Skip to main content

Biomaterials Used in Implant Dentistry

  • Chapter
  • 341 Accesses

Abstract

The implant dentist faces a plethora of biomaterials with which to become familiar, in order to properly restore the partially or completely edentulous patient. Included in these biomaterials are bone graft (BG) materials, occlusive membranes that can aid in bone augmentation, and a wide variety of implant devices that affix prosthetic teeth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lekholm U and Zarb GA. Patient selection and preparation, in Tissue-Integrated Prostheses: Osseointegration in Clinical Dentistry, 1985 (Branemark P-I, Zarb GA, and Albrektsson T), Quintessence, Chicago, pp. 199 - 209.

    Google Scholar 

  2. Jemt T and Lekholm U. Implant treatment in edentulous maxillae: a five year follow-up report on patients with different degrees of jaw resorption. Int J Oral Maxillofac Implants 1995; 10: 303.

    CAS  Google Scholar 

  3. Becker W, Schenk R, Higuchi K, et al. Variations in bone regeneration adjacent to implants augmented with barrier membranes alone or with demineralized freeze-dried bone or autologous grafts: a study in dogs. Int J Oral Maxillofac Implants 1995; 10: 143–154.

    CAS  Google Scholar 

  4. Buser D, Bragger U, Lang NP, and Nyman S. Regeneration and enlargement of jaw bone using guided tissue regeneration. Clin Oral Implants Res 1990; 1: 22–32.

    Article  CAS  Google Scholar 

  5. Buser D, Dula K, Belser U, et al. Localized ridge augmentation using guided bone regeneration. 1. Surgical procedure in the maxilla. Int J Periodont Restorative Dent 1993; 13: 29–45.

    CAS  Google Scholar 

  6. Jovanovic SA, Spiekermann H, and Richter EJ. Bone regeneration around titanium dental implants in dehisced defect sites: a clinical study. Int J Oral Maxillofac Implants 1992; 7: 233–245.

    CAS  Google Scholar 

  7. Misch CM. Comparison of intraoral donor sites for onlay grafting prior to implant placement. Int J Oral Maxillofac Implants 1997; 12: 767–776.

    CAS  Google Scholar 

  8. Misch CE and Dietsch F. Bone-grafting materials in implant dentistry. Implant Dent 1993; 2: 158166.

    Google Scholar 

  9. Muthukumaran N, Ma S, and Reddi AH. Dose dependence of and threshold for optimal bone induction by collagenous bone matrix and osteogenin-enriched fraction. Collagen Rel Res 1988; 8: 433–441.

    Article  CAS  Google Scholar 

  10. Smiler DG. Bone grafting: materials and modes of action. Pract Periodent Aesthetic Dent 1996; 8: 413–416.

    CAS  Google Scholar 

  11. Urist MR and Strates BS. Bone morphogenetic protein. J Dent Res 1971; 50: 1392 - 1406.

    Article  CAS  Google Scholar 

  12. Urist MR. Search for and discovery of bone morphogenetic protein, in Bone Grafts, Derivatives and Substitutes 1994 (Urist MR, O“Conner BT, Burwell RG,), Butterworth, London, pp. 315–362.

    Google Scholar 

  13. Urist MR. Bone: formation by autoinduction. Science 1965; 150: 893–899.

    Article  CAS  Google Scholar 

  14. Urist MR, Silverman BF, Buring K, et al. Bone induction principle. Clin Orthop 1967; 53: 243283.

    Google Scholar 

  15. Roberts WE, Turley PK, Brezniak N, et al. Bone physiology and metabolism. Calif Dent Assoc J 1987; 15: 54–61.

    CAS  Google Scholar 

  16. Urist MR, Hay PH, Dubue F, et al. Osteogenic competence. Clin Orthop 1969; 64: 194–220.

    CAS  Google Scholar 

  17. Urist MR, Mikulski A, and Lietze A. Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci 1979; 76: 1823–1828.

    Article  Google Scholar 

  18. Urist MR, De Lange RJ, and Finerman GA. Bone cell differentiation and growth factors. Science 1983; 220: 680–686.

    Article  CAS  Google Scholar 

  19. Costantino PD and Friedman CD. Synthetic bone graft substitutes. Craniofac Skeletal Augmentation Replacement. 1994; 1037–1072.

    Google Scholar 

  20. Misch CM and Misch CE. Repair of localized severe ridge defects for implant placement using mandibular bone grafts. Implant Dent 1995; 4: 261–267.

    Article  CAS  Google Scholar 

  21. Mellonig JT. Bone allografts in periodontal therapy. Clin Orthop Related Res 1996; 324: 116–125.

    Article  Google Scholar 

  22. Turner DW and Mellonig JT. Antigenicity of freeze-dried bone allograft in periodontal osseous defects. J Periodont Res 1981; 16: 89–99.

    Article  CAS  Google Scholar 

  23. Misch CE. Contemporary Implant Dentistry 1993; Mosby, St. Louis.

    Google Scholar 

  24. Hurt WC. Freeze-dried bone homografts in periodontal lesions in dogs. J Periodont Dent 1968; 39: 89.

    CAS  Google Scholar 

  25. Rosen V and Theis S. BMP proteins in bone formation and repair. Trends Genet 1992; 8: 97–102.

    CAS  Google Scholar 

  26. Wozney JM. Bone morphogenetic protein family and osteogenesis. Mol Reprod Dev 1992; 32: 160–167.

    Article  CAS  Google Scholar 

  27. Hollinger JO, Brekke J, Gruskin E, and Lee D. Role of bone substitutes. Clin Orthop Related Res 1996; 324: 55–65.

    Article  Google Scholar 

  28. Zamet JS, Darbar UR, Griffiths GS, Bulman JS, Bragger U, Burgin W, and Newman HN. Particulate bioglass as a grafting material in the treatment of periodontal intrabony defects. J Clin Periodontol 1997; 24: 410–418.

    Article  CAS  Google Scholar 

  29. Amler MH and Le Geros RZ. Hard tissue replacement (HTR) polymer as an implant material. J Biomed Mater Res 1990; 24: 1079–1089.

    Article  CAS  Google Scholar 

  30. Peltier LF. Use of plaster of Paris to fill defects in bone. Clin Orthop 1961; 21: 1–31.

    CAS  Google Scholar 

  31. Coetzee AS. Regeneration of bone in the presence of calcium sulfate. Arch Otolaryngol 1980; 106: 405–409.

    Article  CAS  Google Scholar 

  32. Anson D. Calcium sulfate: a 4-year observation of its use as a resorbable barrier in guided tissue regeneration of periodontal defects. Compendium 1996; 17: 895–899.

    CAS  Google Scholar 

  33. Conner HD. Bone grafting with a calcium sulfate barrier after root amputation. Compendium 1996; 17: 42–46.

    CAS  Google Scholar 

  34. Ashley FL, Stone RS, Alonso-Artieda M, et al. Experimental and clinical studies on the application of monomolecular cellulose filter tubes to create artificial tendon sheaths in digits. Plast Reconstr Surg 1959; 23: 526–534.

    Article  CAS  Google Scholar 

  35. Campbell JB and Bassett CAL. The surgical application of monomolecular filters (Millipore) to bridge gaps in peripheral nerves and to prevent neuroma formation. Surg Forum 1956; 7: 570574.

    Google Scholar 

  36. Aukhil I, Petersson E, and Sugges C. Guided tissue regeneration. An experimental procedure in beagle dogs. J Periodontol 1986; 57: 727–734.

    Article  CAS  Google Scholar 

  37. Becker W, Becker B, Berg L, et al. New attachment after treatment with root isolation procedures: report for treated class III and Class II furcations and vertical osseous defects. Int J Periodont Restorative Dent 1988; 3: 2–16.

    Google Scholar 

  38. Caffesse RG, Smith BA, Castelli WA, and Nasjleti CE. New attachment achieved by guided tissue regeneration in beagle dogs. J Periodontol 1988; 59: 589–594.

    Article  CAS  Google Scholar 

  39. Caffesse RG, Smith AB, Duff B, et al. Class II furcations treated by guided tissue regeneration in humans: case reports. J Periodontol 1990; 61: 510–514.

    Article  CAS  Google Scholar 

  40. Caton JG, De Furia EL, Polson AM, and Nyman S. Periodontal regeneration via selective cell repopulation. J Periodontol 1987; 58: 546–552.

    Article  CAS  Google Scholar 

  41. Gottlow J, Nyman S, Karring T, and Lindhe J. New attachment formation as the result of controlled tissue regeneration. J Clin Periodontol 1984; 11: 494–503.

    Article  CAS  Google Scholar 

  42. Gottlow J, Nyman S, Lindhe J, et al. New attachment formation in the human periodontium by guided tissue regeneration. Case reports. J Clin Periodontol 1986; 13: 604–616.

    Article  CAS  Google Scholar 

  43. Lekovic V, Kenney EB, Kovacevic K, and Carranza FA. Evaluation of guided tissue regeneration in class II furcation defects. A clinical reentry study. J Periodontol 1989; 60: 694–698.

    Article  CAS  Google Scholar 

  44. Nyman S, Gottlow J, Karring T, and Lindhe J. Regenerative potential of the periodontal ligament. An experimental study in the monkey. J Clin Periodontol 1982; 9: 257–265.

    Article  CAS  Google Scholar 

  45. Pontoriero R, Lindhe J, Nyman S, et al. Guided tissue regeneration in degree II furcation involved mandibular molars. A clinical study. J Clin Periodontol 1988; 15: 247–254.

    Article  CAS  Google Scholar 

  46. Hermann JS and Buser D. Guided bone regeneration for dental implants. Curr Opin Periodontol 1996; 3: 168–177.

    CAS  Google Scholar 

  47. Linde A, Alberius P, Dahlin C, Bjurstam K, and Sundin Y. Osteopromotion: a soft-tissue exclusion principle using a membrane for bone healing and bone neogenesis. J Periodontol 1993; 64: 1116 1128.

    Google Scholar 

  48. Linde A, Thoren C, Dahlin C, and Sandberg E. Creation of new bone by an osteopromotive membrane technique: an experimental study in rats. J Oral Maxillofac Surg 1993; 51: 892–897.

    Article  CAS  Google Scholar 

  49. Becker WB and Becker BE. Guided tissue regeneration for implants placed into extraction sockets and for implant dehiscences: surgical techniques and case reports. Int J Oral Maxillofac Implants 1990; 10: 377–391.

    Google Scholar 

  50. Becker W, Becker BE, Handlesman M, Celletti R, Ochsenbein C, Hardwick R, and Langer B. Bone formation at dehisced dental implant sites treated with implant augmentation material: a pilot study in dogs. Int J Periodont Rest Dent 1990; 10: 93–101.

    Google Scholar 

  51. Dahlin C, Sennerby L, Lekholm U, Linde A, and Nyman S. Generation of new bone around titanium implants using a membrane technique: an experimental study in rabbits. Int J Oral Maxillofac Implants 1989; 4: 19–26.

    CAS  Google Scholar 

  52. Gunay H, Skuballa C, and Neukamm FW. Experimentelle Untersuchung zur Behandlung von periimplantaren Knochendefekten. Z Zahnarztl Implantol 1991; 7: 16–24.

    Google Scholar 

  53. Hurzeler MB and Quinones CR. Installation of endosseous oral implants with guided tissue regeneration. Pract Periodont Aesthetic Dent 1991; 3: 21–29.

    CAS  Google Scholar 

  54. Lazzara RJ Immediate implant placement into extraction sites: surgical and restorative advantages. Int J Periodont Rest Dent 1989; 9: 333-343.

    Google Scholar 

  55. Nyman S, Lang NP, Buser D, and Bragger U. Bone regeneration adjacent to titanium dental implants using guided tissue regeneration: a report of two cases. Int J Oral Maxillofac Implants 1990; 5: 9–14.

    CAS  Google Scholar 

  56. Nevins M and Mellonig JT. Enhancement of the damaged edentulous ridge to receive dental implants: a combination of allograft and the Gore-Tex membrane. Int J Periodont Rest Dent 1992; 12: 97–111.

    Google Scholar 

  57. Siebert J and Nyman S. Localized ridge augmentation in dogs: a pilot study using membranes and hydroxyapatite. J Periodontol 1990; 61: 157–165.

    Article  CAS  Google Scholar 

  58. Grunder U, Hurzeler MB, Schupback P, and Strub JR. Treatment of ligature-induced periimplantitis using guided tissue regeneration. A clinical and histological study in the beagle dog. Int J Oral Maxillofac Implants 1993; 8: 282–293.

    CAS  Google Scholar 

  59. Hurzeler MB, Quinones CR, Schupback P, Morrison EC, and Caffesse RG. Treatment of periimplantitis using guided bone regeneration and bone grafts, alone or in combination, in beagle dogs. Part 2: Histologic findings. Int J Oral Maxillofac Implants 1997; 12: 168–175.

    CAS  Google Scholar 

  60. Jovanovic SA, Kenney EB, Carranza FA Jr, and Donath K. Regenerative potential of plaque-induced peri-implant bone defects treated by a submerged membrane technique: an experimental study. Int J Oral Maxillofac Implants 1993; 8: 13–18.

    CAS  Google Scholar 

  61. Dahlin C, Lekholm U, and Linde A. Membrane induced bone augmentation at titanium implants. A report on ten fixtures followed from 1 to 3 years after loading. Int J Periodont Rest Dent 1991; 11: 273–281.

    CAS  Google Scholar 

  62. Zablotsky M. Surgical management of osseous defects associated with endosteal hydroxyapatitecoated and titanium dental implants. Dent Clin North Am 1992; 36: 117–149.

    CAS  Google Scholar 

  63. Garrett S. Specific issues in clinical trials on the use of barrier membranes in periodontal regeneration. Ann Periodontol 1997; 2: 240–258.

    Article  CAS  Google Scholar 

  64. Minabe M. Critical review of the biologic rationale for guided tissue regeneration. J Periodontol 1991; 62: 171–179.

    Article  CAS  Google Scholar 

  65. Lundgren D, Mathisen T, and Gottlow J. Development of a bioresorbable barrier for guided tissue regeneration. J S.D.A. 1994; 86: 741–756.

    Google Scholar 

  66. Simion M, Baldoni J, Rossi P, and Zaffe D. Comparative study of the effectiveness of e-PTFE membranes with and without early exposures during the healing period. Int J Periodont Rest Dent 1994; 14: 166–180.

    CAS  Google Scholar 

  67. Bartee BK. Use of high-density polytetrafluoroethylene membrane to treat osseous defects: clinical reports. Implant Dent 1995; 4: 21–26.

    Article  CAS  Google Scholar 

  68. Bartee BK and Can JA. Evaluation of a high-density polytetrafluoroethylene (n-PTFE) membrane as a barrier material to facilitate guided bone regeneration in the rat mandible. J Oral Implant 1995; 21: 88–95.

    CAS  Google Scholar 

  69. Crump TB, Rivera-Hidalgo F, Harrison JW, Williams FE, and Guo IY. Influence of three membrane types on healing of bone defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996; 82: 365–374.

    Article  CAS  Google Scholar 

  70. Hutmacher D, Hurzeler MB, and Schliephake H. Review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Int J Oral Maxillofac Implants 1996; 11: 667–678.

    CAS  Google Scholar 

  71. Fugazzotto PA. Use of demineralized laminar bone sheets in guided bone regeneration procedures: report of three cases. Int J Oral Maxillofac Implants 1995; 11: 239–244.

    Google Scholar 

  72. Chen CC, Wang HL, Smith F, Glickman GN, Shyr Y, and O“Neal RB. Evaluation of a collagen membrane with and without bone grafts in treating periodontal infrabony defects. J Periodontol 1995; 66: 838–47.

    Article  CAS  Google Scholar 

  73. Mundell RD, Mooney MP, Siegel MI, and Losken A. Osseous guided tissue regeneration using a collagen barrier membrane. J Oral Maxillofac Surg 1993; 51: 1004–1012.

    Article  CAS  Google Scholar 

  74. Sevor JJ, Meffert RM, and Cassingham RJ. Regeneration of dehisced alveolar bone adjacent to endosseous dental implants utilizing a resorbable collagen membrane: clinical and histologic results. Int J Periodont Restorative Dent 1993; 13: 71–83.

    CAS  Google Scholar 

  75. Pitaru S, Tal H, Soldinger M, and Noff M. Collagen membranes prevent apical migration of epithelium and support new connective tissue attachment during periodontal wound healing in dogs. J Periodont Res 1989; 24: 247–253.

    Article  CAS  Google Scholar 

  76. Schlegel AK, Mohler H, Busch F, and Mehl A. Preclinical and clinical studies of a collagen membrane (Bio-Gide). Biomaterials 1997; 18: 535–538.

    Article  CAS  Google Scholar 

  77. Salthouse TM. Cellular enzyme activity at the polymer-tissue interface: a review. J Biomed Mater Res 1986; 10: 197.

    Article  Google Scholar 

  78. Zitzmann NU, Naef R, and Scharer P. Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants 1997; 12: 844–852.

    CAS  Google Scholar 

  79. Aaboe M, Pinholt EM, Hjorting-Hansen E, Solheim E, and Praetorius F. Guided tissue regeneration using degradable and nondegradable membranes in rabbit tibia. Clin Oral Implants Res 1993; 4: 172–176.

    Article  Google Scholar 

  80. Baek SH, Broome C, Zechner W, et al. Healing of through-and-through osseous defects by membrane barrier technique in ferrets. J Endod 1995; 21: 228.

    Article  Google Scholar 

  81. Cortellini P, Pini Prato G, and Tonetti M. Periodontal regeneration of human infrabony defects with bioresorbable membranes: a controlled clinical trial. J Periodontol 1995; 67: 217–223.

    Article  Google Scholar 

  82. McGinnis M, Larsen P, Miloro M, and Beck FM. Comparison of resorbable and nonresorbable guided bone regeneration materials: a preliminary study. Int J Oral Maxillofac Implants 1998; 13: 30–35.

    CAS  Google Scholar 

  83. Sandberg E, Dahlin C, and Linde A. Bone regeneration by the osteopromotion technique using bioabsorbable membranes: an experimental study in rats. J Oral Maxillofac Surg 1993; 51: 1106 1114.

    Google Scholar 

  84. Simion M, Scarano A, Gionso L, and Piattelli A. Guided bone regeneration using resorbable and nonresorbable membranes: a comparative histologic study in humans. Int J Oral Maxillofac Implants 1996; 11: 735–742.

    CAS  Google Scholar 

  85. Simion M, Misitano U, Gionso L, and Salvato A. Treatment of dehiscences and fenestrations around dental implants using resorbable and nonresorbable membranes associated with bone auto-grafts: a comparative clinical study. Int J Oral Maxillofac Implants 1997; 12: 159–167.

    CAS  Google Scholar 

  86. Stoller NH and Johnson LR. Use of the ATRI-SORB bioabsorbable barrier during guided tissue regeneration. Dent Learning Syst Postgrad Dent Series 1997; 4: 13–22.

    Google Scholar 

  87. Urbani G, Granziani A, Lombardo G, and Caton JG. Clinical results with exposed polyglactin 910 resorbable membranes for guided tissue regeneration. Int J Periodont Rest Dent 1997; 17: 41–51.

    CAS  Google Scholar 

  88. Pecora G, Andreana S, Margarone JE III, Covani U, and Sottosanti JS. Bone regeneration with a calcium sulfate barrier. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1997; 84: 424–429.

    Article  CAS  Google Scholar 

  89. Sottosanti J. Calcium sulfate: a biodegradable and biocompatible barrier for guided tissue regeneration. Compend Contin Ed Dent 1992; 13: 226234.

    Google Scholar 

  90. Sottosanti JS. Calcium sulfate-aided bone regeneration: a case report. Periodont Clin Invest 1995; 17: 10–15.

    CAS  Google Scholar 

  91. Dahl GSA. Om Mojlighoten Fur Implantation i de Kaken Av Metallskelett Som Bas Eller Retention for Fastaeller Avtagbara Proteser. Odontol Tskr 1943; 51: 440.

    Google Scholar 

  92. Berman N. Implant technique for full lower dentures. Dent Dig 1951; 57: 438.

    CAS  Google Scholar 

  93. Lew I. Full upper and lower implant dentures. Dent Concepts 1952; 4: 17.

    Google Scholar 

  94. Truitt HP, James R, and Boyne P. Non invasive technique for mandibular subperiosteal implant: a preliminary report. J Prosthet Dent 1986; 55: 494–497.

    Article  CAS  Google Scholar 

  95. James RA, Lozada JL, and Truitt HP. Computer tomography (CT) applications in implant dentistry. J Oral Implantol 1991; 17: 10–15.

    CAS  Google Scholar 

  96. Truitt H, James RA, Altman A, and Boyne P. Use of computer tomography in subperiosteal implant therapy. J Prosthet Dent 1988; 59: 474–477.

    Article  CAS  Google Scholar 

  97. James RA. Subperiosteal implant design based on peri-implant design based on peri-implant tissue behavior. NY J Dent 1983; 53: 407–414.

    CAS  Google Scholar 

  98. Cranin NA. Some musings on implants. Alpha Omegan 1975; 68: 11–15.

    Google Scholar 

  99. Benjamin LS. Long-term retrospective studies on the CT-scan, CAD/CAM, one-stage surgery hydroxyapatite-coated subperiosteal implants, including human functional retrievals. Dent Clin North Am 1992; 36: 77–93.

    CAS  Google Scholar 

  100. Bodine RL and Mohammed L. Macroscopic and microscopic study of a mandible with a 12-year implant in place. Newslett Am Acad Implant Dent 1967; 16: 8.

    CAS  Google Scholar 

  101. Bodine RL. Evaluation of 27 mandibular subperiosteal implant dentures after 15-22 years. J Prosthet Dent 1974; 32: 188.

    Article  CAS  Google Scholar 

  102. Benjamin LS and Block MS. Histologic evaluation of a retrieved human HA-coated subperiosteal implant: report of a case. Int J Oral Maxillofac Implants 1989; 4: 63–66.

    CAS  Google Scholar 

  103. Cranin AN, Rabkin MF, and Garfinkel L. Statistical evaluation of 952 endosteal implants in humans. J Am Dent Assoc 1977; 94: 315–320.

    CAS  Google Scholar 

  104. Lemons JE. Dental implant interfaces as influenced by biomaterial and biomechanical properties, in Implant Prosthodontics: Surgical and Prosthetic Techniques for Dental Implants 1990; (Fagan MI Jr, ed) Mosby Year Book, St. Louis, pp. 281–292.

    Google Scholar 

  105. Brânemark P-I, Hansson B-O, Adell R, Breine U, Lindstrom J, Hallen O, and Ohman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg 1977; 11 (Suppl 16): 1–132.

    Google Scholar 

  106. Masuda T, Yliheikkila PK, Felton DA, and Cooper LF. Generalizations regarding the process and phenomenon of osseointegration. Part I. In vivo studies. Int J Oral Maxillofac Implants 1998; 13: 17–29.

    CAS  Google Scholar 

  107. Brunski JB. Influence of functional use of endos-teal dental implants on the tissue-implant interface: clinical aspects. J Dent Res 1979; 58: 1970 1980.

    Google Scholar 

  108. Adell R, Lekholm U, and Rockler B. 15-year study of osseointegration in the treatment of the edentulous jaw. J Oral Surg 1981; 10: 387–416.

    Article  CAS  Google Scholar 

  109. Albrektsson T, Dahl E, Enbom I, Engevall S, Engquist B, Eriksson RA, et al. Osseointegrated implants: a Swedish multicenter study of 8139 consecutively inserted Nobelpharma implants. J Periodontol 1988; 59: 287–296.

    Article  CAS  Google Scholar 

  110. Jemt T, Lekholm U, and Grondahl K. 3 year followup study of early single implant restorations ad modum Branemark. Int J Periodont Rest Dent 1990; 5: 272–281.

    Google Scholar 

  111. van Steenberghe D, Lekholm U, Bolender C, and Folmer T. Osseointegrated oral implants in the rehabilitation of partial edentulism: a prospective multicenter study of 558 fixtures. Int J Oral Maxillofac Implants 1990; 5: 272–281.

    Google Scholar 

  112. Brânemark PI, Breine U, Adell R, Hansson BO, Lindstrom J, and Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969; 3: 81.

    Article  Google Scholar 

  113. Babbush CA, Kent JN, and Misiek DJ. Titanium plasma-sprayed (TPS) screw implants for the reconstruction of the edentulous mandible. J Oral Maxillofac Surg 1986; 44: 274–281.

    Article  CAS  Google Scholar 

  114. Buser D, Weber HP, and Lang NP. Tissue integration of nonsubmerged implants. 1-year results of a prospective study with 100 ITI hollow-cylinder and hollow-screw implants. Clin Oral Implant Res 1990; 1: 33–40.

    Article  CAS  Google Scholar 

  115. Schroeder A, van der Zypen E, Stich H, and Sutter F. Reaction of bone, connective tissue and epithelium to endosteal implants with sprayed titanium surfaces. J Maxillofac Surg 1981; 9: 15–25.

    Article  CAS  Google Scholar 

  116. Ten Bruggenkate CM, Muller K, and Oostenbeek HS. Clinical evaluation of the ITI (F-Type) hollow cylinder implant. Oral Surg Oral Med Oral Pathol 1990; 70: 693–697.

    Article  Google Scholar 

  117. Carlsson L, Rostlund T, Albrektsson B, and Albrektsson T. Removal torques for polished and rough titanium implants. Int J Oral Maxillofac Implants 1988; 3: 21–24.

    CAS  Google Scholar 

  118. Thomas KA and Cook SD. Evaluation of variables influencing implant fixation by direct bone apposition. J Biomed Mater Res 1985; 19: 875.

    Article  CAS  Google Scholar 

  119. Wennerberg A, Albrektsson T, and Lausmaa J. Torque and histomorphometric evaluation of c.p. titanium screws blasted with 25- and 75-mm-sized particles of AL O. J Biomed Mater Res 1996; 30: 251–260.

    Article  CAS  Google Scholar 

  120. Deporter DA, Watson PA, Pilliar RM, Pharoah M, Smith DC, Chipman M, Locker D, and Rydall A. Prospective clinical study in humans of an endosseous dental implant partially covered with a powder-sintered porous coating: 3- to 4-year results. Int J Oral Maxillofac Implants 1996; 11: 87–95.

    CAS  Google Scholar 

  121. Kay SA, Wisner-Lynch L, Marxer M, and Lynch SE. Guided bone regeneration: integration of a resorbable membrane and a bone graft material. Pract Periodont Aesthetic Dent 1997; 9: 185–194.

    CAS  Google Scholar 

  122. Block MS, Kent JN, and Kay JF. Evaluation of hydroxyapatite-coated titanium dental implants in dogs. J Oral Maxillofac Surg 1987; 45: 601.

    Article  CAS  Google Scholar 

  123. Cook SD, Baffes GC, and Thomas KA. Comparison of models for evaluating interface characteristics of HA-coated implants. J Dent Res 1991; 70: 530.

    Google Scholar 

  124. Cook SD, Baffes GC, and Burgess A. In vivo study of the torsional strength of HA-coated and grit-blasted implants. J Oral Implantol 1992; 18: 354.

    CAS  Google Scholar 

  125. Thomas KA, Kay JF, Cook SD, and Jarcho M. Effect of surface macrotexture and hydroxylapatite coating in the mechanical strengths and histologic profiles of titanium implant materials. J Biomed Mater Res 1987; 21: 1395.

    Article  CAS  Google Scholar 

  126. Cook SD, Kay JF, Thomas KA, and Jarcho M. Interface mechanics and histology of titanium and hydroxyapatite-coated titanium for dental implant applications. Int J Oral Maxillofac Implants 1987; 2: 15–22.

    CAS  Google Scholar 

  127. Ogiso M, Tabata T, Ichijo T, and Borgese D. Bone calcification on the hydroxyapatite dental implant and the bone-hydroxyapatite interface. J Long Term Effect Med Implants 1992; 2: 137–148.

    Google Scholar 

  128. Linder L, Obrant K, and Boivin G. Osseointegration of metallic implants II. Transmission electron microscopy in the rabbit. Acta Orthop Scand 1989; 60: 135–139.

    Article  CAS  Google Scholar 

  129. Carlsson L, Regner L, Johansson C, Gottlander M, and Herberts P. Bone response to hydroxyapatitecoated and commercially pure titanium implants in the human arthritic knee. J Orthop Res 1994; 12: 274–285.

    Article  CAS  Google Scholar 

  130. Gross KA, Berndt CC, Goldschlag DD, and Iacono VJ. In vitro changes of hydroxyapatite coatings. Int J Oral Maxillofac Implants 1997; 12: 589–597.

    CAS  Google Scholar 

  131. Wheeler SL. Eight-year clinical retrospective study of titanium plasma-sprayed and hydroxyapatite-coated cylinder implants. Int J Oral Maxillofac Implants 1996; 11: 340–350.

    CAS  Google Scholar 

  132. Yukna CN, Yukna RA. Multi-center evaluation of bioresorbable collagen membrane for guided tissue regeneration in human class II furcations. J Periodontol 1996; 67: 650–657.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ley, J.P., Cranin, A.N., Katzap, M. (2000). Biomaterials Used in Implant Dentistry. In: Wise, D.L., Trantolo, D.J., Lewandrowski, KU., Gresser, J.D., Cattaneo, M.V., Yaszemski, M.J. (eds) Biomaterials Engineering and Devices: Human Applications . Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-197-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-197-8_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-227-8

  • Online ISBN: 978-1-59259-197-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics