: 1211–1229.

    Article  CAS  Google Scholar 

  30. Whitehead RY. Structure and integrity of plasma sprayed hydroxylapatite coatings on titanium 1991; ( Master’s thesis), University of Alabama, Birmingham, AL.

    Google Scholar 

  31. Radin S and Ducheyne P. Effect of plasma sprayed induced changes in characteristics on the in vitro stability of calcium phosphate ceramics. Transactions of the 16th Annual Meeting of the Society for Biomaterials May 20–23, 1990; Charleston. Society for Biomaterials, Birmingham, p. 128.

    Google Scholar 

  32. de Groot K, Geesink R, Klein C, and Serekian P. Plasma-sprayed coatings of hydroxyapatite. JBiomed Mater Res 1987; 21: 1375–1381.

    Article  Google Scholar 

  33. de Groot K, Wolke JGC, and Jansen JA. State of the art: hydroxyapatite coatings for dental implants. J Oral Implantol 1994; 20: 232–234.

    Google Scholar 

  34. Steflik DE, Lacefield WR, Sisk AL, Parr GP, Lake FT, and Patterson JW. Hydroxyapatite-coated dental implants: descriptive histology and quantitative histomorphometry. J Oral Implantol 1994; 20: 201–213.

    Google Scholar 

  35. Zyman Z, Weng J, Liu X, Zhang X, and Ma X. Amorphous phase and morphological structure of hydroxyapatite plasma coatings. Biomaterials 1993; 14: 225–228.

    Article  CAS  Google Scholar 

  36. Ducheyne P. Bioceramics: materials characterization versus in-vivo behavior. J Biomed Mater Res 1987; 21: 219–223.

    CAS  Google Scholar 

  37. Kay JF. Designing to counteract the effects of initial device instability: materials and engineering. J Biomed Mater Res 1988; 22: 1127–1132.

    Article  CAS  Google Scholar 

  38. Lemons J. Hydroxyapatite coatings. Clin Orthop 1988; 235: 220–230.

    CAS  Google Scholar 

  39. Ducheyne P, van Raemdonck W, Heughebaert JC, and Heughebaert M. Structural analysis of hydroxyapatite coatings on titanium. Biomaterials 1986; 7: 97–103.

    Article  CAS  Google Scholar 

  40. Matsui Y, Ohno K, Michi K, and Yamagata K. Experimental study of high-velocity flame-sprayed hydroxyapatite coated and noncoated titanium implants. Int J Oral Maxillofac Implants 1994; 9: 397–404.

    Google Scholar 

  41. Cheang P and Khor KA. Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials 1996; 17: 537–544.

    Article  CAS  Google Scholar 

  42. Tufekci E, Brantley WA, Mitchell JC, and McGlumphy EA. Microstructures of plasma-sprayed hydroxyapatite-coated Ti-6A1–4V dental implants. Int J Oral Maxillofac Implants 1997; 12: 25–31.

    CAS  Google Scholar 

  43. Geesink RG and Hoefnagels NH. Six-year results of hydroxyapatite-coated total hip replacement. J Bone and Joint Surg (British vol) 1995; 77: 534–547.

    CAS  Google Scholar 

  44. LeGeros RZ, LeGeros JP, Kim Y, Kijkowska R, Zheng R, Bautista C, Wong JL. Calcium phosphates in plasma-sprayed HA coatings, in Bioceramics: Materials and Applications, vol. 48, 1994; (Fischman G, Clare A, Hench LL, eds), American Ceramic Society, Westerville, OH, pp. 173–189.

    Google Scholar 

  45. Tufekci E, Brantley WA, Mitchell JC, Foreman DW, Georgette FS. Chrystallographic characteristics of plasma-sprayed calcium phosphate coatings on Ti-6AI–4V. IntJ Oral Maxillofac Implants 1999; 14: 661–672.

    CAS  Google Scholar 

  46. Kay JF. Calcium phosphate coatings for dental implants. Dent Clin North Am 1992; 36: 1–18.

    CAS  Google Scholar 

  47. LeGeros R and Craig RG. Strategies to affect bone remodeling: Osseointegration. J Bone Miner Res 1993; 8: 583–596.

    Article  Google Scholar 

  48. Ogiso M, Yamashita Y, and Matsumoto T. Process of physical weakening and dissolution of the HA-coated implant in bone and soft tissue. J Dent Res 1998; 77: 1426–1434.

    Article  CAS  Google Scholar 

  49. Wolke JGC, Dhert WJA, Klein CPAT, de BlieckHogervorst JM, and de Groot K. Characterization of plasma-sprayed fluorapatite coatings for biomedical application, in (Vincenzini P, ed), Ceramics in Substitutive and Reconstructive Surgery 1991; Elsevier, New York, pp. 285–293.

