Skip to main content

Molecular Mechanism of Biomaterial-Mediated Phagocyte Responses

  • Chapter
Biomaterials Engineering and Devices: Human Applications
  • 320 Accesses

Abstract

In both blood-contact and tissue-contact situations, biomaterial surfaces are covered with substantial numbers of adherent phagocytes shortly after implantation. These adherent phagocytes are actively involved in the pathogenesis of a variety of biomaterial-associated adverse reactions, including inflammation surrounding many types of implants (1–7); implant degradation and stress cracking (8–12); tissue fibrosis surrounding mammary prostheses, joint implants, and many other types of implants (13–19); and device-centered infection (20–22). Such adverse responses to bio-materials may lead to implant failures and, sometimes, fatality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kottke-Marchant K, Anderson JM, and Rabinovitch A. The platelet reactivity of vascular graft prostheses. Biomaterials 1986; 7: 441–448.

    Article  CAS  Google Scholar 

  2. Kottke-Marchant K, Anderson JM, Umemura Y, and Marchant RE. Effect of albumin coating on the in vitro blood compatibility of Dacron arterial prostheses. Biomaterials 1989; 10: 147–155.

    Article  CAS  Google Scholar 

  3. Marchant RE, Hiltner A, Hamlin C, Rabinovitch A, Slobodkin R, and Anderson JM. In vivo bio-compatibility studies. I. The cage implant system and a biodegradable hydrogel. J Biomed Mater Res 1983; 17: 301–325.

    Article  Google Scholar 

  4. Marchant RE, Phua K, Hiltner A, and Anderson JM. In vivo biocompatibility studies: II. Biomer: preliminary cell adhesion and surface characterization studies. J Biomed Mater Res 1984; 18: 309–315.

    Article  CAS  Google Scholar 

  5. Marchant RE, Miller KM, and Anderson JM. In vivo biocompatibility studies. V. In vivo leukocyte interactions with Biomer. J Biomed Mater Res 1984; 18: 1169–1190.

    Article  CAS  Google Scholar 

  6. Gordon M and Bullough PG. Synovial and osseous inflammation in failed silicon-rubber prostheses. J Bone Joint Surg 1982; 64A: 574–580.

    CAS  Google Scholar 

  7. Kossovsky N, Millet D, Juma S, Little N, Briggs PC, Razz S, and Berg E. In vivo characterization of the inflammatory properties of poly(tetrafluoroethylene) particulate. J Biomed Mater Res 1991; 25: 1287–1301.

    Article  CAS  Google Scholar 

  8. Sutherland K, Mahoney JR II, Coury A, and Eaton JW. Degradation of biomaterials by phagocyte-derived oxidants. J Clin Invest 1993; 92: 2360–2367.

    Article  CAS  Google Scholar 

  9. Zhao Q, Agger MP, Fitzpatrick M, Anderson JM, Hiltner A, Stokes K, and Urbanski P. Cellular interactions with biomaterials: In vivo cracking of prestressed pellethane 2363–80A. J Biomed Mater Res 1990; 24: 621–637.

    Article  CAS  Google Scholar 

  10. Zhao Q, Topham NS, Anderson JM, Hiltner A, Lodoen G, Payet CR. Foreign-body giant cells and polyurethane biostability: In vivo correlation of cell adhesion and surface cracking. J Biomed Mater Res 1991; 25: 177–183.

    Article  CAS  Google Scholar 

  11. Chan SC, Birdsell DC, and Gradeen CY. Detection of toluenediamines in the urine of a patient with polyurethane-covered breast implants. Clin Chem 1991; 37: 756–758.

    CAS  Google Scholar 

  12. Picha GJ, Goldstein JA, and Stohr E. Natural-Y meme polyurethane versus smooth silicon: analysis of the soft tissue interaction from 3 days to 1 year in the rat animal model. Plastic Reconstr Surg 1990; 85: 903–916.

    Article  CAS  Google Scholar 

  13. Stark GB, Gobel M, and Jaeger K. Intraluminal cyclosporine A reduces capsular thickness around silicon implants in rats. Ann Plast Surg 1990; 24: 156–161.

    Article  CAS  Google Scholar 

  14. Behling CA, and Spector M. Quantitative characterization of cells at the interface of long-term implants of selected polymers. J Biomed Mater Res 1986; 20: 653–666.

    Article  CAS  Google Scholar 

  15. Christenson L, Aebischer P, MacMillan P, and Galletti PM. Tissue reaction to intraperitoneal polymer implants: Species difference and effects of corticoids and doxorubicin. J Biomed Mater Res 1989; 23: 705–718.

    Article  CAS  Google Scholar 

  16. Nelson GD. Complications from the treatment of fibrous capsular contracture of the breast. Plast Reconstr Surg 1981; 68: 969–970.

    Article  CAS  Google Scholar 

  17. Smahel J. Foreign material in the capsules around breast prostheses and the cellular reaction to it. Br J Plastic Surg 1979; 32: 35–42.

    Article  CAS  Google Scholar 

  18. Vistnes LM, Ksander GA, and Kosek J. Study of encapsulation of silicon rubber implants in animals. A foreign reaction. Plastic Reconstr Surg 1978; 62: 580–588.

    Article  CAS  Google Scholar 

  19. Domanskis EJ, and Owsley JQ. Histological of the etiology of capsule contracture following augmentation mammaplasty. Plastic Reconstr Surg 1976; 58: 689–693.

    Article  CAS  Google Scholar 

  20. Dobke MK, Svahn JK, Vastine VL, Landon BN, Stein PC, and Parsons CL. Characterization of microbial presence at the surface of silicon mammary implants. Ann Plast Surg 1995; 34: 563571.

    Google Scholar 

  21. Gristina AG, Dobbins J, Giammara B, Lewis JC, and De Vries WC. Biomaterial-centered sepsis and the total artificial heart: microbial adhesion vs. tissue integration. JAMA 1988; 259: 870–874.

    Article  CAS  Google Scholar 

  22. Dougherty SH. Pathobiology of infection in prosthetic devices. Rev Infect Dis 1988; 10: 1102 1117.

    Google Scholar 

  23. Lindsay R. Blood surface interactions. Trans Am Soc Art Int Orgs 1980; 26: 603–610.

    CAS  Google Scholar 

  24. Leininger RI, Hudson TB, and Jakobsen RJ. Spectroscopic approaches to the investigation of interactions between artificial surfaces and proteins. Ann NY Acad Sci 1987; 516: 173–183.

    Article  CAS  Google Scholar 

  25. Kuwahara T, Markert M, and Wauters JP. Protein adsorption on dialyzer membranes influences their biocompatibility properties. Contrib Nephrol (Basal) 1989; 74: 52–57.

    CAS  Google Scholar 

  26. Sevastianov VI. Role of protein adsorption in blood compatibility of polymers. CRC Crit Rev Biocompat 1988; 4: 109–154.

    CAS  Google Scholar 

  27. Bohnert JL, and Horbett TA. Changes in adsorbed fibrinogen and albumin interactions with polymers indicated by decreases in detergent elutability. J Colloid Interface Sci 1986; 111: 363–377.

    Article  CAS  Google Scholar 

  28. Horbett TA, Cheng CM, Ratner BD, Hoffman AS, and Hanson SR. The kinetics of baboon fibrinogen adsorption to polymers: in vitro and in vivo studies. J Biomed Mater Res 1986; 20: 739–772.

    Article  CAS  Google Scholar 

  29. Shinoda BA and Mason RG. Reaction of blood with artificial surfaces of hemodialyzers. Studies of human blood with platelet defects or coagulation factor deficiencies. Biomat Med Dev Art Org 1978; 6: 305–329.

    CAS  Google Scholar 

  30. Anderson JM, Bonfield TL, and Ziats NP. Protein adsorption and cellular adhesion and activation on bio-medical polymers. Int J Artif Org 1990; 13: 375–382.

    CAS  Google Scholar 

  31. Pankowsky DA, Ziats NP, Topham NS, Ratnoff OD, and Anderson JM. Morphologic characteristics of adsorbed human plasma proteins on vascular grafts and biomaterials. J Vase Surg 1990; 11: 599–606.

    CAS  Google Scholar 

  32. Andrade J and Hlady V. Plasma protein adsorption: the big twelve. Ann NY Acad Sci 1987; 516: 158–172.

    Article  CAS  Google Scholar 

  33. Tang L and Eaton JW. Fibrin(ogen) mediates acute inflammatory responses to biomaterials. J Exp Med 1993; 178: 2147–2156.

    Article  CAS  Google Scholar 

  34. Tang L, Lucas AH, and Eaton JW. Inflammatory responses to Dacron: Role of surface adsorbed IgG. J Lab Clin Med 1993; 122: 292–300.

    CAS  Google Scholar 

  35. Lenk TJ, Horbett TA, Ratner BD, and Chittur KK. Infrared spectroscopic studies of time-dependent changes in fibrinogen adsorbed to polyurethanes. Langmuir 1991; 7: 1755–1764.

    Article  CAS  Google Scholar 

  36. Lu DR and Park K. Effect of surface hydrophobicity on the conformational changes of adsorbed fibrinogen. J Colloid Interfacial Sci 1991; 144: 271–281.

    Article  CAS  Google Scholar 

  37. Slack SM and Horbett TA. Changes in the strength of fibrinogen attachment to solid surfaces: An explanation of the influence of surface chemistry on the Vroman effect. J Colloid Interface Sci 1989; 133: 148–165.

    Article  CAS  Google Scholar 

  38. Vroman L, Adams AL, Klings M, Fischer GC, Munoz PC, and Solensky RP. Reactions of formed elements of blood with plasma proteins at interfaces. Ann NY Acad Sci 1977; 283: 65–75.

    Article  CAS  Google Scholar 

  39. Chinn JA, Posso SE, Horbett, TA, and Ratner BD. Postadsorption transitions in fibrinogen adsorbed to polyurethanes: changes in antibody binding and sodium dodecyl sulfate elutibility. J Biomed Mater Res 1992; 26: 757–778.

    Article  CAS  Google Scholar 

  40. Rapoza RJ and Horbett TA. Changes in the SDS elutability of fibrinogen adsorbed from plasma to polymers. J Biomater Sci Polym Ed 1989; 1: 99110.

    Article  Google Scholar 

  41. Schaaf P and Dejardin P. Structural changes within an adsorbed fibrinogen layer during the adsorption process: A study by scanning angle relectometry. Colloids Surfaces 1988; 31: 89100.

    Article  Google Scholar 

  42. Wigren R, Elwing H, Erlandsson R, Welin S, and Lundstrom I. Structure of adsorbed fibrinogen obtained by scanning force microscopy. FEBS Letts 1991; 280: 225–258.

    Article  CAS  Google Scholar 

  43. MacRichie F. The adsorption of proteins at the solid/liquid interface. J Colloid Interface Sci 1972; 38: 484–490.

    Article  Google Scholar 

  44. Lee R. Adsorption of proteins onto hydrophobic polymer surfaces: Adsorption isotherms and kinetics. J Biomed Mater Res 1974; 8: 251–259.

    Article  CAS  Google Scholar 

  45. Andrade JD, Hiady VL, and Van Wagenen RA. Effects of plasma protein adsorption on protein conformation and activity. Pure Appl Chem 1984; 56: 1345–1350.

    Article  CAS  Google Scholar 

  46. Absolom DR, Zingg W, Policova Z, and Neumann AW. Determination of the surface tension of protein coated materials by means of advancing solidification front technique. Trans Am Soc Intern Organs 1983; 29: 146–151.

    CAS  Google Scholar 

  47. Morrissey BW and Han CC. The conformation of g-globulin adsorbed on polystyrene lattices determined by quasielastic light scattering. J Colloid Interface Sci 1978; 65: 423–431.

    Article  CAS  Google Scholar 

  48. Morrissey BW and Fenstermaker CA. Conformation of adsorbed g-globulin and b-lactoglobulin. Effect of surface concentration. Trans Am Soc Artif Int Organs 1976; 22: 278–284.

    CAS  Google Scholar 

  49. Tang L, Wu Y, and Timmons RB. Biomaterial surface properties affecting both protein adsorption and host tissue responses. J Biomed Mater Res 1998; 42: 156–163.

    Article  CAS  Google Scholar 

  50. Ugarova TP, Budzynski AZ, Shattil SJ, Ruggeri ZM, Ginsberg MH, and Plow EH. Conformational changes in fibrinogen elicited by its interaction with platelet membrane glycoprotein GPIIbIIIa. J Biol Chem 1993; 268: 21, 080–21, 087.

    Google Scholar 

  51. Tang L. Mechanism of fibrinogen domians• biomaterial interactions. J Biomater Sci Polymer Ed 1998; 9: 1257–1266.

    Article  CAS  Google Scholar 

  52. Ugarova T, Solovjov D, Zhang L, Medved L, Tang L, and Plow E. Proteolysis of fibrinogen regulates its recognition by integrin aMb2. Thromb Haemost 1997; (Suppl) OC-775.

    Google Scholar 

  53. Hu WJ, Ugarova TP, Plow EF, Eaton JW, Tang L. Biomaterial-mediated inflammatory responses: Nature responses to foreign bodies. Proc Natl Acad Sci USA 1999; (in submission).

    Google Scholar 

  54. Brash JL, Chan BMC, Szota P, and Thibodeau JA. Degradation of adsorbed fibrinogen by surface-generated plasmin. J Biomed Mater Res 1985; 19: 1017–1029.

    Article  CAS  Google Scholar 

  55. Brash JL and Thibodeau JA. Identification of proteins adsorbed from human plasma to glass bead columns: Plasmin-induced degradation of adsorbed fibrinogen. J Biomed Mater Res 1986; 20: 1263–1275.

    Article  CAS  Google Scholar 

  56. Weathersby PK, Horbett TA, and Hoffman AS. Fibrinogen adsorption to surfaces of varying hydrophilicity. J Bioeng 1977; 1: 395–409.

    Google Scholar 

  57. Cooper JA, Lo SK, and Malik AB. Fibrin is a determinant of neutrophil sequestration in the lung. Circ Res 1988; 63: 735–741.

    Article  CAS  Google Scholar 

  58. Behrens BL, Clark RA, Presley DM, Graves JP, Feldsien DC, and Larsen GL. Comparison of the evolving histopathology of early and late cutaneous and asthmatic responses in rabbits after a single antigen challenge. Lab Invest 1987; 56: 101–113.

    CAS  Google Scholar 

  59. Rowland TN, Donovan M, Gillies C, O’Rourke J, and Kreutzer DL. Fibrin mediator of in vivo and in vitro injury and inflammation. Curr Eye Res 1985; 4: 537–553.

    Article  CAS  Google Scholar 

  60. Colvin RB, Johnson RA, Mihm MC Jr, and Dvorak HF. Role of the clotting system in cell-mediated hypersensitivity. 1. Fibrin deposition in delayed skin reaction in man. J Exp Med 1973; 138: 686–698.

    Article  CAS  Google Scholar 

  61. Horbett TA. Adsorption of proteins from plasma to a series of hydrophilic-hydrophobic copolymers. II. Compositional analysis with the prelabeled protein technique. J Biomed Mater Res 1981; 15: 673–695.

    Article  CAS  Google Scholar 

  62. Janatova J, Cheung AK, and Parker CJ. Biomedical polymers differ in their capacity to activate complement. Complement Infiamm 1991; 8: 61–69.

    CAS  Google Scholar 

  63. Cappelli G, Lucchi L, Bonucchi D, Cenci AM, Montagnani G, Palma MD, and Lusvarghi E. Polymorphonuclear oxygen free radical production and complement activation induced by dialysis membranes as assayed in an experimental model. Blood Purif 1989; 7: 293–300.

    Article  CAS  Google Scholar 

  64. Kottke—Marchant K, Anderson JM, Miller KM, Marchant RE, and Lazarus H. Vascular graft-associated complement activation and leukocyte adhesion in an artificial circulation. J Biomed Mater Res 1987; 21: 379–397.

    Article  Google Scholar 

  65. Shepard AD, Gelfand JA, Callow AD, and O’Donnell TF Jr. Complement activation by synthetic vascular prostheses. J Vasc Surg 1984; 1: 829–838.

    CAS  Google Scholar 

  66. Herzlinger GA and Cumming RD. Role of complement activation in cell adhesion to polymer blood contact surface. Trans Am Soc Artif Intern Organs 1980; 26: 165–171.

    CAS  Google Scholar 

  67. Giamussi G, Segoloni G, Rotunno M, and Vercellone A. Mechanism involved in acute granulocytopenia in hemodialysis. Cell-membrane direct interaction. Int J Art Organs 1978; i:123–127.

    Google Scholar 

  68. Nusbacher J, Rosefeld SI, MacPherson JL, Thiem PA, and Leddyu JP. Nylon fiber leukapheresis: associated complement component changes and granulocytopenia. Blood 1978; 51: 359–365.

    CAS  Google Scholar 

  69. Craddock PR, Fehr J, Dalmasso AP, Brigham KL, and Jacob HS. Hemodialysis leukopenia. Pulmonary vascular leukostasis resulting from complement activation by dialyzer cellophane membrane. J Clin Invest 1977; 59: 879–888.

    Article  CAS  Google Scholar 

  70. McRitchie DI, Girotti MJ, Glynn MFX, Goldberg JM, and Rotstein OD. Effect of systemic fibrinogen depletion on intra-abdominal abscess formation. J Lab Clin Med 1991; 118: 48–55.

    CAS  Google Scholar 

  71. Cole EH, Glynn FX, Laskin CA, Sweet J, Mason NM, and Levy GA. Ancrod improves survival in murine systemic lupus erythrematosus. Kidney Intl 1990; 37: 29–35.

    Article  CAS  Google Scholar 

  72. Pollak VE, Glueck HI, and Weiss MA, LebronBerges A, and Miller MA. Defibrination with ancrod in glomerulonephritis: effects on clinical and histologic findings and on blood coagulation. Am J Nephr 1982; 2: 195–207.

    Google Scholar 

  73. Bell WR, Shapiro SS, Martinez J, and Nossel HL. The effects of Ancrod, the coagulation enzyme from the venom of Malayan pit viper (A. rhodostoma) on prothrombin and fibrinogen metabolism and fibrinopeptide A release in man. J Lab Clin Med 1978; 91: 592–604.

    CAS  Google Scholar 

  74. Silberman S, Bernik MB, Potter EV, and Kwuan HC. Effects of ancrod (Arvin) in mice: studies of plasma fibrinogen and fibrinolytic activity. Br J Haematol 1973; 24: 101–113.

    Article  CAS  Google Scholar 

  75. Reid HA, Chen KE, and Thean PC. Prolonged coagulation defect (defibrination syndrome) in malayan viper bite. Lancet 1963; I: 621–6.

    Google Scholar 

  76. Barcelli U, Rademacher PR, Ooi BS, and Pollak VE. Defibrination with Ancrod: effect of reticuloendothelial clearance of circulating immune complexes. Nephron 1982; 30: 314–317.

    Article  CAS  Google Scholar 

  77. Esnouf MP and Tunmnah GW. The isolation and properties of the thrombin-like activity from Ancistrodon rhodostoma venom. Br J Haematol 1967; 13: 581–590.

    Article  CAS  Google Scholar 

  78. Berliner S, Fuchs J, Seligsohn U, Kariv N, Hazaz B, Rotenberg Z, Possible role of fibrinogen in the aggregation of white blood cells. Thomb Haemost 1987; 58: 749–752.

    CAS  Google Scholar 

  79. Phair JP, Bassaris HP, and Morlock BA. Fibrinogen enhances complement-mediated augmentation of retention of polymorphonuclear leukocytes by nylon columns. Infect Immunol 1981; 33: 503–506.

    CAS  Google Scholar 

  80. Sherman LA and Lee J. Specific binding of soluble fibrin to macrophages. J Exp Med 1977; 145: 76–85.

    Article  CAS  Google Scholar 

  81. Altieri DC, Plescia J, and Plow EF. The structural motif glycine 190-valine 202 of the fibrinogen gamma chain interacts with CD11B/CD18 integrin (alphaM beta2, Mac-1) and promotes leukocyte adhesion. J Biol Chem 1993; 268: 1847 1853.

    Google Scholar 

  82. Shainoff JR, Stearns DJ, DiBello PM, and Hishikawa-Itoh Y. Characterization of a mode of specific binding of fibrin monomer through its amino-terminal domain by macrophages and macrophage cell lines. Thromb Haemost 1990; 63: 193–203.

    CAS  Google Scholar 

  83. Gonda SR and Shainoff JR. Adsorptive endocytosis of fibrin monomer by macrophages: evidence of a receptor for the amino terminus of the fibrin a chain. Proc Natl Acad Sci USA 1982; 79: 45654569.

    Google Scholar 

  84. Tang L, Ugarova TP, Plow EF, and Eaton JW. Molecular determinants of acute inflammatory responses to biomaterials. J Clin Invest 1996; 97: 1329–1334.

    Article  CAS  Google Scholar 

  85. Humphries M, Komoriya A, Akiyama K, Olden K, and Yamada K. Identification of 2 distinct 95 regions of the type III CS connecting segment of human plasma fibronectin that promotes cell type-specific adhesion. J Biol Chem 1987; 262: 6886–6892. 96

    Google Scholar 

  86. McCarthy JB, Skubitz A, Zhao Q, Yi X, Mickel-son DJ, and Furcht LT. RGD-indepedent cell adhesion to the carboxyl-terminal heparin binding fragment of fibronectin involves heparin- 97 dependent and -independent activities. J Cell Biol 1990; 110: 777–787.

    Article  CAS  Google Scholar 

  87. Haugen PM, McCarthy JB, Skubitz APN, Furcht LJ, and Letourneau PC. Recognition of the alpha 98 chain carboxyl terminal heparin binding region of fibronectin involves multiple sites: two contiguous sequences act independently to promote neural cell adhesion. J Cell Biol 1990; 111: 2733— 99 2745.

    Google Scholar 

  88. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11–25.

    Article  CAS  Google Scholar 

  89. Ruoslahti E. Integrins. J Clin Invest 1991; 87: 100 1–5.

    Article  CAS  Google Scholar 

  90. Altieri DC, Bader R, Mannucci PM, and Edgington TS. Oligospecificity of the cellular adhesion receptor MAC-1 encompasses an induction of recognition specificity for fibrino- 101 gen. J Cell Biol 1988; 107: 1893–1900.

    Article  CAS  Google Scholar 

  91. Wright SD, Weitz JI, Huang AJ, Levin SM, Silverstein SC, and Loike JD. Complement receptor type three (CD11b/CD18) of human polymorphonuclear leukocytes recognizes fibrinogen. Proc 102 Natl Acad Sci USA 1988; 85: 7734–7738.

    Article  CAS  Google Scholar 

  92. Trezzini C, Jungi TW, Kuhnert P, and Peterhans E. Fibrinogen association with human monocytes: evidence for constitutive expression of 103 fibrinogen receptors and for involvement of Mac-1 (CD18, CR3) in the binding. Biochem Biophys Res Commun 1988; 156: 477–484.

    Article  CAS  Google Scholar 

  93. Gustafson EJ, Lekasiewicz H, Wachtfogel Y, Norton M, Schmaier A, Niewiaroski S, and Cole- 104 man R. High molecular weight kininogen inhibits fibrinogen binding to cytoadhesions of neutrophils and platelets. J Cell Biol 1989; 109: 377–387. 105

    Google Scholar 

  94. Muchowski PJ, Zhang L, Chang ER, Soule HR, Plow EF, and Moyle M. Functional interaction with the integrin antagonists neutrophil inhibitory factor and the I domain of the CD11b/CD18. J Biol Chem 1994; 269: 26, 419–26, 423.

    Google Scholar 

  95. Moyle M, Laroche Y, Meutter J, Stanssens P, 106 Begowitz C, Fried V, Ely J, Soule HR, and Vlasuk GP. Hookworm glycoprotein that inhibits neutro-phil function is a ligand of the integrin CDllb/ CD18. J Biol Chem 1994; 269: 10, 008–10, 015.

    Google Scholar 

  96. Tang L, Welty S, Smith CW, and Eaton JW. Participation of adhesion molecules in inflammatory responses to biomaterials. Trans. Soc. Biomater 1997; 23: 261.

    Google Scholar 

  97. Lu H, Smith CW, Perrard J, Bullard D, Tang L, Shappell SB, et al. LFA is sufficient in mediating neutrophil emigration in Mac-1 deficient mice. J Clin Invest 1997; 99: 1340–1350.

    Article  CAS  Google Scholar 

  98. Cardona MA, Simmons RL, and Kaplan SS. TNF and IL-1 generation by human monocytes in response to biomaterials. J Biomed Mater Res 1992; 26: 851–859.

    Article  CAS  Google Scholar 

  99. Miller KM and Anderson JM. Human monocyte/ macrophage activation and interleukin 1 generation by biomedical polymers. J Biomed Mater Res 1988; 22: 713–731.

    Article  CAS  Google Scholar 

  100. Miller KM and Anderson JM. In vitro stimulation of fibroblast activity by factors generated from human monocytes activated by biomedical polymers. J Biomed Mater Res 1989; 23: 911–930.

    CAS  Google Scholar 

  101. Bonfield TL, Colton C, Marchant RE, and Anderson JM. Cytokine and growth factor production by monocyte-macrophages on protein preadsorbed polymers. J Biomed Mater Res 1992; 26: 837–850.

    Article  CAS  Google Scholar 

  102. Fahey TJ, Sherry B, Tracey KJ, Deventer S, Jones WG, Minei JP, et al. Cytokine production in a model of wound healing: the appearance of MIP1, MIP-2, cachectin/TNF and IL-1. Cytokine 1990; 2: 92–99.

    Article  CAS  Google Scholar 

  103. Perez RL and Roman J. Fibrin enhances the expression of IL-113 by human peripheral blood mononuclear cells: implications in pulmonary inflammation. J Immunol 1995; 154: 1879–1887.

    CAS  Google Scholar 

  104. Fan ST and Edgington TS. Integrin regulation of leukocyte inflammatory functions. CD!1b/CD 18 enhancement of the tumor necrosis factor-a responses of monocytes. J Immunol 1993; 150: 2972–1980.

    CAS  Google Scholar 

  105. Fan ST and Edgington TS. Coupling of the adhesive receptor CD11b/CD18 to functional enhancement of effector macrophage tissue factor response. J Clin Invest 1991; 87: 50–57.

    Article  CAS  Google Scholar 

  106. Hanlon WA, Stolk J, Davies P, Humes JL, Mum-ford R, and Bonney RJ. TNF-alpha facilitate human polymorphonuclear leukocyte adherence to fibrinogen matrices with mobilization of specific and tertiary but not azurophilic granule markers. J Leuk Biol 1991; 50: 43–48.

    CAS  Google Scholar 

  107. Desai NP and Hubbell JA. Tissue response to intraperitoneal implants of polyethylene oxidemodified polyetheylene terephthalate. Biomaterials 1992; 13: 505–510.

    Article  CAS  Google Scholar 

  108. Freyria AM, Chignier E, Guidollet J, and Louisot P. Peritoneal macrophage response: an in vivo model for the study of synthetic materials. Biomaterials 1991; 12: 111–118.

    Article  CAS  Google Scholar 

  109. Cadic-Amadeuf CM, Vitiello S, Baquey CV, and Dupuy BJ. Inflammatory reaction induced by agarose implants reduced by adding adrenal cells to the polymer. ASAIO J 1992; 38: M386–389.

    Article  CAS  Google Scholar 

  110. Coleman SE, Hood CI, Schoen FJ, and Rheinhardt JM. Evaluation of anti-inflammatory agents using a model of granuloma formation by divinyl copolymer beads in the mouse lung. J Biomed Mater Res 1986; 20: 301–314.

    Article  CAS  Google Scholar 

  111. Brandstedt S and Olson PS. Effect of defibrinogenation on wound strength and collage formation. Acta Chir Scand 1980; 146: 483–486.

    CAS  Google Scholar 

  112. Brandstedt S and Olson PS. Lack of influence on collagen accumulation in granulation tissue with `delayed’ defibrinogenation. Acta Chir Scand 1981; 147: 89–91.

    CAS  Google Scholar 

  113. Sheu MS, Hudson DM, and Loh IH. Biomaterial surface modification using plasma gas discharge processes. vol 1 In Encyclopedic Handbook of Biomaterials and Bioengineering (Wise DL, Trantolo DJ, Altobelli DE, Yaszemski MJ, Gresser JD, and Schwartz ER), Part A: Materials. M Dekker, New York, pp. 1995; 865–894.

    Google Scholar 

  114. Dekker A, Reitsma K, Beugeling T, Bantjes A, Feijen J, van Aken WG. Adhesion of endothelial cells and adsorption of serum proteins on gas plasma-treated polytetrafluoroethylene. Biomaterials 1991; 12: 130–138.

    Article  CAS  Google Scholar 

  115. Lee JH, Park JW, and Lee HB. Cell adhesion and growth on polymer surfaces with hydroxyl groups prepared by water vapor plasma treatment. Biomaterials 1991; 12: 443–448.

    Article  CAS  Google Scholar 

  116. Lee JH, Jung HW, Kang IK, and Lee HB. Cell behavior on polymer surfaces with different functional groups. Biomaterials 1994; 15: 705–711.

    Article  CAS  Google Scholar 

  117. Panchalingam V, Poon B, Huo H-H, Savage CR, Timmons RB, and Eberhart RC. Molecular surface tailoring of biomaterials via pulsed RF plasma discharges. J Biomater Sci Polymer Education 1993; 5: 131–145.

    Article  CAS  Google Scholar 

  118. Sano S, Kato K, and Ikada Y. Introduction of functional groups onto the surfaces of polyethylene for protein immobilization. Biomaterials 1993; 14: 817–822.

    Article  CAS  Google Scholar 

  119. Sheu MS, Hoffman AS, and Feijen J. Glow discharge treatment to immobilize poly(ethylene oxide)/poly(propylene oxide) surfactants for wettable and non-fouling biomaterials. J Adhesion Sci Technol 1992; 6: 995–1009.

    Article  CAS  Google Scholar 

  120. Sheu MS, Hoffman AS, Terlingen JGA, and Feijen J. New gas discharge process for preparation of non-fouling surfaces on biomaterials. Clin Mater 1993; 13: 41–45.

    Article  CAS  Google Scholar 

  121. Ko TM, Lin JC, and Cooper SL. Surface characterization and platelet adhesion studies of plasma sulphonated polyethylene. Biomaterials 1993; 14: 657–664.

    Article  CAS  Google Scholar 

  122. Ko TM and Cooper SL. Surface properties and platelet adhesion characteristics of acrylic acid and allylamine plasma-treated polyethylene. J Appl Polym Sci 1993; 47: 1601–1619.

    Google Scholar 

  123. Ekdahl KN, Nilsson B, Golander CG, Elwing H, Lassen B, and Nilsson UR. Complement activation on radio frequency plasma modified polystyrene surfaces. J Colloid Interface Sci 1993; 158: 121–128.

    Article  Google Scholar 

  124. Panchalingam V, Chen X, Huo HH, Savage CR, Timmons RB, and Eberhart RC. Pulsed plasma discharge polymer coating. ASAIO J 1993; 39: M305–309.

    Article  CAS  Google Scholar 

  125. Rinsch CL, Chen X, Panchalingam V, Eberhart RC, Wang JH, and Timmons RB. Pulsed radio frequency plasma polymerization of ally’ alcohol: Controlled deposition of surface hydroxyl groups. Langmuir 1996; 12: 2995–3002.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tang, L. (2000). Molecular Mechanism of Biomaterial-Mediated Phagocyte Responses. In: Wise, D.L., Gresser, J.D., Trantolo, D.J., Cattaneo, M.V., Lewandrowski, KU., Yaszemski, M.J. (eds) Biomaterials Engineering and Devices: Human Applications . Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-196-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-196-1_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-226-1

  • Online ISBN: 978-1-59259-196-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics