Ultrastructural In Situ Hybridization

  • Akira Matsuno
  • Tadashi Nagashima
  • R. Yoshiyuki Osamura
  • Keiichi Watanabe


In 1969, the in situ hybridization (ISH) technique was introduced for the detection of ribosomal RNA gene products (1, 2). Many investigators have since improved this technique to identify specific genes or gene products in cells. The development of synthetic oligonucleotide probes, which could be easily designed and produced, contributed greatly to the refinement of ISH (3). Nonradioactive synthesized oligonucleotide probes labeled with biotin or digoxigenin were introduced for the detection of ISH signals (4,10). ISH under a brightfield light microscope (LM-ISH) has since become a widely used method for examining the tissue distribution and expression of mRNA. The LM-ISH method is lacking in the resolution required for studies on the spatial relationship between mRNA and the protein product. This type of information can only be provided by ultrastructural studies.


Secretory Granule Sodium Periodate Epon Resin Morphologic Preservation Ultrathin Freeze Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gall, J. G. and Pardue, M. L. (1969) Formation and detection of RNA-DNA hybrids in cytological preparations. Proc. Natl. Acad. Sci. USA 63, 378–383.PubMedCrossRefGoogle Scholar
  2. 2.
    John, H. A., Birnstiel, M. L., and Jones, K. W. (1969) RNA-DNA hybrids at the cytological level. Nature 223, 582–587.PubMedCrossRefGoogle Scholar
  3. 3.
    Lewis, M. E., Sherman, T. G., and Watson, S. J. (1985) In situ hybridization histochemistry with synthetic oligonucleotides: strategies and methods. Peptides. 6 75–87.PubMedCrossRefGoogle Scholar
  4. 4.
    Guitteny, A. F., Fouque, B., Mougin, C., Teoule, R., and Bloch, B. (1988) Histological detection of messenger RNAs with biotinylated synthetic oligonucleotide probes. J. Histochem. Cytochem. 36, 563–571.PubMedCrossRefGoogle Scholar
  5. 5.
    Hankin, R. C. and Lloyd, R. V. (1989) Detection of messenger RNA in routinely processed tissue sections with biotinylated oligonucleotide probes. Am. J. Clin. Pathol. 92. 166–171.PubMedGoogle Scholar
  6. 6.
    Larsson, L. I. (1989) In situ hybridization using biotin-labeled oligonucleotides: probe labeling and procedures for mRNA detection. Arch. Histol. Cvtol. 52. 55–62.CrossRefGoogle Scholar
  7. 7.
    Farquharson, M., Harvie, R., and McNicol, A. M. (1990) Detection of messenger RNA using a digoxigenin end labeled oligodeoxynucleotide probe. J. Clin. Pathol. 43, 424–428.PubMedCrossRefGoogle Scholar
  8. 8.
    Pringle, J. H., Ruprai, A. K., Primrose, L., et al. (1990) In situ hybridization of immunoglobulin light chain mRNA in paraffin sections using biotinylated or hapten-labeled oligonucleotide probes. J. Pathol. 162, 197–207.PubMedCrossRefGoogle Scholar
  9. 9.
    Schmitz, G. G., Walter, T., Seibl, R., and Kessler, C. (1991) Nonradioactive labeling of oligonucleotides in vitro with the hapten digoxigenin by tailing with terminal transferase. Anal. Biochem. 192, 222–231.PubMedCrossRefGoogle Scholar
  10. 10.
    Shorrock, K., Roberts, P., Pringle, J. H., and Lauder, I. (1991) Demonstration of insulin and glucagon mRNA in routinely fixed and processed pancreatic tissue by in-situ hybridization. J. Pathol. 165, 105–110.CrossRefGoogle Scholar
  11. 11.
    Jacob, J., Todd, K., Birnstiel, M. L., and Bird, A. (1971) Molecular hybridization of 3Hlabelled ribosomal RNA with DNA in ultrathin sections prepared for electron microscopy. Biochim. Biophys. Acta 228, 761–766.PubMedCrossRefGoogle Scholar
  12. 12.
    Webster, H. F., Lamperth, L., Favilla, J. T., Lemke, G., Tesin, D., and Manuelidis, L. (1987) Use of a biotinylated probe and in situ hybridization for light and electron microscopic localization of Po mRNA in myelin-forming Schwann cells. Histochemistry 86, 441–444.PubMedCrossRefGoogle Scholar
  13. 13.
    Guitteny, A. F. and Bloch, B. (1989) Ultrastructural detection of the vasopressin messenger RNA in the normal and Brattleboro Rat. Histochemistry 92, 277–281.PubMedCrossRefGoogle Scholar
  14. 14.
    Morel, G., Chabot, J. G., Gossard, F., and Heisler, S. (1989) Is atrial natriuretic peptide synthesized and internalized by gonadotrophs? Endocrinology 124, 1703–1710.PubMedCrossRefGoogle Scholar
  15. 15.
    Morel, G., Dihl, F., and Gossard, F. (1989) Ultrastructural distribution of growth hormone (GH) mRNA and GH intron 1 sequences in rat pituitary gland: effects of GH releasing factor and somatostatin. Mol. Cell. Endocrinol. 65, 81–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Singer, R. H., Langevin, G. L., and Lawrence, J. B. (1989) Ultrastructural visualization of cytoskeletal mRNAs and their associated proteins using double-label in situ hybridization. J. Cell Biol. 108, 2343–2353.PubMedCrossRefGoogle Scholar
  17. 17.
    Wolber, R. A., Beals, T. F., and Maassab, H. F. (1989) Ultrastructural localization of herpes simplex virus RNA by in situ hybridization. J. Histochem. Cytochem. 37, 97–104.PubMedCrossRefGoogle Scholar
  18. 18.
    Jirikowski, G. F., Sanna, P. P., and Bloom, F. E. (1990) mRNA coding for oxytocin is present in axons of the hypothalamo-neurohypophyseal tract. Proc. Natl. Acad. Sci. USA 87, 7400–7404.PubMedCrossRefGoogle Scholar
  19. 19.
    Le Guellec, D., Frappart, L., and Willems, R. (1990) Ultrastructural localization of fibronectin mRNA in chick embryo by in situ hybridization using 35S or biotin labeled cDNA probes. Biol. Cell 70, 159–165.PubMedCrossRefGoogle Scholar
  20. 20.
    Le Guellec, D., Frappart, L., and Desprez, P. Y. (1991) Ultrastructural localization of mRNA encoding for the EGF receptor in human breast cell cancer line BT20 by in situ hybridization. J. Histochem. Cytochem. 39, 1–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Le Guellec, D., Trembleau, A., Pechoux, C., Gossard, F., and Morel, G. (1992) Ultrastructural nonradioactive in situ hybridization of GH mRNA in rat pituitary gland: preembedding vs ultrathin frozen sections vs postembedding. J. Histochem. Cytochem. 40, 979–986.PubMedCrossRefGoogle Scholar
  22. 22.
    Trembleau, A., Calas, A., and Fevre-Montange, M. (1990) Ultrastructural localization of oxytocin mRNA in the rat hypothalamus by in situ hybridization using a synthetic oligonucleotide. Brain Res. Mol. Brain Res. 8, 37–45.PubMedCrossRefGoogle Scholar
  23. 23.
    Pomeroy, M. E., Lawrence, J. B., Singer, R. H., and Billings-Gagliardi, S. (1991) Distribution of myosin heavy chain mRNA in embryonic muscle tissue visualized by ultrastructural in situ hybridization. Dey. Biol. 143, 58–67.CrossRefGoogle Scholar
  24. 24.
    Matsuno, A., Ohsugi, Y., Utsunomiya, H., et al. (1994) Ultrastructural distribution of growth hormone, prolactin mRNA in normal rat pituitary cells: a comparison between preembedding and postembedding methods. Histochemistry 102, 265–270.PubMedCrossRefGoogle Scholar
  25. 25.
    Matsuno, A., Teramoto, A., Takekoshi, S., et al. (1994) Application of biotinylated oligonucleotide probes to the detection of pituitary hormone mRNA using Northern blot analysis, in situ hybridization at light and electron microscopic levels. Histochem. J. 26, 771–777.PubMedGoogle Scholar
  26. 26.
    Matsuno, A., Ohsugi, Y., Utsunomiya, H., et al. (1995) Changes in the ultrastructural distribution of prolactin and growth hormone mRNAs in pituitary cells of female rats after estrogen and bromocriptine treatment, studied using in situ hybridization with biotinylated oligonucleotide probes. Histochem. Cell Biol. 104, 37–45.PubMedCrossRefGoogle Scholar
  27. 27.
    Matsuno, A., Utsunomiya, H., Ohsugi, Y., et al. (1996) Simultaneous ultrastructural identification of growth hormone and its messenger ribonucleic acid using combined immunohistochemistry and non-radioisotopic in situ hybridization: a technical note. Histochem. J. 28, 703–707.PubMedCrossRefGoogle Scholar
  28. 28.
    Matsuno, A., Nagashima, T., Takekoshi, S., et al. (1998) Ultrastructural simultaneous identification of growth hormone and its messenger ribonucleic acid. Endocr. J. 45 (suppl.), S101—S104.CrossRefGoogle Scholar
  29. 29.
    Matsuno, A., Ohsugi, Y., Utsunomiya, H., et al. (1998) An improved ultrastructural doublestaining method of rat growth hormone and its mRNA using LR White resin: a technical note. Histochem. J. 30, 105–109.PubMedCrossRefGoogle Scholar
  30. 30.
    Matsuno, A., Nagashima, T., Osamura, R. Y., and Watanabe, K. (1998) Application of ultrastructural in situ hybridization combined with immunohistochemistry to pathophysiological studies of pituitary cell: technical review. Acta Histochem. Cytochem. 31, 259–265.CrossRefGoogle Scholar
  31. 31.
    Matsuno, A., Itoh, J., Osamura, R. Y., Watanabe, K., and Nagashima, T. (1999) Electron microscopic and confocal laser scanning microscopic observation of subcellular organelles and pituitary hormone mRNA: application of ultrastructural in situ hybridization and immunohistochemistry to the pathophysiological studies of pituitary cells. Endocr. Pathol. 10, 199–211.PubMedCrossRefGoogle Scholar
  32. 32.
    Matsuno, A., Nagashima, T., Ohsugi, Y., et al. (2000) Electron microscopic observation of intracellular expression of mRNA and its protein product: technical review on ultrastructural in situ hybridization and its combination with immunohistochemistry. Histol. Histopathol. 15, 261–268.PubMedGoogle Scholar
  33. 33.
    Matsuno, A., Nagashima, T., Osamura, R. Y., and Watanabe, K. (2000) Electron microscopic in situ hybridization and its combination with immunohistochemistry, in Molecular Histochemical Techniques (Springer Lab Manual) (Koji, T., ed.), Springer, New York, pp. 204–221.CrossRefGoogle Scholar
  34. 34.
    Lloyd, R. V., Jin, L., and Chandler, W. F. (1991) In situ hybridization in the study of pituitary tissues. Pathol. Res. Pract. 187, 552–555.PubMedCrossRefGoogle Scholar
  35. 35.
    Escaig-Haye, F., Grigogiev, V., Sharova, I., Rudneva, V., Buckrinskaya, A., and Fournier, J. G. (1992) Ultrastructural localization of HIV-1 RNA and core proteins. Simultaneous visualization using double immunogold labelling after in situ hybridization and immunocytochemistry. J. Submicrosc. Cytol. Pathol. 24, 437–443.PubMedGoogle Scholar
  36. 36.
    Egger, D., Troxler, M., and Bienz, K. (1994) Light and electron microscopic in situ hybridization: nonradioactive labeling and detection, double hybridization, and combined hybridization-immunocytochemistry. J. Histochem. Cytochem. 42, 815–822.PubMedCrossRefGoogle Scholar
  37. 37.
    Gingras, D. and Bendayan, M. (1995) Colloidal gold electron microscopic in situ hybridization: combination with immunocytochemistry for the study of insulin and amylase secretion. Cell Vision 2, 218–225.Google Scholar
  38. 38.
    Morey, A. L., Ferguson, D. J. P., and Fleming, K. A. (1995) Combined immunocytochemistry and nonisotopic in situ hybridization for the ultrastructural investigation of human parvovirus B19 infection. Histochem. J. 27, 46–53.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Akira Matsuno
  • Tadashi Nagashima
  • R. Yoshiyuki Osamura
  • Keiichi Watanabe

There are no affiliations available

Personalised recommendations