    Google Scholar 

  50. Ducheyne P, Radin S, and King L. Effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution. J Biomed Mater Res 1993; 27: 25–34.

    Article  CAS  Google Scholar 

  51. Nery EB, LeGeros RZ, Lynch KL, and Lee K. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/13-TCP in periodontal osseous defects. J Periodontol 1992; 63: 729–735.

    Article  CAS  Google Scholar 

  52. Zablotsky MH. Hydroxyapatite coatings in implant dentistry. Implant Dent 1992; 1: 253–257.

    Article  CAS  Google Scholar 

  53. LeGeros R. Calcium phosphates in oral biology and medicine, in Monographs on Oral Science 1991; (Meyers, HM, ed), Karger, Basel, Switzerland, pp. 154–171.

    Google Scholar 

  54. Lacefield WR. Characterization of hydroxyapatite coatings. J Oral Implantol 1994; 20: 214–220.

    Google Scholar 

  55. Soballe K, Hansen ES, Brockstedt-rasmussen H, and Bunger C. Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. J Bone Joint Surg Br 1993; 75-B: 270–278.

    Google Scholar 

  56. Dalton JE and Cook SD. In vivo mechanical and histological characteristics of HA-coated implants vary with coating vendor. J Biomed Mater Res 1995; 29: 239–245.

    Article  CAS  Google Scholar 

  57. Maxian SH, Zawadsky JP, and Dunn MG. In vitro evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants. J Biomed Mater Res 1993; 27: 111–118.

    Article  CAS  Google Scholar 

  58. Cook SD, Salkeld SL, Gaisser DM, and Wagner WR. Effect of surface macrotexture on the mechanical and histologic characteristics of hydroxyapatite-coated dental implants. J Oral Implantol 1993; 19: 288–294.

    CAS  Google Scholar 

  59. Rivero DP, Fox J, Skipor AK, Urban RM, and Galante JO. Calcium phosphate-coated porous titanium implants for enhanced skeletal fixation. J Biomed Mater Res 1988; 22: 191–201.

    Article  CAS  Google Scholar 

  60. Bloebaum RD, Merrell M, Gustke K, and Simmons M. Retrieval analysis of a hydroxyapatitecoated hip prosthesis. Clin Orthop Rel Res 1991; 267: 97–102.

    Google Scholar 

  61. Dhert WJA, Klein CPAT, Jansen JA, van der Velde EA, Vriesde RC, Rozing PM, and de Groot K. Histological and histomorphometrical investigation of fluorapatite, magnesium whitlockite, and hydroxyapatite plasma-sprayed coatings in goats. J Biomed Mater Res 1993; 27: 127–138.

    Article  CAS  Google Scholar 

  62. Klein CPAT, de Blieck-Hogervorst JMA, Wolke JGC, and de Groot K. Study of solubility and surface features of different calcium phosphate coatings in vitro and in vivo: a pilot study, in Ceramics in Substitutive and Reconstructive Surgery 1991; (Vincenzini P, ed), Elsevier, New York, pp. 363–374.

    Google Scholar 

  63. Ingram GS. Some heteroanionic exchange reactions of hydroxyapatite. Bull Soc Chim Fr 1968; 1841–1844.

    Google Scholar 

  64. Kopp JB and Robey PG. Sodium fluoride does not increase human bone cell proliferation or protein synthesis in vitro. Calcif Tissue Int 1990; 47: 221–229.

    Article  CAS  Google Scholar 

  65. Simmons DJ, Seitz P, Kidder L, Klein GL, Waeltz M, Gundberg CM, et al. Partial characterization of rat marrow stromal cells. Calcif Tissue Int 1991; 48: 326–334.

    Article  CAS  Google Scholar 

  66. Whyte MP, Teitelbaum SL, Bergfield M, and Avi-oli LV. Histomorphometric analysis of iliac crest bone from osteoporotic subjects following alternate sodium fluoride and calcium-vitamin D therapy. Clin Res 1978; 26: 776A.

    Google Scholar 

  67. Vigorita VJ and Suda MK. Microscopic morphology of fluoride-induced bone. Clin Orthop Rel Res 1983; 177: 274–282.

    Google Scholar 

  68. Likimani S, Whitford GM, and Kunkel ME. Effects of protein deficiency and fluoride on bone mineral content of rat tibia. Calcif Tissue Int 1992; 50: 157–164.

    Article  CAS  Google Scholar 

  69. Meffert R, Block M, and Kent J. What is osseo-integration? Im J Periodont Rest Dent 1987; 7: 9–21.

    CAS  Google Scholar 

  70. Thomas KA, Kay JF, Cook SD, and Jarcho M. Effects of surface macrotexture and hydroxylapatite coating on the mechanical strength and histologic profiles of titanium implant material. J Biomed Mater Res 1987; 21: 1395–1414.

