Quantitation of In Situ Hybridization Analysis

  • Lars-Inge Larsson


In situ hybridization is a powerful method for detecting specific DNA and RNA sequences in cells and tissue sections. Major areas of applications include cytogenetics, microbiology, and studies of gene expression and regulation. The methods are based on the fact that the purine and pyrimidine bases that make up DNA (adenine, A; guanine, G; thymine, T; and cytosine, C) or RNA (A, G, C, and uracil, U) can form specific base pairs (A-T, A-U, C-G) that link two complementary strands of DNA or RNA to each other. Thus, provided the sequence of interest (target) is available or known, it is possible to synthesize and label the complementary sequence and use it as a probe for in situ hybridization detection of the target. Since the reaction will contain only four (DNA-DNA, RNA-RNA) or, at most, five (DNA-RNA) bases as reactants, it is possible to define conditions mathematically under which only totally complementary sequences will hybridize. The strength of the hybridization is temperature dependent, and the melting point T m defines the temperature at which half the hybrids formed will dissociate or “melt.” The T m depends on the degree of complementarity (lack of mismatches), the number of bases (length of the probe), the frequency of GC base pairs (which bind more strongly than A-T or A-U), and the ionic strength. Addition of formamide is often used to lower the T m .


Telomere Length Peptide Nucleic Acid Image Analysis Program Hybridizable Copy Shade Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fitzpatrick-McElligott, S., Lewis, M. E., Tyler, M., Baldino, F. Jr., and Davis, L. G. (1988) In situ hybridization with radiolabeled synthetic oligodeoxynucleotide probes. Dupont Bio-technol. Update 3, 2–3.Google Scholar
  2. 2.
    Yoshii, A., Koji, T., Ohsawa, N., and Nakane, P. K. (1995) In situ localization of ribosomal RNAs is a reliable reference for hybridizable RNA in tissue sections. J. Histochem. Cyto-chem. 43, 321–327.CrossRefGoogle Scholar
  3. 3.
    Guiot, Y. and Rahier, J. (1997) Validation of non-radioactive in situ hybridization as a quantitative approach of messenger ribonucleic acid variations. A comparison with Northern blot. Diagn. Mol. Pathol. 6, 261–266.PubMedCrossRefGoogle Scholar
  4. 4.
    Guiot, Y. and Rahier, J. (1995) The effects of varying key steps in the non-radioactive hybridization protocol: a quantitative study. Histochem. J. 27, 60–68.PubMedCrossRefGoogle Scholar
  5. 5.
    Hougaard, D. M., Hansen, H., and Larsson, L-I. (1997) Non-radioactive in situ hybridization for mRNA with emphasis on the use of oligodeoxynucleotide probes. Histochem. Cell Biol. 108, 335–344.PubMedCrossRefGoogle Scholar
  6. 6.
    Larsson, L-L, Christensen, T., and Dalboge, H. (1988) Detection of proopiomelanocortin mRNA by in situ hybridization using a biotinylated ligodeoxynucleotide probe and avidin-alkaline phosphatase histochemistry. Histochemistry 89, 109–116.PubMedCrossRefGoogle Scholar
  7. 7.
    Larsson, L-I. and Hougaard, D. M. (1990) Optimization of non-radioactive in situ hybridization: image analysis of varying pretreatment, hybridization and probe labelling conditions. Histochemistry 93, 347–354.PubMedCrossRefGoogle Scholar
  8. 8.
    Lawrence, J. B. and Singer, R. H. (1985) Quantitative analysis of in situ hybridization methods for the detection of actin gene expression. Nucleic Acids Res. 13, 1777–1799.PubMedCrossRefGoogle Scholar
  9. 9.
    Rentrop, M., Knapp, B., Winter, H., and Schweizer, J. (1986) Aminoalkylsilane-treated glass slides as support for in situ hybridization of keratin cDNAs to frozen tissue sections under varying fixation and pretreatment conditions. Histochem. J. 18, 271–276.PubMedCrossRefGoogle Scholar
  10. 10.
    West, M. J., Ostergaard, K., Andreassen, O. A., and Finsen, B. (1996) Estimation of the number of somatostatin neurons in the striatum: an in situ hybridization study using the optical fractionator method. J. Comp. Neurol. 370, 11–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Larsson, L-I. and Hougaard, D. M. (1993) Non-radioactive in situ mRNA hybridization using synthetic oligonucleotides: principles, combination with immunocytochemistry and quantitation. Neurosci. Protocols 20, 1–18.Google Scholar
  12. 12.
    Larsson, L-L, Traasdahl, B., and Hougaard, D. M. (1991) Quantitative non-radioactive in situ hybridization. Model studies and studies on pituitary proopiomelanocortin cells after adrenalectomy. Histochemistry 95, 209–215.PubMedCrossRefGoogle Scholar
  13. 13.
    Collins, M. L. and Hunsaker, W. R. (1985) Improved hybridization assays employing tailed oligonucleotide probes: a direct comparison with 5’-end-labeled oligonucleotide probes and nick-translated plasmid probes. Anal. Biochem. 151, 211–224.PubMedCrossRefGoogle Scholar
  14. 14.
    Baskin, D. G. and Stahl, W. L. (1993) Fundamentals of quantitative autoradiography by computer densitometry for in situ hybridization with emphasis on 33P. J. Histochem. Cyto-chem. 41, 1767–1776.CrossRefGoogle Scholar
  15. 15.
    Larsson, L-L, Tingstedt, J-E., Madsen, O. D., Serup, P., and Hougaard, D. M. (1995) The LIM-homeodomain protein Isl-1 segregates with somatostatin but not with gastrin expression during differentiation of somatostatin/gastrin precursor cells. Endocrine 3, 519–524.PubMedCrossRefGoogle Scholar
  16. 16.
    Panula, P. and Wąsowicz, K. (1993) Action of antiulcer drugs. Science 262, 1454–1455.PubMedCrossRefGoogle Scholar
  17. 17.
    Larsson, L-I. and Hougaard, D. M. (1993) Sensitive detection of rat gastrin mRNA by in situ hybridization with chemically biotinylated oligodeoxynucleotides: validation, quantitation and double-staining studies. J. Histochem. Cytochem. 41, 157–163.PubMedCrossRefGoogle Scholar
  18. 18.
    Lewis, M. L., Sherman, T. G., and Watson, S. J. (1985) In situ hybridization histochemistry with synthetic oligonucleotides: strategies and methods. Peptides 6, 75–87.PubMedCrossRefGoogle Scholar
  19. 19.
    Stahl, W. L., Eakin, T. J., and Baskin, D. G. (1993) Selection of oligonucleotide probes for detection of mRNA isoforms. J. Histochem. Cytochem. 41, 1735–1740.PubMedCrossRefGoogle Scholar
  20. 20.
    Brink, P. E. and Grimm, P. C. (1994) Rapid nonradioactive in situ hybridization for interleukin-2 mRNA with riboprobes generated using the polymerase chain reaction. /. Immunol. Methods 167, 83–89.CrossRefGoogle Scholar
  21. 21.
    Sitzmann, J. H. and LeMotte, P. K. (1993) Rapid and efficient generation of PCR-derived riboprobe templates for in situ hybridization histochemistry. J. Histochem. Cytochem. 41, 773–776.PubMedCrossRefGoogle Scholar
  22. 22.
    Komminoth, P., Merk, F. B., Leav, I., Wolfe, H. J., and Roth, J. (1992) Comparison of 35S- and digoxigenin-labeled RNA and oligonucleotide probes for in situ hybridization. Histochemistry 98, 217–228.PubMedCrossRefGoogle Scholar
  23. 23.
    Schaeren-Wiemers, N. and Gerifn-Moser, A. (1993) A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100, 431–440.PubMedCrossRefGoogle Scholar
  24. 24.
    Hannon, K., Johnstone, E., Craft, L. S., et al. (1993) Synthesis of PCR-derived, single-stranded DNA probes suitable for in situ hybridization. Anal. Biochem. 212, 421–427.PubMedCrossRefGoogle Scholar
  25. 25.
    McCabe, J. T. and Bolender, R. P. (1993) Estimation of tissue mRNAs by in situ hybridization. J. Histochem. Cytochem. 41, 1777–1783.PubMedCrossRefGoogle Scholar
  26. 26.
    Femino, A. M., Fay, F. S., Fogarty, K., and Singer, R. H. (1998) Visualization of single RNA transcripts in situ. Science 280, 585–590.PubMedCrossRefGoogle Scholar
  27. 27.
    Adams, J. C. (1992) Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J. Histochem. Cytochem. 40, 1457–1463.PubMedCrossRefGoogle Scholar
  28. 28.
    Kerstens, H. M. J., Poddighe, P. J., and Hanselaar, G. J. M. (1995) A novel in situ hybridization signal amplification method based on deposition of biotinylated tyramide. /. Histochem. Cytochem. 43, 347–352.CrossRefGoogle Scholar
  29. 29.
    Raap, A. K., van de Corput, M. P. C, Vernenne, R. A. W., van Gijlswijk, R. P. M., Tanke, H. J., and Wiegant, J. (1995) Ultrasensitive FISH using peroxidase-mediated deposition of biotin- or fluorochrome tyramides. Hum. Mol. Genet. 4, 529–534.PubMedCrossRefGoogle Scholar
  30. 30.
    Van Giljswijk, R. P. M., Wiegant, J., Raap, A. K., and Tanke, H. J. (1996) Improved localization of fluorescent tyramides for fluorescence in situ hybridization using dextran sulphate and polyvinyl alcohol. J. Histochem. Cytochem. 44, 389–392.CrossRefGoogle Scholar
  31. 31.
    Long, A. A., Mueller, J., Andre-Schwartz, J., Barrett, K. J., Schwartz, R., & Wolfe, H. (1992) High-specificity in-situ hybridization. Diagn. Mol. Pathol. 1, 45–57.PubMedCrossRefGoogle Scholar
  32. 32.
    Lloyd, R. V. and Jin, L. (1995) In situ hybridization analysis of chromogranin A and B mRNAs in neuroendocrine tumors with digoxigenin-labeled oligonucleotide probe cocktails. Diagn. Mol. Pathol 4, 143–151.PubMedCrossRefGoogle Scholar
  33. 33.
    Trembleau, A. & Bloom, F. E. (1995) Enhanced sensitivity for light and electron microscopic in situ hybridization with multiple simultaneous non-radioactive oligodeoxynucleotide probes. J. Histochem. Cytochem. 43, 829–841.PubMedCrossRefGoogle Scholar
  34. 34.
    de Pauw, E. S., Verwoerd, N. P., Duinkerken, N., et al. (1998) Assessment of telomere length in hematopoietic interphase cells using in situ hybridization and digital fluorescence microscopy. Cytometry 32, 163–169.PubMedCrossRefGoogle Scholar
  35. 35.
    Hultdin, M., Gronlund, E., Norrback, K., Erikson-Lindstrom, E., Just, T., and Roos, G. (1998) Telomere analysis by fluorescence in situ hybridization and flow cytometry. Nucleic Acids Res. 26, 3651–3656.PubMedCrossRefGoogle Scholar
  36. 36.
    Poon, S. S., Martens, U. M, Ward, R. K., and Lansdorp, P. M. (1999) Telomere length measurements using digital fluorescence microscopy. Cytometry 36, 267–278.PubMedCrossRefGoogle Scholar
  37. 37.
    Rufer, N., Dragowska, W., Thornbury, G., Roosnek, E., and Landsdorp, P. M. (1998) Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat. Biotechnol. 16, 743–747.PubMedCrossRefGoogle Scholar
  38. 38.
    Larsson, L-I. (1997) Quantitative in situ hybridization. Endocr. Pathol. 8, 3–9.CrossRefGoogle Scholar
  39. 39.
    Leeuw, T. and Pette, D. (1994) Kinetic microphotometric evaluation of in situ hybridization for mRNA of slow myosin heavy chain in type I and C fibres of rabbit muscle. Histochemistry 102, 105–112.PubMedCrossRefGoogle Scholar
  40. 40.
    Cash, E. and Brahic, M. (1986) Quantitative in situ hybridization using initial velocity measurements. Anal. Biochem. 157, 236–240.PubMedCrossRefGoogle Scholar
  41. 41.
    Vizi, S. and Gulya, K. (2000) Calculation of maximal hybridization capacity (Hmax) for quantitative in situ hybridization. A case study for multiple calmodulin mRNAs. J. Histo-chem. Cytochem. 48, 893–904.CrossRefGoogle Scholar
  42. 42.
    Laniece, P., Charon, Y., Cardona, A., et al. (1998) A new high resolution radioimager for the quantitative analysis of radiolabeled molecules in tissue section. J. Neuro sei. Methods 86, 1–5.CrossRefGoogle Scholar
  43. 43.
    Jonker, A., de Boer, P. A. J., van den Hoff, M. J. B., Lamers, W. H., and Moorman, A. F. M. (1997) Towards quantitative in situ hybridization. J. Histochem. Cytochem. 45, 413–423.PubMedCrossRefGoogle Scholar
  44. 44.
    Palfi, A., Hatvani, L., and Gulya, K. (1998) A new quantitative film autoradiographic method of quantifying mRNA transcripts for in situ hybridization. J. Histochem. Cytochem. 46, 1141–1149.PubMedCrossRefGoogle Scholar
  45. 45.
    Singer, R. H., Lawrence, J. B., & Villnave, C. (1986) Optimization of in situ hybridization using isotopic and non-isotopic detection methods. Biotechniques 4, 230–250.Google Scholar
  46. 46.
    Gerfen, C. R., McGinty, J., and Young, W. S. III. (1991) Dopamine differentially regulates dynorphin, substance P, and enkephalin expression in striatal neurons: in situ hybridization histochemical analysis. J. Neurosci. 11, 1016–1031.PubMedGoogle Scholar
  47. 47.
    Albalwi, M., Hammond, D. W., Goepel, J. R., Hough, R. E., and Goyns, M. H. (1999) Semi-quantitative fluorescence in situ hybridization analysis indicates that the myc protein is consistently stabilized both before and after transformation of low-grade follicular center to high-grade diffuse large cell lymphoma. Lab. Invest. 79, 707–715.PubMedGoogle Scholar
  48. 48.
    Cheng, L., Bucana, C. D., and Wei, Q. (1996) Fluorescence in situ hybridization method for measuring transfection efficiency. Biotechniques 21, 486–491.PubMedGoogle Scholar
  49. 49.
    Higo, N., Oishi, T., Yamashita, A., Matsuda, K., and Hayashi, M. (1999) Quantitative nonradioactive in situ hybridization study of GAP-43 and SCG10 mRNAs in the cerebral cortex of adult and infant macaque monkeys. Cereb. Cortex 9, 317–331.PubMedCrossRefGoogle Scholar
  50. 50.
    Rauch, J., Wolf, D., Craig, J. M., Hausmann, M., and Cremer, C. (2000) Quantitative microscopy after fluorescence in situ hybridization—a comparison between repeat-depleted and non-depleted DNA probes. J. Biochem. Biophys. Methods 44, 59–72.PubMedCrossRefGoogle Scholar
  51. 51.
    Salchi, M., Barron, M., Merry, B. J., and Goyns, M. H. (1999) Fluorescence in situ hybridization analysis of the fos/jun ratio in ageing brain. Mech. Ageing Dev. 107, 61–71.CrossRefGoogle Scholar
  52. 52.
    Butcher, R. G. (1972) Precise cytochemical measurement of neotetrazolium formazan by scanning and integrating microdensitometry. Histochemie 32, 171–190.PubMedCrossRefGoogle Scholar
  53. 53.
    Butcher, R. G. (1978) The measurement in tissue sections of the two formazans derived from nitroblue tetrazolium in dehydrogenase reactions. Histochem. J. 10, 739–744.PubMedCrossRefGoogle Scholar
  54. 54.
    Mason, D. Y. (1985) Immunocytochemical labelling of monoclonal antibodies by the APAAP immunoalkaline phosphatase technique: In Techniques in Immunocytochemistry, vol. 3 (Bullock, G. B. and Petrusz, P., eds.), Academic, New York, pp. 25–42.Google Scholar
  55. 55.
    Guerin-Reverchon, I., Chardonnet, Y., Chignol, M. C, & Thivolet, J. (1989) A comparison of methods for detection of human papillomavirus DNA by in situ hybridization with biotinylated probes on human carcinoma cell lines. J. Immunol. Methods 123, 167–176.PubMedCrossRefGoogle Scholar
  56. 56.
    Chieco, P., Jonker, A., Melchiorri, C, Vanni, G., and van Noorden, C. J. F. (1994) A users guide for avoiding errors in absorbance image cytometry: a review with original experimental observations. Histochem. J. 26, 1–19.PubMedGoogle Scholar
  57. 57.
    Oberholzer, M., Osatreicher, M., Christen, H., and Bruhlmann, M. (1996) Methods in quantitative image analysis. Histochem. Cell Biol 105, 333–355.PubMedCrossRefGoogle Scholar
  58. 58.
    Shotton, D. M. (1995) Electronic light microscopy: present capabilities and future prospects. Histochem. Cell Biol. 104, 97–137.PubMedCrossRefGoogle Scholar
  59. 59.
    Jagoe, R., Steel, J. H., Vucicevic, V., et al. (1991) Observer variation in quantification of immunocytochemistry by image analysis. Histochem. J. 23, 541–547.PubMedCrossRefGoogle Scholar
  60. 60.
    Larsson, L-I and Hougaard, D. M. (1994) Glass slide models for immunocytochemistry and in situ hybridization. Histochemistry 101, 325–331.PubMedCrossRefGoogle Scholar
  61. 61.
    Ten Kate, T. K., Van Balen, R., Smeulders, A. W. M., Groen, F. C. A., and De Boer, G. A. (1990) SOLI AM, a multi-level interactive image processing environment. Pattern Recog. Lett. 11,429–441.CrossRefGoogle Scholar
  62. 62.
    Lehr, H-A, Mankoff, D. A., Corwin, D., Santeusanio, G., and Gown, A. M. (1997) Application of Photoshop-based image analysis to quantification of hormone receptor expression in breast cancer. J. Histochem. Cytochem. 45, 1559–1565.PubMedCrossRefGoogle Scholar
  63. 63.
    Matkowskyj, K. A., Schonfeld, D., and Benya, R. V. (2000) Quantitative immunohistochem-istry by measuring cumulative signal strength using commercially available software Photoshop and Matlab. J. Histochem. Cytochem. 48, 303–311.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Lars-Inge Larsson

There are no affiliations available

Personalised recommendations