Tyramide Amplification Methods for In Situ Hybridization

  • John L. Frater
  • Raymond R. Tubbs


The relative insensitivity of in situ hybridization (ISH) has been cited as an important limiting factor in the potential applications of this technique (1). Therefore, a major initiative on the part of researchers who use molecular biologic techniques is the improvement of sensitivity of ISH. There are two means of achieving this: the amplification of target sequences and the amplification of signal (2). The former encompasses such techniques as in situ polymerase chain reaction (PCR) and in situ reverse transcriptase (RT)-PCR, and is not discussed in this review. The latter includes catalyzed reporter deposition, a major component of which is the use of labeled tyramide as a means of signal amplification. This technique, which has subsequently been adapted for use in ISH from its initial immunohistochemical applications, is a powerful tool for increasing sensitivity in molecular biologic testing. Through the use of tyramide signal amplificationTM (TSATM), the theoretical limits of ISH can be approached.


Signal Amplification SiHa Cell CaSki Cell Standard Saline Citrate Tyramide Signal Amplification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tubbs, R. R., Pettay, J., Grogan, T., et al. (2000) Super sensitive in situ hybridization by tyramide signal amplification (TSA) and nanogold®-silver staining: the contribution of autometallography and catalyzed reporter deposition (CARD) to the rejuvenation of in situ hybridization, in Gold and Silver in Molecular Morphology, Eaton, Natick, M. A., in press.Google Scholar
  2. 2.
    Komminoth, P. and Werner, M. (1997) Target and signal amplification: approaches to increase the sensitivity of in situ hybridization. Histochem. Cell Biol. 108, 325–333.PubMedCrossRefGoogle Scholar
  3. 3.
    Bobrow, M. N., Harris, T. D., Shaughnessy, K. J., and Litt, G. J. (1989) Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J. Immunol. Methods 125, 279–285.PubMedCrossRefGoogle Scholar
  4. 4.
    Bobrow, M. N., Shaughnessy, K. J., and Litt, G. J. (1991) Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays. J. Immunol. Methods Vol?, 103–112.Google Scholar
  5. 5.
    Bobrow, M. N., Litt, G. J., Shaughnessy, K. J., Mayer, P. C., and Conlon, J. (1992) The use of catalyzed reporter deposition as a means of signal amplification in a variety of formats. J. Immunol. Methods 150, 145–149.PubMedCrossRefGoogle Scholar
  6. 6.
    Bobrow, M. N., Litt, G. J. (1993) Method for the detection or quantitation of an analyte using an analyte dependent enzyme activation system. United States Patent Number 5196306.Google Scholar
  7. 7.
    Raap, A. K., van de Corput, M. P. C., Vervenne, R. A. W., van Gijlswijk, R. P. M., Tanke, H. J., and Wiegant, J. (1995) Ultra-sensitive FISH using peroxidase-mediated deposition of biotin- or fluorochrome tyramides. Hum. Mol. Genet. 4, 529–534.PubMedCrossRefGoogle Scholar
  8. 8.
    Adams, J. C. (1992) Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J. Histochem. Cytochem. 40, 1457–1463.PubMedCrossRefGoogle Scholar
  9. 9.
    Totos, G., Tbakhi, A., Hauser-Kronberger, C., Tubbs, R. R. (1997) Catalyzed reporter deposition: a new era in molecular and immunomorphology—nanogold-silver staining and colorometric detection and nrotocols. Cell Vision 4, 433–442.Google Scholar
  10. 10.
    Hopman, A. H. N., Ramaekers, F. C. S., Speel, E. J. M. (1998) Rapid synthesis of biotin, digoxigenin-, trinitrophenyl-, and fluorochrome-labeled tyramides and their application for in situ hybridization using CARD amplification. J. Histochem. Cytochem. 46, 771–777.PubMedCrossRefGoogle Scholar
  11. 11.
    Macechko, P. T., Krueger, L., Hirsch, B., Erlandsen, S. R. (1997) Comparison of immunologic amplification vs. enzymatic deposition of fluorochrome-conjugated tyramide as detection systems for FISH. J. Histochem. Cytochem. 45, 359–363.PubMedCrossRefGoogle Scholar
  12. 12.
    Van Gijlswijk, R. P. M., Zijlmans, H. J. M. A. A., et al. (1997) Fluorescence-labeled tyramides: use in immunocytochemistry and fluorescence in situ hybridization. J. Histochem. Cytochem. 45, 375–382.PubMedCrossRefGoogle Scholar
  13. 13.
    Speel, E. J. M., Seremaslani, P., Roth, J., Hopman, A. H. N., Komminoth, P. (1998) Improved mRNA in situ hybridization on formaldehyde-fixed and paraffin-embedded tissue using signal amplification with different haptenized tyramides. Histochem. Cell Biol. 110., 571–577.PubMedCrossRefGoogle Scholar
  14. 14.
    Kerstens, H. M. J., Poddighe, P. J., Hanselaar, G. J. M. (1995) A novel in situ hybridization signal amplification method based on the deposition of biotinylated tyramine. J. Histochem. Cytochem. 43, 347–352.PubMedCrossRefGoogle Scholar
  15. 15.
    Van Gijlswijk, R. P., Wiegant, J., Vervenne, R., Lasan R., Tanke, H. J., and Raap, A. K. (1996a) Horseradish peroxidase-labeled oligonucleotides and fluorescent tyramides for rapid detection of chromosome-specific repeat sequences. Cytogenet. Cell Genet. 75, 258–262.PubMedCrossRefGoogle Scholar
  16. 16.
    Van Gijlswijk, Wiegant, J., Raap, A. K., and Tanke, H. J. (1996b) Improved localization of fluorescent tyramides for fluorescence in situ hybridization using dextran sulfate and polyvinyl alcohol. J. Histochem. Cytochem. 44, 389–392.PubMedCrossRefGoogle Scholar
  17. 17.
    Speel, E. J. M., Hopman, A. H. N., and Komminoth, P. (1999) Amplification methods to increase the sensitivity of in situ hybridization: play CARD(S). J. Histochem. Cytochem. 47. 281–288.PubMedCrossRefGoogle Scholar
  18. 18.
    Speel, E. J. M., Ramaekers, F. C. S., and Hopman, A. H. N. (1997) Sensitive multicolor fluorescence in situ hybridization using catalyzed reporter deposition (CARD) amplification. J. Histochem. Cytochem. 45, 1439–1446.PubMedCrossRefGoogle Scholar
  19. 19.
    Speel, E. J. M., Hopman, A. H. N., and Komminoth, P. (2000) Signal amplification for DNA and mRNA in situ hybridization, in: In situ hybridization protocols (Darby, J., ed.), Methods in Molecular Biology, Humana, Totowa, NJ, pp. 195–216.Google Scholar
  20. 20.
    Zehbe, I., Hacker, G. W., Su, H., Hauser-Kronberger, C., Hainfeld, J. F., and Tubbs, R. (1997) Sensitive in situ hybridization with catalyzed reporter deposition, streptavidinnanogold, and silver acetate autometallography: detection of single-copy human papillomavirus. Am. J. Pathol. 150, 1553–1561.PubMedGoogle Scholar
  21. 21.
    Speel, E. J. M. (1999) Detection and amplification systems for sensitive, multiple-target DNA and RNA in situ hybridization: looking inside cells with a spectrum of colors. Histochem. Cell Biol. 112, 89–113.PubMedCrossRefGoogle Scholar
  22. 22.
    Teramato, N., Szekaly, L., Pokrovskaja, K., et al. (1998) Simultaneous detection of two independent antigens by double staining with two mouse monoclonal antibodies. J. Virol. Methods 73, 89–97.CrossRefGoogle Scholar
  23. 23.
    Cheung, A. L. M., Graf, A-H., Hauser-Kronberger, C. H., Dietze, O., Tubbs, R. R., and Hacker, G. W. (1999) Detection of human papillomavirus in cervical carcinoma: comparison of peroxidase, nanogold, and catylized reporter deposition (CARD)-nanogold in situ hybridization. Mod. Pathol. 12, 689–696.PubMedGoogle Scholar
  24. 24.
    Sano, T., Hikino, T., Niwa, M. T. Y., et al. (1998) In situ hybridization with biotinylated tyramide amplification: detection of human papillomavirus DNA in cervical neoplastic lesions. Mod. Pathol. 11, 19–23.PubMedGoogle Scholar
  25. 25.
    Tubbs, R. R., Hauser-Kronberger, C., and Hacker, G. W. (1998) Correspondence re: Sano, T., Hikino, T., Niwa, Y., et al. In situ hybridization with biotinylated tyramide amplification: detection of human papillomavirus DNA in cervical neoplastic lesions [Letter to the Editor] . Mod. Pathol. 11, 19–23.Google Scholar
  26. 26.
    Adler, K., Erickson, T., and Bobrow, M. High sensitivity detection of HPV-16 in SiHa and CaSki cells utilizing FISH enhanced by TSA. Histochem. Cell Biol. 108, 321–324.Google Scholar
  27. 27.
    Reed, J. A., Nador, R. G., Spaulding, D., Tani, Y., Cesarman, E., and Knowles, D. M. (1998) Demonstration of Kaposi’s sarcoma-associated herpes virus cyclin D homolog in cutaneous Kaposi’s sarcoma by colorometric in situ hybridization using a catalyzed signal amplification system. Blood 91, 3825–3832.PubMedGoogle Scholar
  28. 28.
    De Haas, R. R., Verwoerd, N. P., Van Der Corput, M. P., Van Gijlswijk, R. P., Siitari, H., and Tanke, H. J. (1996) The use of peroxidase-mediated deposition of biotin-tyramide in combination with time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization. J. Histochem. Cytochem. 44, 1091–1099.PubMedCrossRefGoogle Scholar
  29. 29.
    Kressel, M. (1997) Tyramide amplification allows anterograde tracing by horseradish peroxidase-conjugated lectins in conjunction with simultaneous immunohistochemistry. J. Histochem. Cytochem. 46, 527–533.CrossRefGoogle Scholar
  30. 30.
    Toda, Y., Kono, K., Abiru, H., et al. (1999) Applications of tyramide signal amplification system to immunohistochemistry: a potent method to localize antigens that are not detectable by ordinary method. Pathol. Int. 49, 479–483.PubMedCrossRefGoogle Scholar
  31. 31.
    Hendricks, D. A., Stowe, B. J., Hoo, B. S., et al. (1995) Quantitation of HBV DNA in human serum using a branched DNA (bDNA) signal amplification assay. Am. J. Clin. Pathol. 104, 537–546.PubMedGoogle Scholar
  32. 32.
    Horn, T., Chang, C-A., and Urdea, M. S. (1997) Chemical synthesis and characterization of branched oligodeoxyribonucleases (bDNA) for use as signal amplifiers in nucleic acid quantification assays. Nucleic Acids Res. 25, 4842–4849.PubMedCrossRefGoogle Scholar
  33. 33.
    Urdea, M. S., Wuestehube, L. J., Laurenson, P. M., and Wilber, J. C. (1997) Hepatitis C diagnosis and monitoring. Clin. Chem. 43, 1507–1511.PubMedGoogle Scholar
  34. 34.
    Kaplan, D. and Smith, D. (2000) Enzymatic amplification staining for flow cytometric analysis of cell surface molecules. Cytometry 40, 81–85.PubMedCrossRefGoogle Scholar
  35. 34a.
    Joos, S., Fink, T. M., Ratsch, A., Lichter, P. (1994) Mapping and chromosome analysis; the potential of fluorescence in situ hybridization. J. Biotech. 35, 135–153.CrossRefGoogle Scholar
  36. 35.
    Zaidi, A. U., Enomoto, H., Milbrandt, J., and Roth, K. A. (2000) Dual fluorescent in situ hybridization and immunohistochemical detection with tyramide signal amplification. J. Histochem. Cytochem. 48, 1369–1375.PubMedCrossRefGoogle Scholar
  37. 35a.
    Buonamici, L., Serra, M., Losi, L., Eusebi, V. (2000) Application of CARD-ISH for assessment of numerical chromosome aberrations in interphase nuclei of human tumor cells. Int. J. Surg. Pathol. 8, 201–206.PubMedCrossRefGoogle Scholar
  38. 36.
    Schöfer, C., Weipoltshammer, K., Almeder, M., and Wachtler, F. (1997) Signal amplification at the ultrastructural level using biotinylated tyramides and immunogold detection. Histochem. Cell Biol. 108, 313–319.PubMedCrossRefGoogle Scholar
  39. 37.
    Hainfeld, J. F. (1987) A small gold-conjugated antibody label: improved resolution for electron microscopy. Science 230, 450–453.CrossRefGoogle Scholar
  40. 38.
    Van de Corput, M. P. C., Dirks, R. W., van Gijlswijk, R. P. M., and van de Rijke, F. M. (1998) Fluorescence in situ hybridization using horseradish peroxidase-labeled oligodeoxynucleotides and tvramide signal amplification for sensitive DNA and mRNA d tPction v e DN A aadd mRRN A A detectio. Histochem. Cell Biol.110, 431–437.PubMedCrossRefGoogle Scholar
  41. 39.
    Van de Corput, M. P. C., Dirks, R. W., van Gijlswijk, R. P. M., et al. (1998) Sensitive mRNA detection by fluorescence in situ hybridization using horseradish peroxidase-labeled oligodeoxynucleotides and tyramide signal amplification. J. Histochem. Cytochem. 46, 1249–1259.PubMedCrossRefGoogle Scholar
  42. 40.
    King, G., Chambers, G., Murray, G. I. (1999) Detection of immunoglobulin light chain mRNA by in situ hybridisation using biotinylated tyramine signal amplification. J. Clin. Pathol. Mol. Pathol. 52, 47–51.CrossRefGoogle Scholar
  43. 41.
    Yang, H., Wanner, I. B., Roper, S. D., and Chaudhari, N. (1999) An optimized method for in situ hybridization with signal amplification that allows the detection of rare mRNAs. J. Histochem. Cytochem. 47, 431–445.PubMedCrossRefGoogle Scholar
  44. 42.
    Schmidt, B. F., Chao, J., Zhu, Z., DeBiasio, R. L., and Fisher, G. (1997) Signal amplification in the detection of single-copy DNA and RNA by enzyme-catalyzed deposition (CARD) of the novel fluorescent reporter substrate Cy3.29-tyramide. J. Histochem. Cytochem. 45, 365–373.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • John L. Frater
  • Raymond R. Tubbs

There are no affiliations available

Personalised recommendations