    Article  CAS  Google Scholar 

  71. Gammage DD, Bowman AE, Meffert RM, Cassingham RJ, and Davenport WA. Histologic and scanning electron micrographic comparison of the osseous interface in loaded IMZ and Integral implants. Int J Periodont Rest Dent 1990; 10: 125135.

    Google Scholar 

  72. Kohri M, Cooper EP, Ferracane JL, and Waite DF. Comparative study of hydroxyapatite and titanium dental implants in dogs. J Oral Maxillofac Surg 1990; 48: 1265–1273.

    Article  CAS  Google Scholar 

  73. Pilliar RM, Deporter DA, Watson PA, Paroah M, Chipman M, and Valiquette N. Effect of partial coating with hydroxyapatite on bone remodeling in relation to porous-coated titanium-alloy dental implants in the dog. J Dent Res 1991; 70: 1338–1345.

    Article  CAS  Google Scholar 

  74. Gottlander M and Albrektsson T. Histomorphometric studies of hydroxyapatite-coated and uncoated CP titanium threaded implants in bone. Int J Oral Maxillofac Implants 1991; 6: 399–404.

    CAS  Google Scholar 

  75. Weimlaender M, Kennedy EB, Lekovic V, Beumer J, Moy PK, and Lewis S. Histomorphometry of bone apposition around three types of endosseous dental implants. Int J Oral Maxillofac Implants 1992; 7: 491–496.

    Google Scholar 

  76. Can AB, Gerard DA, and Larsen PE. Quantitative histomorphometric description of implant anchorage for three types of dental implants following 3 months of healing in baboons. Ina J Oral Maxillofac Implants 1997; 12: 777–784.

    Google Scholar 

  77. Gottlander M, Albrektsson T, and Carlsson LV. Histomorphometric study of unthreaded hydroxyapatite-coated and titanium-coated implants in rabbit bone. Int J Oral Maxillofac Implants 1992; 7: 485–490.

    CAS  Google Scholar 

  78. Can AB, Larsen PE, Papazoglou E, and McGlumphy E. Reverse torque failure of screw-shaped implants in baboons: baseline data for abutment torque application. IntJ Oral Maxillofac Implants 1995; 10: 167–174.

    Google Scholar 

  79. Takeshoita F, Ayukawa Y, lyama A, Seutsugu T, and Kido MA. Histologic evaluation of retrieved hydroxyapatite-coated blade-form implants using scanning electron, light, and confocal laser scanning microscopies. JPeriodontol 1996; 67: 1034–1040.

    Article  Google Scholar 

  80. Rosenberg ES, Torosian JP, and Slots J. Microbial differences in 2 clinically distinct types of failures of osseointegrated implants. Clin Oral Implants Res 1991; 2: 135–144.

    Article  CAS  Google Scholar 

  81. Verheyen CCPM, Dhert WJA, Petit PLC, Rozing PM, and deGroot K. In vitro study on the integrity of a hydroxylapatite coating when challenged with staphylococci. J Biomed Mater Res 1993; 27: 775–781.

    Article  CAS  Google Scholar 

  82. Ichikawa T, Hirota K, Kanitani H, Wigianto R, Kawamoto N, Matsumoto N, and Miyake Y. Rapid bone resorption adjacent to hydroxyapatitecoated implants. J Oral Implants 1996; 22: 232–235.

    CAS  Google Scholar 

  83. Mombelli A, von Oosten MAC, Schurch E Jr, and Lang NP. Microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol 1987; 2: 145–151.

    Article  CAS  Google Scholar 

  84. Becker W, Becker BE, Newman MG, and Nyman S. Clinical and microbiological findings that may contribute to implant failure. Int J Oral Maxillofac Implants 1990; 5: 31–38.

    CAS  Google Scholar 

  85. Rams TE, Roberts TW, Feik D, Molzan AK, and Slots J. Clinical and microbiological findings on newly inserted hydroxyapatite-coated and pure titanium human dental implants. Clin Oral Implants Res 1991; 2: 121–127.

    Article  CAS  Google Scholar 

  86. Gatewood RR, Cobb CM, and Killoy WJ. Microbial colonization on natural tooth structure compared with smooth and plasma-sprayed dental implant surfaces. Clin Oral Implants Res 1993; 4: 53–64.

    Article  CAS  Google Scholar 

  87. Johnson BW. HA-coated dental implants: longterm consequences. J Calif Dent Assoc 1992; 20: 33–41.

    CAS  Google Scholar 

  88. Zablotsky MH, Diedrich DL, and Meffert RM. Detoxification of endotoxin-contaminated titanium and hydroxyapatite and mechanical modalities. Implant Dent 1992c; 1: 154–158.

    Article  CAS  Google Scholar 

  89. Zablotsky MH, Meffert R, Mills O, Burgess A, and Lancaster D. Macroscopic, microscopic and spectrometric effects of various chemotherapeutic agents on the plasma-sprayed hydroxyapatitecoated implant surface. Clin Oral Implants Res 1992; 3: 189–198.

    Article  CAS  Google Scholar 

  90. Nancollas GH and Tucker BE. Dissolution kinetics characterization of hydroxyapatite coatings on dental implants. J Oral Implantol 1994; 20: 221–226.

    Google Scholar 

  91. Cranin AN, Mehrali M, and Baraoidan M. Hydroxyapatite-coated endosteal implants from the clinicians’ perspective. J Oral Implants 1994; 20: 235–239.

    Google Scholar 

  92. Takeshoita F, Kuroki H, Yamasaki A, and Suetsugu T. Histologic observation of seven removed endosseous dental implants. Int J Oral Maxillofac Implants 1995; 10: 367–372.

    Google Scholar 

  93. van Blitterswijk CA, Grote JJ, Kuypers W, BlokvanHoek CJ, and Daems WT. Bioreactions at the tissue/hydroxylapatite interface. Biomaterials 1985; 6: 243–251.

    Article  Google Scholar 

  94. Muller-Mai CM, Voigt C, and Gross U. Incorporation and degradation of hydroxyapatite implants of different surface roughness and surface structure in bone. Scan Microsc 1990; 4: 613–624.

    CAS  Google Scholar 

  95. Eggli PS, Muller W, and Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. Clin Orthop Related Res 1988; 232: 127–138.

    CAS  Google Scholar 

  96. Muller-Mai CM, Stupp SI, and Gross U. Nano-apatite and organoapatite implants in bone: histology and ultrastructure of the interface. J Biomed Mater Res 1995; 29: 9–18.

    Article  CAS  Google Scholar 

  97. Bauer TW, Geesink RCT, Zimmerman R, and McMahon JT. Hydroxyapatite-coated femoral stems. J Bone Joint Surg 1991; 73: 1439–1452.

    CAS  Google Scholar 

  98. Block MS, Finger IM, Frontenot MG, and Kent JN. Loaded hydroxyapatite-coated and grit-blasted titanium implants in dogs. Int J Oral Maxillofac Implants 1989; 4: 219–225.

    CAS  Google Scholar 

  99. Maistrelli GL, Mahomed N, Fornasier V, Antonelli L, Li Y, and Binnington A. Functional osseointegration of hydroxyapatite-coated implants in a weight-bearing canine model. J Arthroplasty 1993; 8: 549–553.

    Article  CAS  Google Scholar 

  100. Lewandowski JA and Johnson CM. Structural failure of osseointegrated implants at the time of restoration. A clinical report. J Prosthet Dent 1989; 62: 127–129.

    Article  CAS  Google Scholar 

  101. Soballe K, Brockstedt-rasmussen H, Hansen ES, and Bunger C. Hydroxyapatite coating modifies implant membrane formation: controlled micro-motion studied in dog. Acta Orth Scand 1992; 63: 128–140.

    Article  CAS  Google Scholar 

  102. Soballe K, Hansen ES, Brockstedt-rasmussen H, and Bunger C. Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions. J Orthop Res 1992b; 10: 285–299.

    Article  CAS  Google Scholar 

  103. Kent JN, Block MS, Finger KM, Guerra L, Larsen H, and Misiek DJ. Biointegrated hydroxyapatitecoated dental implants; 5 years clinical observations. J Am Dent Assoc 1990; 121: 138–144.

    CAS  Google Scholar 

  104. Saadoun AP and LeGall ML. Clinical results and guidelines on Steri-Oss endosseous implants. Int J Periodont Rest Dent 1992; 121: 487–499.

    Google Scholar 

  105. Golec TS and Krauser JT. Long-term retrospective studies on hydroxyapatite-coated endosteal and subperiosteal implants. Dent Clin North Am 1992; 36: 39–65.

    CAS  Google Scholar 

  106. Kawahara H. Biomaterials for dental implants, in Encyclopedic Handbooks and Bioengineering 1995; (Wise DL, et al., eds), M. Dekker, New York, pp. 1469–1524.

    Google Scholar 

  107. Block MS and Kent JN. Placement of endosseous implants into tooth extraction sites. J Oral Maxillofac Surg 1991; 49: 1269–1276.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ong, J.L., Chan, D.C.N., Bessho, K. (2000). HA Coatings on Dental Implants. In: Wise, D.L., Trantolo, D.J., Lewandrowski, KU., Gresser, J.D., Cattaneo, M.V., Yaszemski, M.J. (eds) Biomaterials Engineering and Devices: Human Applications . Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-197-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-197-8_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-227-8

  • Online ISBN: 978-1-59259-197-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics