Advertisement

Fluorescent In Situ Hybridization

  • Susan Sheldon

Abstract

Fluorescence in situ hybridization (FISH) arose from a marriage of classical DNA hybridization in solution to modern molecular biologic techniques, most notably the use of restriction endonucleases and, later, the polymerase chain reaction (PCR). The former has made identification of both genes and relevant interspersed sequences possible, whereas without the latter, many widely used probes would not be available. FISH allows one to localize a specific DNA sequence to a specific chromosome, region of a chromosome, or cell type. Generally, the morphology of the chromosome, cell, or tissue of interest is preserved to permit unambiguous identification of the target (1–3). Consequently, the technique has been widely used in a variety of venues. Gene mapping (4), chromosome identification (5), demonstration of gene amplification in some solid tumors (6,7), identification of chimeric populations, minimal residual disease, and tumor cells admixed in normal tissue (8,9) are just a few examples. The advantages of modern FISH techniques include:
  1. 1.

    Simple, straightforward, standardized techniques

     
  2. 2.

    Wide assortment of probes available commercially

     
  3. 3.

    Double labeling and use of multiple probes on a single cell

     
  4. 4.

    Rapid turnaround times (anywhere from 4 h to a maximum of 48 h).

     

Keywords

Sister Chromatid Cover Slip Painting Probe Kallmann Syndrome Rubber Cement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haferlach, T., Winkermann, M., Loffler, H., et al. (1996) The abnormal eosinophils are part of the leukemic cell population in acute myelomonocytic leukemia with abnormal eosinophils. Blood 87, 2459–2463.PubMedGoogle Scholar
  2. 2.
    Bentz, M., Schroder, M., Herz, M., Stilgenbauer, S., Lichter, P., and Dohner, H. (1993) Detection of trisomy 8 on blood smears using fluorescence in situ hybridization. Leukemia 7.752–757.PubMedGoogle Scholar
  3. 3.
    Thompson, C. T., LeBoit, P. E., Nederlof, P. M., and Gray, J. W. (1994) Thick section fluorescence in situ hybridization on formalin-fixed, paraffin-embedded archival tissue provides a histogenetic profile. Am. J. Pathol. 144, 237–243.PubMedGoogle Scholar
  4. 4.
    Price, P. M. and Hirschorn, K. (1975) In situ hybridization for gene mapping. Cytogenet. Cell Genet. 14, 395–401.PubMedCrossRefGoogle Scholar
  5. 5.
    Popp, S., Jauch, A., Schindler, D., et al. (1993) A strategy for the characterization of minute chromosome rearrangements using multiple color fluorescence in situ hybridization with chromosome-specific DNA libraries and YAC clones. Hum. Genet. 96, 527–532.CrossRefGoogle Scholar
  6. 6.
    Taylor, C. P., McGuckin, G., Bown, N. P., et al. (1994) Rapid detection of prognostic genetic factors in neuoblastoma using fluorescence in situ hybridization on tumour imprints and bone marrow smears. Br. J. Cancer 69, 445–451.PubMedCrossRefGoogle Scholar
  7. 7.
    Press, M. F., Bernstein, L., Thomas, A., et al. (1997) HER-2/neu gene amplification characterized by fluorescence in situ hybridization. J. Clin. Oncol. 15, 2894–2904.PubMedGoogle Scholar
  8. 8.
    Zhan, L., Chang, K-S., Estey, E. H., Hayes, K., Deisseroth, A. B., and Liang, J. C. (1995) Detection of residual leukemic cells in patients with acute promyelocytic leukemia by the fluorescence in situ hybridization method. Blood 85, 495–499.Google Scholar
  9. 9.
    Buno, I., Wyatt, W. A., Zinsmeister, A. R., Dietz-Band, J., Silver, R. T., and Dewald, G. (1998) A special fluorescent in situ hybridization technique to study peripheral blood and assess the effectiveness of interferon therapy in chronic myeloid leukemia. Blood 92, 2315–2321.PubMedGoogle Scholar
  10. 10.
    Pardue, M. L. and Gall, J. G. (1970) Chromosomal localization of mouse satellite DNA. Proc. Natl. Acad. Sci. USA 168, 1356–1358.Google Scholar
  11. 11.
    Prescott, D. M. and Bender, M. (1962) RNA and protein synthesis during mitosis in mammalian tissue culture cells. Exp. Cell Res. 26, 260–268.PubMedCrossRefGoogle Scholar
  12. 12.
    Cremer, C., Gray, J. W., and Ropers, H-H. (1982) Flow cytometric characterization of a Chinese hamster x man hybrid cell line retaining the human Y chromosome. Hum. Genet. 60, 262–266.PubMedCrossRefGoogle Scholar
  13. 13.
    Dale, R. M. and Ward, D. C. (1975) Mercurated polynucleotides: new probes for hybridization and selective polymer fractionation. Biochemistry 14, 2458–2469.PubMedCrossRefGoogle Scholar
  14. 14.
    Hopman, A. H. N., Wiegant, J., and VanDuijn, P. (1987) Mercurated nucleic acid probes, a new principle for non-radioactive in situ hybridization. Exp. Cell Res. 169, 357–368.PubMedCrossRefGoogle Scholar
  15. 15.
    Ward, D. C., Reich, E., and Stryer, L. (1969) Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. J. Biol. Chem. 244, 1228–1237.PubMedGoogle Scholar
  16. 16.
    Ward, D. C. and Reich, E. (1972) Fluorescence studies of nucleotides and polynucleotides. II. 7-Deazanebularin: coding ambiguity in transcription with base pairs containing fewer than two hydrogen bonds. J. Biol. Chem. 247, 705–719.PubMedGoogle Scholar
  17. 17.
    Ward, D. C., Horn, T., and Reich, E. (1972) Fluorescence studies of nucleotides and polynucleotides. 3. Diphosphopyridine nucleotide analogues which contain fluorescent purines. J. Biol. Chem. 247, 4014–4020.PubMedGoogle Scholar
  18. 18.
    Langer, P. R., Waldrop, A. A., and Ward, D. C. (1981) Enzymatic synthesis of biotinlabeled poly nucleotides: novel nucleic acid affinity probes. Proc. Natl. Acad. Sci. USA 78, 6633–6637.PubMedCrossRefGoogle Scholar
  19. 19.
    Cremer, T., Landegent, J., Bruckner, A., et al. (1986) Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques; diagnosis of trisomy 18 with probe LI.84. Hum. Genet. 74, 346–352.PubMedCrossRefGoogle Scholar
  20. 20.
    Julien, C., Bazin, A., Guyot, B., Forstier, F., and Defos, F. (1986) Rapid prenatal diagnosis of Down’s syndrome with in situ hybridization of fluorescent DNA probes. Lancet 2, 863–864.PubMedCrossRefGoogle Scholar
  21. 21.
    Lichter, P., Cremer, T., Tang, C-J., Watkins, P. C., Manuelidis, L., and Ward, D. C. (1988) Rapid detection of human chromosome 21 aberrations by in situ hybridization. Proc. Natl. Acad. Sci USA 85, 9664–9668.PubMedCrossRefGoogle Scholar
  22. 22.
    Manuelidis, L. (1978) Chromosomal location of complex and simple repeated human DNAs. Chromosoma 66, 23–32.PubMedCrossRefGoogle Scholar
  23. 23.
    Willard, H. F. (1985) Chromosome-specific organization of human alpha satellite DNA. Am. J. Hum. Genet. 37, 524–532.PubMedGoogle Scholar
  24. 24.
    Waye, J. S. and Willard, H. F. (1989) Human beta satellite DNA: genomic organization and sequence definition of a class of highly repetitive tandem DNA. Proc. Natl. Acad. Sci. USA 86, 6250–6254.PubMedCrossRefGoogle Scholar
  25. 25.
    Choo, K. H., Vissel, B., Brown, R., Filby, R. G., and Earle, E. (1988) Homologous alpha satellite sequences on human acrocentric chromosomes with selectivity for chromosomes 13, 14 and 21. Nucleic Acids Res. 16, 1273–1284.PubMedCrossRefGoogle Scholar
  26. 26.
    Jorgensen, A. L., Kolvraa, S., Jones, C., and Bak, A. L. (1988) A subfamily of alphoid repetitive DNA shared by the NOR-bearing human chromosomes 14 and 22. Genomics 3, 100–109.PubMedCrossRefGoogle Scholar
  27. 27.
    ISCN, Mitelman, F., ed. (1995) An International System for Human Cytogenetic Nomenclature. S. Karger, Basel.Google Scholar
  28. 28.
    Moyzis, R. K., Buchingham, J. M., and Cram, L. S. (1988) A highly conserved repetitive DNA sequence, TTAGGGn, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA 85, 6622–6625.PubMedCrossRefGoogle Scholar
  29. 29.
    Park, V. M., Gutashaw, K. M., and Wathen, T. M. (1992) The presence of interstitial telomeric sequences in constitutional chromosome abnormalities. Am. J. Hum. Genet. 50, 914–923.PubMedGoogle Scholar
  30. 30.
    Dewald, G., Stallard, R., Alsaadi, A., et al. (2000) A multicenter investigation with DFISH BCR/ABL1 probes. Cancer Genet. Cytogenet. 116, 97.PubMedCrossRefGoogle Scholar
  31. 31.
    Lichter, P., Cremer, T., Border, J., Manuelidis, L., and Ward, D. (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum. Genet. 80, 224.PubMedCrossRefGoogle Scholar
  32. 32.
    Pinkel, D., Landegent, J., Collins, C., et al. (1988) Fluorescence in situ hybridization with human chromosome specific libraries. Proc. Natl. Acad. Sci. USA 85, 9138–9142.PubMedCrossRefGoogle Scholar
  33. 33.
    Van Dilla, M., Deaven, L., Albright, K., et al. (1986) Human chromosome-specific DNA libraries: construction and availability. Biotechnology 4, 537–552.CrossRefGoogle Scholar
  34. 34.
    Nelson, D., Ledbetter, S., Corbo, L. et al. (1989) Alu polymerase chain reaction: a method for rapid isolation of human-specific sequences from complex DNA sources. Proc. Natl. Acad. Sci. USA 86, 6686–6690.PubMedCrossRefGoogle Scholar
  35. 35.
    Ledbetter, S., Nelson, D., Warren, S., and Ledbetter, D. (1990) Rapid isolation of DNA probes within specific chromosome regions by interspersed repeated sequence polymerase chain reaction. Genomics 6, 475–481.PubMedCrossRefGoogle Scholar
  36. 36.
    Jalal, S. M. and Law, M. E. (1999) Utility of multicolor fluorescent in situ hybridization in clinical cytogenetics. Genet. Med. 1, 181–186.PubMedCrossRefGoogle Scholar
  37. 37.
    Spiecher, M. R., Ballard, S. G., and Ward, D. C. (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat. Genet. 12, 368–375.CrossRefGoogle Scholar
  38. 38.
    Eils, R., Uhrig, S., Saracoglu, K., et al. (1998) An optimized, fully automated system for fast and accurate identification of chromosome rearrangements by multiplex-FISH (MFISH). Cytogenet. Cell Genet. 82, 160–171.PubMedCrossRefGoogle Scholar
  39. 39.
    Schrock, E., duManoir, S., Veldman, T., et al. (1996) Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497.PubMedCrossRefGoogle Scholar
  40. 40.
    American College of Medical Genetics. (1999) Standards and Guidelines for Clinical Genetics Laboratories, 2nd ed., Rockville, MD.Google Scholar
  41. 41.
    Wolfe, K. and Herrington, C. (1997) Interphase cytogenetics and pathology: a tool for diagnosis and research. J. Pathol. 181, 359–361.PubMedCrossRefGoogle Scholar
  42. 42.
    van de Kaa, C., Nelson, K., Ramaekers, F., Vooijs, P., and Hopman, A. (1991) Interphase cytogenetics in paraffin sections of routinely processed hydatidiform moles and hydropic abortions. J. Pathol. 165, 281–287.PubMedCrossRefGoogle Scholar
  43. 43.
    Poddighe, P., Ramaekers, F., and Hopman, A. (1992) Interphase cytogenetics of tumors. J. Pathol. 166, 215–224.PubMedCrossRefGoogle Scholar
  44. 44.
    Hopman, A., van Hooren, E., van de Kaa, C., Vooijs, P., and Ramaekers, F. (1991) Detection of numerical chromosome aberrations using in situ hybridization in paraffin sections of routinely processed bladder cancers. Mod. Pathol. 4, 503–513.PubMedGoogle Scholar
  45. 45.
    Long, A., Mueller, J., Schwartz, J., Barrett, K., Schwartz, R., and Wolfe, H. (1992) High specificity in situ hybridization. Diagn. Mol. Pathol. 1, 45–57.PubMedCrossRefGoogle Scholar
  46. 46.
    Arnoldus, E. P. J., Dreef, E., Noodermeer, I. A., et al. (1991) Feasibility of in situ hybridization with chromosome specific DNA probes on paraffin wax embedded tissue. J. Clin. Pathol. 44, 900–904.PubMedCrossRefGoogle Scholar
  47. 47.
    Seto, E. and Yen, TSB. (1987) Detection of cytomegalovirus infection by means of DNA isolated from paraffin-embedded tissues and dot hybridization. Am. J. Pathol. 127, 409–413.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Susan Sheldon

There are no affiliations available

Personalised recommendations