Skip to main content

Immunotherapy for Tuberculosis and Other Mycobacterial Infections

  • Chapter
Immunotherapy for Infectious Diseases

Part of the book series: Infectious Disease ((ID))

  • 144 Accesses

Abstract

At least one-fourth of the world’s population is infected with Mycobacterium tuberculosis, resulting in nearly 4 million deaths worldwide each year, more than any other single pathogen. In some areas, such as southern Africa and southeast Asia, tuberculosis case rates have approached 200 cases per 100,000 persons/year, or nearly 0.2% annually (1), despite vaccination with M. bovis bacille Calmette-Guérin (BCG) and increased access to chemotherapy. In other regions, including eastern Europe and Russia, multidrug-resistant (MDR) infection has emerged as a major threat to public health (2). As a consequence, there is greater urgency to define the factors involved in host resistance to mycobacterial infection and to evaluate their potential therapeutic application in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Global Tuberculosis Programme. Global Tuberculosis Control WHO Report 1999. Geneva: WHO, 1999.

    Google Scholar 

  2. Global Tuberculosis Programme. Anti-tuberculosis drug resistance in the world. 1998.

    Google Scholar 

  3. Villarino ME, Dooley SW, Geiter LJ, Castro KG, Snider DE Jr. Management of persons exposed to multidrug-resistant tuberculosis. MMWR 1992; 41: 61–71.

    Google Scholar 

  4. Selwyn PA, Alcabes P, Hartel D, et al. Clinical manifestations and predictors of disease progression in drug users with human immunodeficiency virus infection. N Engl J Med 1992; 327: 1697–1703.

    Article  PubMed  CAS  Google Scholar 

  5. Di Perri G, Cruciani M, Danzi MC, et al. Nosocomial epidemic of active tuberculosis among HIV-infected patients. Lancet 1989; 2: 1502–1504.

    PubMed  Google Scholar 

  6. Daley CL, Small PM, Schecter GF, et al. An outbreak of tuberculosis with accelerated progression among persons infected with the human immunodeficiency virus. An analysis using restriction-fragment-length polymorphisms. N Engl J Med 1992; 326: 231–235.

    Article  PubMed  CAS  Google Scholar 

  7. Crowle AJ, Elkins N. Relative permissiveness of macrophages from black and white people for virulent tubercle bacilli. Infect Immun 1990; 58: 632–638.

    PubMed  CAS  Google Scholar 

  8. Skamene E, Forget A. Genetic basis of host resistance and susceptibility to intracellular pathogens. Adv Exp Med Biol 1988; 239: 23–37.

    PubMed  CAS  Google Scholar 

  9. Radzioch D, Hudson T, Boule M, Barrera L, Urbance JW, Varesio L, Skamene E. Genetic resistance/susceptibility to mycobacteria: phenotypic expression in bone marrow derived macrophage lines. J Leukoc Biol 1991; 50: 263–272.

    PubMed  CAS  Google Scholar 

  10. Stach JL, Gros P, Forget A, Skamene E. Phenotypic expression of genetically-controlled natural resistance to Mycobacterium bovis (BCG). J Immunol 1984; 132: 888–892.

    PubMed  CAS  Google Scholar 

  11. Goto Y, Buschman E, Skamene E. Regulation of host resistance to Mycobacterium intra-cellulare in vivo and in vitro by the bcg gene. Immunogenetics 1989; 30: 218–221.

    Article  PubMed  CAS  Google Scholar 

  12. Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV. Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans [see comments]. N Engl J Med 1998; 338: 640–644.

    Article  PubMed  CAS  Google Scholar 

  13. Bermudez LE, Wu M, Young LS. Interleukin-12-stimulated natural killer cells can activate human macrophages to inhibit growth of M. avium. Infect Immun 1995; 63: 4099–4104.

    PubMed  CAS  Google Scholar 

  14. Fujiwara H, Kleinhenz ME, Wallis RS, Ellner JJ. Increased interleukin-1 production and monocyte suppressor cell activity associated with human tuberculosis. Am Rev Respir Dis 1986; 133: 73–77.

    PubMed  CAS  Google Scholar 

  15. Takashima T, Ueta C, Tsuyuguchi I, Kishimoto S. Production of tumor necrosis factor alpha by monocytes from patients with pulmonary tuberculosis. Infect Immun 1990; 58: 3286–3292.

    PubMed  CAS  Google Scholar 

  16. Chensue SW, Warmington KS, Berger AE, Tracey DE. Immunohistochemical demonstration of interleukin-1 receptor antagonist protein and interleukin-1 in human lymphoid tissue and granulomas. Am J Pathol 1992; 140: 269–275.

    PubMed  CAS  Google Scholar 

  17. Kindler V, Sappino AP. The beneficial effects of localized tumor necrosis factor production in BCG infection. Behring Inst Mitt 1991; 88: 120–124.

    PubMed  Google Scholar 

  18. Wallis RS, Paranjape R, Phillips M. Identification by two-dimensional gel electrophoresis of a 58-kilodalton tumor necrosis factor-inducing protein of M. tuberculosis. Infect Immun 1993; 61: 627–632.

    PubMed  CAS  Google Scholar 

  19. Moreno C, Taverne J, Mehlert A, Bate CA, Brealey RJ, Meager A, Rook GA, Playfair JH. Lipoarabinomannan from M. tuberculosis induces the production of tumour necrosis factor from human and murine macrophages. Clin Exp Immunol 1989; 76: 240–245.

    PubMed  CAS  Google Scholar 

  20. Wallis RS, Fujiwara H, Ellner JJ. Direct stimulation of monocyte release of interleukin 1 by mycobacterial protein antigens. J Immunol 1986; 136: 193–196.

    PubMed  CAS  Google Scholar 

  21. Valone SE, Rich EA, Wallis RS, Ellner JJ. Expression of tumor necrosis factor in vitro by human mononuclear phagocytes stimulated with whole Mycobacterium bovis BCG and mycobacterial antigens. Infect Immun 1988; 56: 3313–3315.

    PubMed  CAS  Google Scholar 

  22. Bermudez LE. Production of transforming growth factor-beta by M. avium-infected human macrophages is associated with unresponsiveness to IFN-gamma. J Immunol 1993; 150: 1838–1845.

    PubMed  CAS  Google Scholar 

  23. Kasahara K, Kobayashi K, Shikama Y, et al. The role of monokines in granuloma formation in mice: the ability of interleukin 1 and tumor necrosis factor-alpha to induce lung granulomas. Clin Immunol Immunopathol 1989; 51: 419–425.

    Article  PubMed  CAS  Google Scholar 

  24. Denis M, Gregg EO, Ghandirian E. Cytokine modulation of M. tuberculosis growth in human macrophages. Int J Immunopharmacol 1990; 12: 721–727.

    Article  PubMed  CAS  Google Scholar 

  25. Bermudez LE, Young LS. Tumor necrosis factor, alone or in combination with IL-2, but not IFN-gamma, is associated with macrophage killing of M. avium complex. J Immunol 1988; 140: 3006–3013.

    PubMed  CAS  Google Scholar 

  26. Rose RM, Fuglestad JM, Remington L. Growth inhibition of M. avium complex in human alveolar macrophages by the combination of recombinant macrophage colony-stimulating factor and interferon-gamma. Am J Respir Cell Mol Biol 1991; 4: 248–254.

    PubMed  CAS  Google Scholar 

  27. Denis M. Tumor necrosis factor and granulocyte macrophage-colony stimulating factor stimulate human macrophages to restrict growth of virulent M. avium and to kill avirulent M. avium: killing effector mechanism depends on the generation of reactive nitrogen intermediates. J Leukoc Biol 1991; 49: 380–387.

    PubMed  CAS  Google Scholar 

  28. Bermudez LE, Young LS. Recombinant granulocyte-macrophage colony-stimulating factor activates human macrophages to inhibit growth or kill M. avium complex. J Leukoc Biol 1990; 48: 67–73.

    PubMed  CAS  Google Scholar 

  29. Denis M, Gregg EO. Recombinant tumour necrosis factor-alpha decreases whereas recombinant interleukin-6 increases growth of a virulent strain of M. avium in human macrophages. Immunology 1990; 71: 139–141.

    PubMed  CAS  Google Scholar 

  30. Kaneko H, Yamada H, Mizuno S, et al. Role of tumor necrosis factor-alpha in Mycobacterium-induced granuloma formation in tumor necrosis factor-alpha-deficient mice. Lab Invest 1999; 79: 379–386.

    PubMed  CAS  Google Scholar 

  31. Kindler V, Sappino AP, Grau GE, Piguet PF, Vassalli P. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 1989; 56: 731–740.

    Article  PubMed  CAS  Google Scholar 

  32. Ladel CH, Blum C, Dreher A, Reifenberg K, Kopf M, Kaufmann SH. Lethal tuberculosis in interleukin-6-deficient mutant mice. Infect Immun 1997; 65: 4843–4849.

    PubMed  CAS  Google Scholar 

  33. Bellamy R, Ruwende C, Corrah T, et al. Tuberculosis and chronic hepatitis B virus infection in Africans and variation in the vitamin D receptor gene. J Infect Dis 1999; 179: 721–724.

    Article  PubMed  CAS  Google Scholar 

  34. Roy S, Frodsham A, Saha B, Hazra SK, Mascie-Taylor CG, Hill AV. Association of vitamin D receptor genotype with leprosy type. J Infect Dis 1999; 179: 187–191.

    Article  PubMed  CAS  Google Scholar 

  35. Denis M. Killing of M. tuberculosis within human monocytes: activation by cytokines and calcitriol. Clin Exp Immunol 1991; 84: 200–206.

    Article  PubMed  CAS  Google Scholar 

  36. Rook GA, Taverne J, Leveton C, Steele J. The role of gamma-interferon, vitamin D3 metabolites and tumour necrosis factor in the pathogenesis of tuberculosis. Immunology 1987; 62: 229–234.

    PubMed  CAS  Google Scholar 

  37. Boom WH. The role of T-cell subsets in M. tuberculosis infection. Infect Agents Dis 1996; 5: 73–81.

    PubMed  CAS  Google Scholar 

  38. Tsukaguchi K, Balaji KN, Boom WH. CD4+ alpha beta T cell and gamma delta T cell responses to M. tuberculosis. Similarities and differences in Ag recognition, cytotoxic effector function, and cytokine production. J Immunol 1995; 154: 1786–1796.

    PubMed  CAS  Google Scholar 

  39. Nacy CA, Meltzer MS, Leonard EJ, Wyler DJ. Intracellular replication and lymphokine-induced destruction of Leishmania tropica in C3H/HeN mouse macrophages. J Immunol 1981; 127: 2381–2386.

    PubMed  CAS  Google Scholar 

  40. Murray HW, Spitalny GL, Nathan CF. Activation of mouse peritoneal macrophages in vitro and in vivo by interferon-gamma. J Immunol 1985; 134: 1619–1622.

    PubMed  CAS  Google Scholar 

  41. Bhardwaj N, Nash TW, Horwitz MA. Interferon-gamma-activated human monocytes inhibit the intracellular multiplication of Legionella pneumophila. J Immunol 1986; 137: 2662–2669.

    PubMed  CAS  Google Scholar 

  42. Rook GA, Champion BR, Steele J, Varey AM, Stanford JL. I-A restricted activation by T cell lines of anti-tuberculosis activity in murine macrophages. Clin Exp Immunol 1985; 59: 414–420.

    PubMed  CAS  Google Scholar 

  43. Flesch I, Kaufmann SH. Mycobacterial growth inhibition by interferon-gamma-activated bone marrow macrophages and differential susceptibility among strains of M. tuberculosis. J Immunol 1987; 138: 4408–4413.

    PubMed  CAS  Google Scholar 

  44. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme, IM. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 1993; 178: 2243–2247.

    Article  PubMed  CAS  Google Scholar 

  45. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to M. tuberculosis infection. J Exp Med 1993; 178: 2249–2254.

    Article  PubMed  CAS  Google Scholar 

  46. Kamijo R, Le J, Shapiro D, et al. Mice that lack the interferon-gamma receptor have profoundly altered responses to infection with bacillus Calmette-Guérin and subsequent challenge with lipopolysaccharide. J Exp Med 1993; 178: 1435–1440.

    Article  PubMed  CAS  Google Scholar 

  47. Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 1993; 259: 1739–1742.

    Article  PubMed  CAS  Google Scholar 

  48. Kobayashi K, Yamazaki J, Kasama T, et al. Interleukin (IL)-12 deficiency in susceptible mice infected with M. avium and amelioration of established infection by IL-12 replacement therapy. J Infect Dis 1996; 174: 564–573.

    Article  PubMed  CAS  Google Scholar 

  49. Sugawara I, Yamada H, Kaneko H, Mizuno S, Takeda K, Akira S. Role of interleukin-18 (IL-18) in mycobacterial infection in IL-18-gene-disrupted mice. Infect Immun 1999; 67: 2585–2589.

    PubMed  CAS  Google Scholar 

  50. Holland SM, Dorman SE, Kwon A, et al. Abnormal regulation of interferon-gamma, interleukin-12, and tumor necrosis factor-alpha in human interferon-gamma receptor 1 deficiency. J Infect Dis 1998; 178: 1095–1104.

    Article  PubMed  CAS  Google Scholar 

  51. Frucht DM, Holland SM. Defective monocyte costimulation for IFN-gamma production in familial disseminated M. avium complex infection: abnormal IL-12 regulation. J Immunol 1996; 157: 411–416.

    PubMed  CAS  Google Scholar 

  52. de Jong R, Altare F, Haagen IA, et al. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 1998; 280: 1435–1438.

    Article  PubMed  Google Scholar 

  53. Altare F, Durandy A, Lammas D, et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 1998; 280: 1432–1435.

    Article  PubMed  CAS  Google Scholar 

  54. Kaufmann SH. Cell-mediated immunity: dealing a direct blow to pathogens. Curr Biol 1999; 9: R97 - R99.

    Article  PubMed  CAS  Google Scholar 

  55. Stenger S, Hanson DA, Teitelbaum R, et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 1998; 282: 121–125.

    Article  PubMed  CAS  Google Scholar 

  56. Cooper AM, D’ Souza C, Frank AA, Orme IM. The course of M. tuberculosis infection in the lungs of mice lacking expression of either perforin-or granzyme-mediated cytolytic mechanisms. Infect Immun 1997; 65: 1317–1320.

    PubMed  CAS  Google Scholar 

  57. Stenger S, Mazzaccaro RJ, Uyemura K, et al. Differential effects of cytolytic T cell subsets on intracellular infection. Science 1997; 276: 1684–1687.

    Article  PubMed  CAS  Google Scholar 

  58. Nash DR, Douglass JE. Anergy in active pulmonary tuberculosis. A comparison between positive and negative reactors and an evaluation of 5 TU and 250 TU skin test doses. Chest 1980; 77: 32–37.

    Article  PubMed  CAS  Google Scholar 

  59. Daniel TM, Oxtoby MJ, Pinto E, Moreno E. The immune spectrum in patients with pulmonary tuberculosis. Am Rev Respir Dis 1981; 123: 556–559.

    PubMed  CAS  Google Scholar 

  60. Onwubalili JK, Scott GM, Robinson JA. Deficient immune interferon production in tuberculosis. Clin Exp Immunol 1985; 59: 405–413.

    PubMed  CAS  Google Scholar 

  61. Toossi Z, Kleinhenz ME, Ellner JJ. Defective interleukin 2 production and responsiveness in human pulmonary tuberculosis. J Exp Med 1986; 163: 1162–1172.

    Article  PubMed  CAS  Google Scholar 

  62. Toossi Z, Sedor JR, Lapurga JP, Ondash RJ, Ellner JJ. Expression of functional interleukin 2 receptors by peripheral blood monocytes from patients with active pulmonary tuberculosis. J Clin Invest 1990; 85: 1777–1784.

    Article  PubMed  CAS  Google Scholar 

  63. Tweardy DJ, Schacter BZ, Ellner JJ. Association of altered dynamics of monocyte surface expression of human leukocyte antigen DR with immunosuppression in tuberculosis. J Infect Dis 1984; 149: 31–37.

    Article  PubMed  CAS  Google Scholar 

  64. Ellner JJ. Regulation of the human cellular immune response to M. tuberculosis. The mechanism of selective depression of the response to PPD. Bull Int Union Tuberc Lung Dis 1991; 66: 129–132.

    PubMed  CAS  Google Scholar 

  65. Toossi Z, Ellner JJ. The role of TGF beta in the pathogenesis of human tuberculosis. Clin Immunol Immunopathol 1998; 87: 107–114.

    Article  PubMed  CAS  Google Scholar 

  66. Bermudez LE, Champsi J. Infection with M. avium induces production of interleukin-10 (IL-10), and administration of anti-IL-10 antibody is associated with enhanced resistance to infection in mice. Infect Immun 1993; 61: 3093–3097.

    PubMed  CAS  Google Scholar 

  67. Shiratsuchi H, Johnson JL, Ellner JJ. Bidirectional effects of cytokines on the growth of M. avium within human monocytes. J Immunol 1991; 146: 3165–3170.

    PubMed  CAS  Google Scholar 

  68. Rastogi N, Bachelet M, Carvalho de Sousa JP. Intracellular growth of M. avium in human macrophages is linked to the increased synthesis of prostaglandin E2 and inhibition of the phagosome-lysosome fusions. FEMS Microbiol Immunol 1992; 4: 273–279.

    Article  PubMed  CAS  Google Scholar 

  69. Kleinhenz ME, Ellner JJ, Spagnuolo PJ, Daniel TM. Suppression of lymphocyte responses by tuberculous plasma and mycobacterial arabinogalactan. Monocyte dependence and indomethacin reversibility. J Clin Invest 1981; 68: 153–162.

    Article  PubMed  CAS  Google Scholar 

  70. Dahl KE, Shiratsuchi H, Hamilton BD, Ellner JJ, Toossi Z. Selective induction of TGFß in human monocytes by LAM of M. tuberculosis. Infect Immun 1996; 64: 399–405.

    PubMed  CAS  Google Scholar 

  71. Sibley LD, Adams LB, Krahenbuhl JL. Inhibition of interferon-gamma-mediated activation in mouse macrophages treated with lipoarabinomannan. Clin Exp Immunol 1990; 80: 141–148.

    Article  PubMed  CAS  Google Scholar 

  72. Sibley LD, Hunter SW, Brennan PJ, Krahenbuhl JL. Mycobacterial lipoarabinomannan inhibits gamma interferon-mediated activation of macrophages. Infect Immun 1988; 56: 1232–1236.

    PubMed  CAS  Google Scholar 

  73. Chan J, Fan XD, Hunter SW, Brennan PJ, Bloom BR. Lipoarabinomannan, a possible virulence factor involved in persistence of M. tuberculosis within macrophages. Infect Immun 1991; 59: 1755–1761.

    PubMed  CAS  Google Scholar 

  74. Chujor CS, Kuhn B, Schwerer B, Bernheimer H, Levis WR, Bevec D. Specific inhibition of mRNA accumulation for lymphokines in human T cell line Jurkat by mycobacterial lipoarabinomannan antigen. Clin Exp Immunol 1992; 87: 398–403.

    Article  PubMed  CAS  Google Scholar 

  75. Schwander SK, Torres M, Sada E, et al. Enhanced responses to M. tuberculosis antigens by human alveolar lymphocytes during active pulmonary tuberculosis. J Infect Dis 1998; 178: 1434–1445.

    Article  PubMed  CAS  Google Scholar 

  76. Barnes PF, Mistry SD, Cooper CL, Pirmez C, Rea TH, Modlin RL. Compartmentalization of a CD4+ T lymphocyte subpopulation in tuberculous pleuritis. J Immunol 1989; 142: 1114–1119.

    PubMed  CAS  Google Scholar 

  77. Ellner JJ. Pleural fluid and peripheral blood lymphocyte function in tuberculosis. Ann Intern Med 1978; 89: 932–933.

    PubMed  CAS  Google Scholar 

  78. Rossi GA, Balbi B, Manca F. Tuberculous pleural effusions. Evidence for selective presence of PPD-specific T-lymphocytes at site of inflammation in the early phase of the infection. Am Rev Respir Dis 1987; 136: 575–579.

    Article  PubMed  CAS  Google Scholar 

  79. Vanham G, Toossi Z, Hirsch CS, et al. Examining a paradox in the pathogenesis of human pulmonary tuberculosis: immune activation and suppression/anergy. Tuber Lung Dis 1997; 78: 145–158.

    Article  PubMed  CAS  Google Scholar 

  80. Ellner JJ. Tuberculosis in the time of AIDS. The facts and the message. Chest 1990; 98: 1051–1052.

    Article  PubMed  CAS  Google Scholar 

  81. Small PM, Schecter GF, Goodman PC, Sande MA, Chaisson RE, Hopewell PC. Treatment of tuberculosis in patients with advanced human immunodeficiency virus infection. N Engl J Med 1991; 324: 289–294.

    Article  PubMed  CAS  Google Scholar 

  82. Wallis RS, Vjecha M, Amir Tahmasseb M, et al. Influence of tuberculosis on human immunodeficiency virus (HIV-1): enhanced cytokine expression and elevated beta 2-microglobulin in HIV-1-associated tuberculosis. J Infect Dis 1993; 167: 43–48.

    Article  PubMed  CAS  Google Scholar 

  83. Folks TM, Justement J, Kinter A, et al. Characterization of a promonocyte clone chronically infected with HIV and inducible by 13-phorbol-12-myristate acetate. J Immunol 1988; 140: 1117–1122.

    PubMed  CAS  Google Scholar 

  84. Chun TW, Engel D, Mizell SB, Ehler LA, Fauci AS. Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines [published erratum appears in J Exp Med 1998 188:following 614]. J Exp Med 1998; 188: 83–91.

    CAS  Google Scholar 

  85. Griffin GE, Leung K, Folks TM, Kunkel S, Nabel GJ. Induction of NF-kappa B during monocyte differentiation is associated with activation of HIV-gene expression. Res Virol 1991; 142: 233–238.

    Article  PubMed  CAS  Google Scholar 

  86. Potts BJ, Maury W, Martin MA. Replication of HIV-1 in primary monocyte cultures. Virology 1990; 175: 465–476.

    Article  PubMed  CAS  Google Scholar 

  87. Latham PS, Lewis AM, Varesio L, et al. Expression of human immunodeficiency virus long terminal repeat in the human promonocyte cell line U937: effect of endotoxin and cytokines. Cell Immunol 1990; 129: 513–518.

    Article  PubMed  CAS  Google Scholar 

  88. Goletti D, Weissman D, Jackson RW, Collins F, Kinter A, Fauci AS. The in vitro induction of human immunodeficiency virus (HIV) replication in purified protein derivative-positive HIV-infected persons by recall antigen response to M. tuberculosis is the result of a balance of the effects of endogenous interleukin-2 and proinflammatory and antiinflammatory cytokines. J Infect Dis 1998; 177: 1332–1338.

    Article  PubMed  CAS  Google Scholar 

  89. Kinter AL, Ostrowski M, Goletti D, et al. HIV replication in CD4+ T cells of HIV-infected individuals is regulated by a balance between the viral suppressive effects of endogenous beta-chemokines and the viral inductive effects of other endogenous cytokines. Proc Natl Acad Sci USA 1996; 93: 14076–14081.

    Article  PubMed  CAS  Google Scholar 

  90. Zhang Y, Doerfler M, Lee TC, Guillemin B, Rom WN. Mechanisms of stimulation of interleukin-1 beta and tumor necrosis factor-alpha by M. tuberculosis components. J Clin Invest 1993; 91: 2076–2083.

    Article  PubMed  CAS  Google Scholar 

  91. Zhang Y, Nakata K, Weiden M, Rom WN. M. tuberculosis enhances human immunodeficiency virus-1 replication by transcriptional activation at the long terminal repeat. J Clin Invest 1995; 95: 2324–2331.

    Article  PubMed  CAS  Google Scholar 

  92. Lederman MM, Georges DL, Kusner DJ, Mudido P, Giam CZ, Toossi Z. M. tuberculosis and its purified protein derivative activate expression of the human immunodeficiency virus. J Acquir Immune Defic Syndr Hum Retrovirol 1994; 7: 727–733.

    CAS  Google Scholar 

  93. Mudido P, Georges D, Jacobs G, Toossi Z, Ellner JJ, Lederman MM. Mycobacteria and their products activate HIV expression. Int Conf AIDS. 1993; 9: 325 (Abstract).

    Google Scholar 

  94. Nakata K, Rom WN, Honda Y, et al. M. tuberculosis enhances human immunodeficiency virus-1 replication in the lung. Am J Respir Crit Care Med 1997; 155: 996–1003.

    PubMed  CAS  Google Scholar 

  95. Goletti D, Weissman D, Jackson RW, et al. Effect of M. tuberculosis on HIV replication. Role of immune activation. J Immunol 1996; 157: 1271–1278.

    PubMed  CAS  Google Scholar 

  96. Whalen C, Horsburgh CR, Hom D, Lahart C, Simberkoff M, Ellner J. Accelerated course of human immunodeficiency virus infection after tuberculosis. Am J Respir Crit Care Med 1995; 151: 129–135.

    PubMed  CAS  Google Scholar 

  97. Wallis RS, Helfand MS, Whalen C, et al. Immune activation, allergic drug toxicity, and mortality in HIV-positive tuberculosis. Tuber Lung Dis 1996; 77: 516–523.

    Article  PubMed  CAS  Google Scholar 

  98. Cooper AM, Roberts AD, Rhoades ER, Callahan JE, Getzy DM, Orme IM. The role of interleukin-12 in acquired immunity to M. tuberculosis infection. Immunology 1995; 84: 423–432.

    PubMed  CAS  Google Scholar 

  99. Flynn JL, Goldstein MM, Triebold KJ, Sypek J, Wolf S, Bloom BR. IL-12 increases resistance of BALB/c mice to M. tuberculosis infection. J Immunol 1995; 155: 2515–2524.

    PubMed  CAS  Google Scholar 

  100. Johnson BJ, Ress SR, Willcox P, et al. Clinical and immune responses of tuberculosis patients treated with low-dose IL-2 and multidrug therapy. Cytokines Mol Ther 1995; 1: 185–196.

    PubMed  CAS  Google Scholar 

  101. Johnson BJ, Bekker LG, Rickman R, et al. rhuIL-2 adjunctive therapy in multidrug resistant tuberculosis: a comparison of two treatment regimens and placebo. Tuber Lung Dis 1997; 78: 195–203.

    Article  PubMed  CAS  Google Scholar 

  102. Hirsch CS, Ellner JJ, Blinkhorn R, Toossi Z. In vitro restoration of T cell responses in tuberculosis and augmentation of monocyte effector function against M. tuberculosis by natural inhibitors of transforming growth factor beta. Proc Natl Acad Sci USA 1997; 94: 3926–3931.

    Article  PubMed  CAS  Google Scholar 

  103. Bermudez LE, Young LS. Tumor necrosis factor, alone or in combination with IL-2, but not IFN-gamma, is associated with macrophage killing of M. avium complex. J Immunol 1988; 140: 3006–3013.

    PubMed  CAS  Google Scholar 

  104. Bermudez LE, Stevens P, Kolonoski P, Wu M, Young LS. Treatment of experimental disseminated M. avium complex infection in mice with recombinant IL-2 and tumor necrosis factor. J Immunol 1989; 143: 2996–3000.

    PubMed  CAS  Google Scholar 

  105. Jeevan A, Asherson GL. Recombinant interleukin-2 limits the replication of Mycobacterium lepraemurium and Mycobacterium bovis BCG in mice. Infect Immun 1988; 56: 660–664.

    PubMed  CAS  Google Scholar 

  106. Akuffo H, Kaplan G, Kiessling R, et al. Administration of recombinant interleukin-2 reduces the local parasite load of patients with disseminated cutaneous leishmaniasis. J Infect Dis 1990; 161: 775–780.

    Article  PubMed  CAS  Google Scholar 

  107. Hancock GE, Cohn ZA, Kaplan G. (1989) The generation of antigen-specific, major histocompatibility complex-restricted cytotoxic T lymphocytes of the CD4 + phenotype. Enhancement by the cutaneous administration of interleukin 2. J Exp Med 169: 909–919.

    Article  PubMed  CAS  Google Scholar 

  108. Kaplan G, Kiessling R, Teklemariam S., et al. The reconstitution of cell-mediated immunity in the cutaneous lesions of lepromatous leprosy by recombinant interleukin 2. J Exp Med 1989; 169: 893–907.

    Article  PubMed  CAS  Google Scholar 

  109. Kaplan G, Britton WJ, Hancock GE, et al. The systemic influence of recombinant interleukin 2 on the manifestations of lepromatous leprosy. J Exp Med 1991; 173: 993–1006.

    Article  PubMed  CAS  Google Scholar 

  110. Nathan CF, Kaplan G, Levis WR, et al. Local and systemic effects of intradermal recombinant interferon-gamma in patients with lepromatous leprosy. N Engl J Med 1986; 315: 6–15.

    Article  PubMed  CAS  Google Scholar 

  111. Holland SM, Eisenstein EM, Kuhns DB, et al. Treatment of refractory disseminated non-tuberculous mycobacterial infection with interferon gamma. A preliminary report. N Engl J Med 1994; 330: 1348–1355.

    Article  PubMed  CAS  Google Scholar 

  112. Squires KE, Brown ST, Armstrong D, Murphy WF, Murray HW. Interferon-gamma treatment for M. avium-intracellular complex bacillemia in patients with AIDS [letter]. J Infect Dis 1992; 166: 686–687.

    Article  PubMed  CAS  Google Scholar 

  113. Raad I, Hachem R, Leeds N, Sawaya R, Salem Z, Atweh S. Use of adjunctive treatment with interferon-gamma in an immunocompromised patient who had refractory multidrugresistant tuberculosis of the brain. Clin Infect Dis 1996; 22: 572–574.

    Article  PubMed  CAS  Google Scholar 

  114. Condos R, Rom WN, Schluger NW. Treatment of multidrug-resistant pulmonary tuberculosis with interferon-gamma via aerosol. Lancet 1997; 349: 1513–1515.

    Article  PubMed  CAS  Google Scholar 

  115. Giosue S, Casarini M, Alemanno L, et al. Effects of aerosolized interferon-alpha in patients with pulmonary tuberculosis. Am J Respir Crit Care Med 1998; 158: 1156–1162.

    PubMed  CAS  Google Scholar 

  116. Palmero D, Eiguchi K, Rendo P, Castro ZL, Abbate E, Gonzalez ML. Phase II trial of recombinant interferon-alpha2b in patients with advanced intractable multidrug-resistant pulmonary tuberculosis: long-term follow-up. Int J Tuberc Lung Dis 1999; 3: 214–218.

    PubMed  CAS  Google Scholar 

  117. Silva RA, Pais TF, Appelberg R. Evaluation of IL-12 in immunotherapy and vaccine design in experimental M. avium infections. J Immunol 1998; 161: 5578–5585.

    PubMed  CAS  Google Scholar 

  118. Barnes P, Zhang M, Jones B. Modulation of Thl responses in HIV infection and tuberculosis (TB). Int Conf AIDS. 1994 Aug 7–12; 10: 126 (Abstract).

    Google Scholar 

  119. Fenton MJ, Vermeulen MW, Kim S, Burdick M, Strieter RM, Kornfeld H. Induction of gamma interferon production in human alveolar macrophages by M. tuberculosis. Infect Immun 1997; 65: 149–156.

    Google Scholar 

  120. Sheskin J. Thalidomide in the treatment of lepra reactions. Clin Pharmacol Ther 1965; 6: 303

    PubMed  CAS  Google Scholar 

  121. Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G. Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med 1991; 173: 699–703.

    Article  PubMed  CAS  Google Scholar 

  122. Tramontana JM, Utaipat U, Molloy A, et al. Thalidomide treatment reduces tumor necrosis factor production and enhances weight gain in patients with pulmonary tuberculosis. Mol Med 1995; 1: 384–397.

    PubMed  CAS  Google Scholar 

  123. Barnhill RL, Doll NJ, Millikan LE, Hastings RC. Studies on the anti-inflammatory properties of thalidomide: effects on polymorphonuclear leukocytes and monocytes. J Am Acad Dermatol 1984; 11: 814–819.

    Article  PubMed  CAS  Google Scholar 

  124. Keenan RJ, Eiras G, Burckart GJ, et al. Immunosuppressive properties of thalidomide. Inhibition of in vitro lymphocyte proliferation alone and in combination with cyclosporine or FK506. Transplantation 1991; 52: 908–910.

    Article  PubMed  CAS  Google Scholar 

  125. D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 1994; 91: 4082–4085.

    Article  PubMed  Google Scholar 

  126. Makonkawkeyoon S, Limson Pobre RN, Moreira AL, Schauf V, Kaplan G. Thalidomide inhibits the replication of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1993; 90: 5974–5978.

    Article  PubMed  CAS  Google Scholar 

  127. Peterson PK, Gekker G, Bornemann M, Chatterjee D, Chao CC. Thalidomide inhibits lipoarabinomannan-induced upregulation of human immunodeficiency virus expression. Antimicrob Agents Chemother 1995; 39: 2807–2809.

    Article  PubMed  CAS  Google Scholar 

  128. Jacobson JM, Greenspan JS, Spritzler J, et al. Thalidomide for the treatment of oral aphthous ulcers in patients with human immunodeficiency virus infection. National Institute of Allergy and Infectious Diseases AIDS Clinical Trials Group. N Engl J Med 1997; 336: 1487–1493.

    Article  PubMed  CAS  Google Scholar 

  129. Klausner JD, Makonkawkeyoon S, Akarasewi P, et al. The effect of thalidomide on the pathogenesis of human immunodeficiency virus type 1 and M. tuberculosis infection. J Acquir Immune Defic Syndr Hum Retrovirol 1996; 11: 247–257.

    Article  PubMed  CAS  Google Scholar 

  130. Tsenova L, Bergtold A, Freedman VH, Young RA, Kaplan G. Tumor necrosis factor alpha is a determinant of pathogenesis and disease progression in mycobacterial infection in the central nervous system [In Process Citation]. Proc Natl Acad Sci USA 1999; 96: 5657–5662.

    Article  PubMed  CAS  Google Scholar 

  131. Tsenova L, Sokol K, Freedman VH, Kaplan G. A combination of thalidomide plus antibiotics protects rabbits from mycobacterial meningitis-associated death. J Infect Dis 1998; 177: 1563–1572.

    Article  PubMed  CAS  Google Scholar 

  132. Doherty GM, Jensen JC, Alexander HR, Buresh CM, Norton JA. Pentoxifylline suppression of tumor necrosis factor gene transcription. Surgery 1991; 110: 192–198.

    PubMed  CAS  Google Scholar 

  133. Tilg H, Eibl B, Pichl M, et al. Immune response modulation by pentoxifylline in vitro. Transplantation 1993; 56: 196–201.

    Article  PubMed  CAS  Google Scholar 

  134. Zabel P, Schade FU, Schlaak M. Inhibition of endogenous TNF formation by pentoxifylline. Immunobiology 1993; 187: 447–463.

    Article  PubMed  CAS  Google Scholar 

  135. Lilly CM, Sandhu JS, Ishizaka A, et al. Pentoxifylline prevents tumor necrosis factor-induced lung injury. Am Rev Respir Dis 1989; 139: 1361–1368.

    PubMed  CAS  Google Scholar 

  136. Fazely F, Dezube BJ, Allen-Ryan J, Pardee AB, Ruprecht RM. Pentoxifylline (Trental) decreases the replication of the human immunodeficiency virus type 1 in human peripheral blood mononuclear cells and in cultured T cells. Blood 1991; 77: 1653–1656.

    PubMed  CAS  Google Scholar 

  137. Steigbigel RT, Craddock B. Effect of pentoxifylline on HIV-1 replication in human lymphocytes and macrophages. Int Conf AIDS. 1992 July 19–24; 8: A56 ( Abstract).

    Google Scholar 

  138. Dezube BJ, Pardee AB, Chapman B, et al. Pentoxifylline decreases tumor necrosis factor expression and serum triglycerides in people with AIDS. NIAID AIDS Clinical Trials Group. J Acquir Immune Defic Syndr Hum Retrovirol 1993; 6: 787–794.

    CAS  Google Scholar 

  139. Dezube BJ, Lederman MM, Spritzler JG, et al. High-dose pentoxifylline in patients with AIDS: inhibition of tumor necrosis factor production. National Institute of Allergy and Infectious Diseases AIDS Clinical Trials Group. J Infect Dis 1995; 171: 1628–1632.

    Article  PubMed  CAS  Google Scholar 

  140. Wallis RS, Nsubuga P, Okwera A, et al. Pentoxifylline in human immunodeficiency virusseropositive tuberculosis: a randomized, controlled trial. J Infect Dis 1996; 174: 727–733.

    Article  PubMed  CAS  Google Scholar 

  141. Wallis RS, Johnson JL, Okwera A, et al. Pentoxifylline in human immunodeficiency viruspositive tuberculosis: safety at 4 years [letter]. J Infect Dis 1998; 178: 1861

    Article  PubMed  CAS  Google Scholar 

  142. Andrieu JM, Lu W, Levy R. Sustained increases in CD4 cell counts in asymptomatic human immunodeficiency virus type 1-seropositive patients treated with prednisolone for 1 year. J Infect Dis 1995; 171: 523–530.

    Article  PubMed  CAS  Google Scholar 

  143. Stanford JL, Rook GA, Bahr G, et al. M. vaccae in immunoprophylaxis and immunotherapy of leprosy and tuberculosis. Vaccine 1990; 8: 525–530.

    Article  PubMed  CAS  Google Scholar 

  144. Hachem R, Raad I, Rolston KV, et al. Cutaneous and pulmonary infections caused by M. vaccae. Clin Infect Dis 1996; 23: 173–175.

    Article  PubMed  CAS  Google Scholar 

  145. Stanford JL, Paul RC. A preliminary report on some studies of environmental mycobacteria. Ann Soc Belg Med Trop 1973; 53: 389–393.

    PubMed  CAS  Google Scholar 

  146. Stanford JL. Immunotherapy for leprosy and tuberculosis. Prog Drug Res 1989; 33: 415–448, 415–448.

    Google Scholar 

  147. Stanford JL, Bahr GM, Rook GA, et al. Immunotherapy with M. vaccae as an adjunct to chemotherapy in the treatment of pulmonary tuberculosis. Tubercle 1990; 71: 87–93.

    Article  PubMed  CAS  Google Scholar 

  148. Stanford JL, Grange JM. New concepts for the control of tuberculosis in the twenty first century. J R Coll Physicians Lond 1993; 27: 218–223.

    PubMed  CAS  Google Scholar 

  149. Etemadi A, Farid R, Stanford JL. Immunotherapy for drug-resistant tuberculosis [letter]. Lancet 1992; 340: 1360–1361.

    Article  PubMed  CAS  Google Scholar 

  150. Corlan E, Marica C, Macavei C, Stanford JL, Stanford CA. Immunotherapy with M. vaccae in the treatment of tuberculosis in Romania. 2. Chronic or relapsed disease. Respir Med 1997; 91: 21–29.

    Article  PubMed  CAS  Google Scholar 

  151. Corlan E, Marica C, Macavei C, Stanford JL, Stanford CA. Immunotherapy with M. vaccae in the treatment of tuberculosis in Romania. 1. Newly-diagnosed pulmonary disease. Respir Med 1997; 91: 13–19.

    Article  PubMed  CAS  Google Scholar 

  152. Onyebujoh PC, Abdulmumini T, Robinson S, Rook GA, Stanford JL. Immunotherapy with M. vaccae as an addition to chemotherapy for the treatment of pulmonary tuberculosis under difficult conditions in Africa. Respir Med 1995; 89: 199–207.

    Article  PubMed  CAS  Google Scholar 

  153. de Bruyn G, Gamer P. M. vaccae immunotherapy for treating tuberculosis (Cochrane Review). In: The Cochrane Library, no.l. Oxford: Update Software, 1999.

    Google Scholar 

  154. Anonymous. Immunotherapy with M. vaccae in patients with newly diagnosed pulmonary tuberculosis: a randomised controlled trial. Durban Immunotherapy Trial Group. Lancet 1999; 354: 116–119.

    Article  Google Scholar 

  155. Johnson JL, Kamya RM, Okwera A, et al. Randomized controlled trial of Mycobacterium vaccae immunotherapy in non-human immunodeficiency virus-infected Ugandan adults with newly diagnosed pulmonary tuberculosis. The Uganda-Case Western Reserve University Research Collaboration. J Infect Dis 2000; 181: 1304–1312.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wallis, R.S., Johnson, J.L. (2002). Immunotherapy for Tuberculosis and Other Mycobacterial Infections. In: Jacobson, J.M. (eds) Immunotherapy for Infectious Diseases. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-171-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-171-8_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9681-9

  • Online ISBN: 978-1-59259-171-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics