Skip to main content

Principles of Antitumor Targeting of Cytotoxic Drugs

  • Chapter
Tumor Targeting in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 247 Accesses

Abstract

Cancer cells, unlike bacteria and viruses, do not contain molecular targets that are completely foreign to the host. As a result, cytotoxic anticancer therapy has primarily depended on drugs that depend on an increased proliferative rate in the target–cell popu­lation, acting primarily on DNA and enzymes involved in DNA replication. However, for patients with advanced disease, clinically approved cytotoxics usually only cause remis­sions of limited duration and variable degree followed by regrowth and spread of often more aggressive and multidrug–resistant cancer (1). In part this is because cells surviving under hypoxic conditions in the center of tumors are much less susceptible to traditional cancer drugs (2), not only because of their growth–arrested state but also because of lim­ited drug penetration (3) and induced resistance mechanisms (4). When these cells are revived by vascularization, following destruction of the tumor periphery, they often have a higher metastatic potential (5,6). In addition, micrometastases and minimal residual disease (7), often beginning as small populations of cells that evade resection of the primary tumor, often cause clinical relapse (8). Newer approaches to cancer chemo­therapy that exploit angiogenesis mechanisms and various signal–transduction pathways have yet to make an impact in the clinic (9–11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eltahir A, Heys SD, Hutcheon AW, Sarkar TK, Smith I, Walker LG, et al. Treatment of large and locally advanced breast cancers using neoadjuvant chemotherapy. Am J Surg1998; 175:127–132.

    Article  PubMed  CAS  Google Scholar 

  2. Tomida A, Tsuruo T. Drug resistance mediated by cellular stress response to the microenvironment of solid tumors. Anticancer Drug Des1999; 14:169–177.

    PubMed  CAS  Google Scholar 

  3. Erlanson M, Danielszolgay E, Carlsson J. Relations between the penetration, binding and average concentration of cytostatic drugs in human tumor spheroids. Cancer Chemother Pharmacol1992; 29:343–353.

    Article  PubMed  CAS  Google Scholar 

  4. Wartenberg M, Frey C, Diedershagen H, Ritgen J, Hescheler J, Sauer H. Development of an intrinsic P–glycoprotein–mediated doxorubicin resistance in quiescent cell layers of large, multicellular prostate tumor spheroids. Intl J Cancer1998; 75:855–863.

    Article  CAS  Google Scholar 

  5. Semenza GL. Hypoxia, clonal selection and the role of HIF–1 in tumor progression. Crit Rev Biochem mol Biol2000; 35:71–103.

    Article  PubMed  CAS  Google Scholar 

  6. Rofstad EK. Microenvironment–induced cancer metastasis. Intl J Radiat Biol2000; 76: 589–605.

    Article  PubMed  CAS  Google Scholar 

  7. Hirsch-Ginsberg C. Detection of minimal residual disease: relevance for diagnosis and treatment of human malignancies. Ann Rev Med1998; 49:111–122.

    Article  PubMed  CAS  Google Scholar 

  8. Schott A, Vogel I, Krueger U, Kalthoff H, Schreiber HW, Schmiegel W, et al. Isolated tumor cells are frequently detectable in the peritoneal cavity of gastric and colorectal cancer patients and serve as a new prognostic marker. Ann Surg1998; 227:372–379.

    Article  PubMed  CAS  Google Scholar 

  9. McDonald ER 3rd, El-Deiry WS. Cell cycle control as a basis for cancer drug development. Intl J Oncol2000; 16:871–886.

    CAS  Google Scholar 

  10. Griffioen AW. Phenotype of the tumor vasculature; cell adhesion as a target for tumor therapy. Cancer J1997; 10:249–255.

    Google Scholar 

  11. Rowinsky EK, Windle JJ, Von Hoff DD. Ras protein farnesyltransferase: A strategic target for anti­cancer therapeutic development. J Clin Oncol1999; 17:3631–3652.

    PubMed  CAS  Google Scholar 

  12. Lowenthal RM, Eaton K. Toxicity of chemotherapy. Hematol Oncol Clin NAme1996; 10:967–990.

    Article  CAS  Google Scholar 

  13. Hortobagyi GN. Anthracyclines in the treatment of cancer: an overview. Drugs1997; 54:1–7.

    Article  PubMed  CAS  Google Scholar 

  14. Hellstrom KE, Hellstrom I. Tumor antigens, in Encyclopedia of Cancer, vol I (Bertino JR, ed). Academic Press, San Diego, 1997; pp 1810–1817.

    Google Scholar 

  15. Wick B, Groner, B. Evaluation of cell surface antigens as potential targets for recombinant tumor tox­ins. Cancer Lett1997; 118:161–172.

    Article  PubMed  CAS  Google Scholar 

  16. Elias DJ, Hirschowitz L, Kline LE, Kroener JF, Dillman RO, Walker LE, et al. Phase I clinical com­parative study of monoclonal antibody KS1/4 and KSl/4–methotrexate immunoconjugate in patients with non–small cell lung carcinoma. Cancer Res1990; 50:4154–159.

    PubMed  CAS  Google Scholar 

  17. Sugerman S, Murray JL, Saleh M, LoBuglio AF, Jones D, Daniel C, et al. A phase I study of BR96-doxorubicin (BR96-DOX) in patients with advanced carcinoma expressing the Lewisy antigen. Proc Am Soc Clin Oncol1995; 14:473.

    Google Scholar 

  18. Maxwell P. Carcinoembryonic antigen: cell adhesion molecule and useful diagnostic marker. Br J Biomed Sci1999; 56:209–214.

    PubMed  CAS  Google Scholar 

  19. Ballesta AM., Molina R, Filella X, Jo J, Gimenez N. Carcinoembryonic antigen in staging and follow-up of patients with solid tumors. Tumor (s) Biol1995; 16:32–41.

    Article  CAS  Google Scholar 

  20. Siler K, Eggensperger D, Hand PH, Milenic DE, Miller LS, Houchens DP, Hinkle G, Schlom J. Ther­apeutic efficacy of a high-affinity anticarcinoembryonic antigen monoclonal antibody (COL-1). Biotechnol Ther1993; 4:163–181.

    PubMed  CAS  Google Scholar 

  21. Masuda K, Takahashi K, Nagata S, Hirano K, Takagishi Y. Immunotoxins composed of monoclonal antibody to alpha–fetoprotein and gelonin as a potent hepatoma-targeted drug delivery system. J Drug Targeting1994; 2:323–331.

    Article  CAS  Google Scholar 

  22. Zhang SL, Cordon-Cardo C, Zhang HS, Reuter VE, Adluri S, Hamilton WB, et al. Selection of tumor antigens as targets for immune attack using immunohistochemistry. 1. Focus on gangliosides. Intl J Cancer 1991; 73:42–49.

    Article  Google Scholar 

  23. Fell HP, Gayle MA, Yelton D, Lipsich L, Schieven GL, Marken JS, et al. Chimeric L6 anti-tumor antibody. Genomic construction, expression, and characterization of the antigen binding site. J Biol Chem1992; 267:15552–15558.

    PubMed  CAS  Google Scholar 

  24. Hellstrom I, Beaumier PL, Hellstrom KE. Antitumor effects of L6, and IgG2a antibody that reacts with most human carcinomas. Proc Natl Acad Sci USA1986; 83:7059–7063.

    Article  PubMed  CAS  Google Scholar 

  25. Sanders DS, Kerr MA. Lewis blood group and CEA related antigens; coexpressed cell–cell adhesion molecules with roles in the biological progression and dissemination of tumours. Mol Pathol1999; 52:174–178.

    Article  PubMed  CAS  Google Scholar 

  26. Ragupathi G. Carbohydrate antigens as targets for active specific immunotherapy. Cancer Immunol Immunother1996; 43:152–157.

    Article  PubMed  CAS  Google Scholar 

  27. Nagai Y, Ishikawa O, Miyachi Y. Lewis–y antigen expression in normal and neoplastic cutaneous tis­sues. Eur J Derm1995; 5:153–155.

    Article  Google Scholar 

  28. Garrigues J, Garrigues U, Hellstrom I, Hellstrom KE. Ley-specific antibody with potent anti–tumor activity is internalized and degraded in lysosomes. Am J Pathol1993; 142:607–622.

    PubMed  CAS  Google Scholar 

  29. Rowland A J, Pietersz GA, McKenzie IF. Preclinical investigation of the antitumour effects of anti-CD 19-idarubicin immunoconjugates. Cancer Immunol Immunother1993; 37:195–202.

    Article  PubMed  CAS  Google Scholar 

  30. Lemieux P, Page M. (1994) Sensitivity of multidrug-resistant MCF-7 cells to a transferring-doxorubicin conjugate. Anticancer Res1994; 14:397–403.

    Google Scholar 

  31. Bumol TF, Marder P, DeHerdt S V, Borowitz MJ, Apelgren LD. Characterization of human tumor and normal tissue reactivity of the KS1/4 monoclonal antibody. Hybridoma1988; 7:407–416.

    Article  PubMed  CAS  Google Scholar 

  32. Hinman LM, Hamann PR, Wallace R, Menendez AT, Durr FE, Upeslacis J. Preparation and charac­terization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of anti­tumor antibiotics. Cancer Res1993; 53:3336–3342.

    PubMed  CAS  Google Scholar 

  33. Ravindranath MH, Amiri AA, Bauer PM, Kelley MC, Essner R, Morton DL. Endothelial-selectinlig-ands sialyl Lewis–x and sialyl Lewis–a are differentiation antigens immunogenic in human melanoma. Cancer1997; 79:1686–1697.

    Article  PubMed  CAS  Google Scholar 

  34. Hakomori S, Zhang YM. Glycosphingolipid antigens and cancer therapy. Chem Biol1997; 4:97–104.

    Article  PubMed  CAS  Google Scholar 

  35. Ruoslahti E. Integrins as signaling molecules and targets for tumor therapy. Kidney Int 1997; 51:1413–1417.

    Article  PubMed  CAS  Google Scholar 

  36. Chang K, Pastan I. Molecular cloning of mesothelin, a differentiation antigen present on mesothe–lium, mesotheliomas, and ovarian cancers. Proc Natl Acad Sci USA1996; 93:136–140.

    Article  PubMed  CAS  Google Scholar 

  37. Huang YW, Baluna R, Vitetta ES. Adhesion molecules as targets for cancer therapy. Histol Histopathol1997; 12:467–177.

    PubMed  CAS  Google Scholar 

  38. Lally ET, Kieba IR, Sato A, Green CL, Rosenbloom J, Korostoff J, et al. RTX toxins recognize a beta 2 integrin on the surface of human target cells. J Biol Chem1997; 272:30463–30469.

    Article  PubMed  CAS  Google Scholar 

  39. Appleman LJ, Frey AB. Tumor antigens encoded by oncogenes and the impact of oncogenes upon the immune response. Cell Immunol1996; 170:1–10.

    Article  PubMed  CAS  Google Scholar 

  40. Curiel DT. Targeted tumor cytotoxicity mediated by intracellular single-chain anti-oncogene antibodies, in Gene Therapy, vol 40 (August JT, ed). Academic Press Inc, San Diego, 1997; pp 51–84.

    Google Scholar 

  41. Halpern M. Proto–oncogene products as target antigens for cancer vaccines. Intl J Oncol 1997; 11:863–868.

    CAS  Google Scholar 

  42. Cirisano FD, Karlan BY. The role of the HER–2/neu oncogene in gynecologic cancers. J Soc Gynecol Invest1996; 3:99–105.

    Article  CAS  Google Scholar 

  43. Disis ML, Cheever MA. HER–2/neu protein: a target for antigen–specific immunotherapy of human cancer, in Advances in Cancer Research, vol 71 (Vandewoude GF, Klein G, eds). Academic Press Inc., San Diego, 1997; pp 343–371.

    Google Scholar 

  44. Rabbitts TH. Chromosomal translocations in human cancer. Nature1994; 372:143–149.

    Article  PubMed  CAS  Google Scholar 

  45. Theobald M, Biggs J, Dittmer D, Levine AJ, Sherman LA. Targeting p53 as a general tumor antigen. Proc Natl Acad Sci USA1995; 92:11993–11997.

    Article  PubMed  CAS  Google Scholar 

  46. Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R. Heat shock protein 72 in tumor cells — a recognition structure for natural killer cells. J Immunol1997; 158:4341–4350.

    PubMed  CAS  Google Scholar 

  47. Coney LR, Mezzanzanica D, Sanborn D, Casalini P, Colnaghi MI, Zurawski VR. Chimeric murine–human antibodies directed against folate binding receptor are efficient mediators of ovarian carcinoma cell killing. Cancer Res1994; 54:2448–2455.

    PubMed  CAS  Google Scholar 

  48. Richardson DR, Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim Biophys Acta1997; 1331:1–40.

    Article  PubMed  CAS  Google Scholar 

  49. Shi, N, Pardridge WM. Noninvasive gene targeting to the brain. Proc Natl Acad Sci USA2000; 97:7567–7572.

    Article  PubMed  CAS  Google Scholar 

  50. Bruggemann EP, Chaudhary V, Gottesman MM, Pastan I. Pseudomonas exotoxin fusion proteins are potent immunogens for raising antibodies against P-glycoprotein. Bio Techniques1991; 10:202–209.

    CAS  Google Scholar 

  51. Merimsky O, Shoenfeld Y, Chaitchik S, Yecheskel G, Fishman P. Antigens and antibodies in malignant melanoma. Tumor Biol1994; 15:188–202.

    Article  CAS  Google Scholar 

  52. Bast RC Jr, Boyer CM, Xu FJ, Wu S, Wiener JR, Kassim SK, Kohler MF, O’Briant K, Desombrel K. Selected molecular targets for diagnosis and therapy of epithelial ovarian cancer. Cancer Mol Biol1994; 1:87–93.

    CAS  Google Scholar 

  53. Kurpad SN, Zhao XG, Wikstrand CJ, Batra SK, McLendon RE, Bigner DD. Tumor antigens in astro­cytic gliomas. Glia1995; 15:244–256.

    Article  PubMed  CAS  Google Scholar 

  54. Fan Z, Mendelsohn J. Therapeutic application of anti-growth factor receptor antibodies. Curr Opin Oncol1998; 10:67–73.

    Article  PubMed  CAS  Google Scholar 

  55. Feener EP, King GL. The biochemical and physiological characteristics of receptors. Adv Drug Del Rev1998;29:197–213.

    Article  CAS  Google Scholar 

  56. Reynolds TY, Rockwell S, Glazer PM. Genetic instability induced by the tumor microenvironment. Cancer Res1996; 56: 5754–5757.

    PubMed  CAS  Google Scholar 

  57. Hernando J J, Von Kleist S, Grunert F. A repertoire of monoclonal antibodies reveals extensive epitope heterogeneity in CEA purified from neoplasms originating from different organs. Intl J Cancer1994; 56:655–661.

    Article  CAS  Google Scholar 

  58. Guadagni F, Roselli M, Schlom J, Greiner JW. In vitro and in vivo regulation of human tumor antigen expression by human recombinant interferons: a review. Intl J Biol Markers1994; 9:53–60.

    CAS  Google Scholar 

  59. Becker JC, Varki N, Gillies SD, Furukawa K, Reisfeld RA. An antibody–interleukin 2 fusion protein overcomes tumor heterogeneity by induction of a cellular immune response. Proc Natl Acad Sci USA1996;93:7826–7831.

    Article  PubMed  CAS  Google Scholar 

  60. Laguzza BC, Nichols CL, Briggs SL, Cullinan GJ, Johnson DA, Starling JJ, et al. New antitumor monoclonal antibody–vinca conjugates LY203725 and related compounds: design, preparation, and representative in vivo activity. J Med Chem1989; 32:548–555.

    Article  PubMed  CAS  Google Scholar 

  61. Liu CN, Tadayoni BM, Bourret LA, Mattocks KM, Derr SM, Widdison WC, et al. Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proc Natl Acad Sci USA1996; 93:8618–8623.

    Article  PubMed  CAS  Google Scholar 

  62. Shockley TR, Lin K, Sung C, Nagy JA, Tompkins RG, Dedrick RL, et al. A quantitative analysis of tumor specific monoclonal antibody uptake by human melanoma xenografts: effects of anti­body immunological properties and tumor antigen expression levels. Cancer Res1992; 52:357–366.

    PubMed  CAS  Google Scholar 

  63. Tunggal JK, Melo T, Ballinger JR, Tannock IF. The influence of expression of P–glycoprotein on the penetration of anticancer drugs through multicellular layers. Intl J Cancer2000; 86:101–107.

    Article  CAS  Google Scholar 

  64. Kiessling LL, Gordron EJ. Transforming the cell surface through proteolysis. Chem Biol1998; 5:R49–R62.

    Article  PubMed  CAS  Google Scholar 

  65. Maimonis P, Hayes DF, O’Hara C, Kufe D. Detection and characterization of a high molecular weight human lung carcinoma–associated glycoprotein. Cancer Res1990; 50:6738–6743.

    PubMed  CAS  Google Scholar 

  66. Taylor DD, Black PH. Shedding of plasma membrane fragments. Neoplastic and developmental importance. Dev Biol1985; 3:33–57.

    Google Scholar 

  67. Pimm MV, Durrant LG, Baldwin RW. Influence of circulating antigen on the biodistribution and tumour localization of radiolabeled monoclonal antibody in a human tumor: nude mouse xenograft model. Eur J Cancer Clin Oncol1989; 25:1325–1332.

    Article  PubMed  CAS  Google Scholar 

  68. Kato Y, Sugiyama Y. Targeted delivery of peptides, proteins, and genes by receptor-mediated endocy-tosis. Crit Rev Ther Drug Carr Syst1997; 14:287–331.

    Article  CAS  Google Scholar 

  69. Cobb LM. Intratumor factors influencing the access of antibody to tumor cells. Cancer Immunol Immunother1989; 28:235–240.

    Article  PubMed  CAS  Google Scholar 

  70. Baish JW, Gazit Y, Berk DA, Nozue M, Baxter LT, Jain RK. Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation–based network model. Microvascular Res1996; 51:327–346.

    Article  CAS  Google Scholar 

  71. Eskey CJ, Wolmark N, Mcdowell CL, Domach MM, Jain RK. Residence time distributions of various tracers in tumors: implications for drug delivery and blood flow measurement. J Natl Cancer Inst1994; 86:293–299.

    Article  PubMed  CAS  Google Scholar 

  72. Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG. Heterogeneity of angiogen–esis and blood vessel maturation in human tumors: implications for antiangiogenic tumors therapies. Cancer Res2000; 60:1388–1393.

    PubMed  CAS  Google Scholar 

  73. Seymour LW, Miyamoto Y, Maeda H, Brereton M, Strohalm J, Ulbrich K, Duncan R. Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur J Cancer1995; 31A:766–770.

    Article  PubMed  CAS  Google Scholar 

  74. Steyger PS, Baban DF, Brereton M, Ulbrich K, Seymour LW. Intratumoural distribution as a determinant of tumour responsiveness to therapy using polymer-based macromolecular prodrugs. J Control Release1996; 39:35–46.

    Article  CAS  Google Scholar 

  75. Gabizon A, Goren D, Horowitz AT, Tzemach D, Lossos A, Siegal T. Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Adv Drug Del Rev1997; 24:337–344.

    Article  CAS  Google Scholar 

  76. Hodoshima N, Udagawa C, Ando T, Fukuyasu H, Watanabe H, Nakabayashi S. Lipid nanoparticles for delivering antitumor drugs. Int J Pharm1997; 146:81–92.

    Article  CAS  Google Scholar 

  77. Kratz F, Mueller-Driver R, Hofmann I, Drevs J, Unger C. A novel macromolecular prodrug concept exploiting endogenous serum albumin as a drug carrier for cancer chemotherapy J Med Chem2000; 43:1253–1256.

    Article  PubMed  CAS  Google Scholar 

  78. Boucher Y, Leunig M, Jain RK. Tumor angiogenesis and interstitial hypertension. Cancer Res1996; 56:4264–4266.

    PubMed  CAS  Google Scholar 

  79. Jain RK. 1995 Whitaker lecture: Delivery of molecules, particles, and cells to solid tumors. Ann Bio-med Eng1996; 24:457–473.

    Article  Google Scholar 

  80. Helmlinger G, Netti PA, Lichtenbeld HC, Melder RJ, Jain RK. Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol1997; 15:778–783.

    Article  PubMed  CAS  Google Scholar 

  81. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res1995; 55:3752–3756.

    PubMed  CAS  Google Scholar 

  82. Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. III. Role of binding and metabolism. Microvasc Res1991; 41:5–23.

    Article  PubMed  CAS  Google Scholar 

  83. Fenton BM, Lord EM, Paoni SF. Enhancement of tumor perfusion and oxygenation by carbogen and nicotinamide during single– and multifraction irradiation. Radiat Res2000; 153:75–83.

    Article  PubMed  CAS  Google Scholar 

  84. Lee I, Boucher Y, Demhartner TJ, Jain RK. Changes in tumour blood flow, oxygenation and intersti­tial fluid pressure induced by pentoxifylline. Br J Cancer1994; 69:492–196.

    Article  PubMed  CAS  Google Scholar 

  85. Zlotecki RA, Baxter LT, Boucher Y, Jain RK. Pharmacologic modification of tumor blood flow and interstitial fluid pressure in a human tumor xenograft: network analysis and mechanistic interpreta­tion. Microvascular Res1995; 50:429––43.

    Article  CAS  Google Scholar 

  86. Kristensen CA, Nozue M, Boucher Y, Jain RK. Reduction of interstitial fluid pressure after TNF-alpha treatment of three human melanoma xenografts. Br J Cancer1996; 74:533–536.

    Article  PubMed  CAS  Google Scholar 

  87. LeBerthon B, Khawli LA, Alauddin M, Miller GK, Charak BS, Mazumder A, Epstein A. L. Enhanced tumor uptake of macromolecules induced by a novel vasoactive interleukin–2 immunoconjugate. Cancer Res1991; 51:2694–2698.

    PubMed  CAS  Google Scholar 

  88. Lee J, Moran JP, Fenton BM, Koch CJ, Frelinger JG, Keng PC, Lord EM. Alteration of tumor response to radiation by interleukin–2 gene transfer. Br J Cancer2000; 82:937–944.

    Article  PubMed  CAS  Google Scholar 

  89. Baillie CT, Winslet MC, Bradley NJ. Tumor (s) vasculature: a potential therapeutic target. Br J Cancer1995; 72:257–267.

    Article  PubMed  CAS  Google Scholar 

  90. Griffioen AW, Molema G. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev2000; 52:237–268.

    PubMed  CAS  Google Scholar 

  91. Martini-Baron G, Marme D. VEGF–mediated tumor angiogenesis: a new target for cancer therapy. Curr Opin Biotechnol1995; 6:675–680.

    Article  Google Scholar 

  92. Perletti G, Concari P, Giardini R, Marras E, Piccinini F, Folkman J, Chen L. Antitumor activity of endo–statin against carcinogen–induced rat primary mammary tumors. Cancer Res2000; 60:1793–1796.

    PubMed  CAS  Google Scholar 

  93. Folkman J. Fighting cancer by attacking its blood supply. Sci Am1996; 275:150–154.

    Article  PubMed  CAS  Google Scholar 

  94. Thorpe PE, Derbyshire EJ. Targeting the vasculature of solid tumours. J Control Release1997; 48:277–288.

    Article  CAS  Google Scholar 

  95. Dvorak HF, Nagy JA, Dvorak AM. Structure of solid tumors and their vasculature: implications for therapy with monoclonal antibodies. Cancer Cells1991; 3:77–85.

    PubMed  CAS  Google Scholar 

  96. McMahon G. VEGF receptor signaling in tumor angiogenesis. Oncologist2000; 5:3–10.

    Article  PubMed  CAS  Google Scholar 

  97. Baban DF, Seymour LW. Control of tumor vascular permeability. Adv Drug Del Rev1998; 34:109–119.

    Article  CAS  Google Scholar 

  98. Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti–vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA1996; 93:14765–14770.

    Article  PubMed  CAS  Google Scholar 

  99. Leith JT, Padfield G, Faulkner L, Michelson S. Hypoxic fractions in xenografted human colon tumors. Cancer Res1991; 51:5139–5143. 100.

    PubMed  CAS  Google Scholar 

  100. Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci1999; 24:68–72.

    Article  PubMed  CAS  Google Scholar 

  101. Yamagata M, Tannock IF. The chronic administration of drugs that inhibit the regulation of intracellu­lar pH: in vitro and antitumor effects. Br J Cancer1996; 73:1328–1334.

    Article  PubMed  CAS  Google Scholar 

  102. Stubbs M, McSheehy PMJ, Griffiths JR, Bashford CL. Causes and consequences of tumor acidity and implications for treatment. Mol Med Today2000; 6:15–19.

    Article  PubMed  CAS  Google Scholar 

  103. Skoyum R, Eide K, Berg K, Rofstad EK. Energy metabolism in human melanoma cells under hypoxic and acidic conditions in vitro. Br J Cancer1997; 76:421–428.

    Article  PubMed  CAS  Google Scholar 

  104. Richard DE, Berra E, Pouyssegur J. Angiogenesis: how a tumor adapts to hypoxia. Biochem Biophys Res Commun1999; 266:718–722.

    Article  PubMed  CAS  Google Scholar 

  105. Ginis I, Faller DV. Hypoxia affects tumor cell invasiveness in vitro: the role of hypoxia-activated lig-and HAL 1/13 (Ku86 autoantigen). Cancer Lett2000; 154:173–174.

    Article  Google Scholar 

  106. Garland JM, Halestrap A. Energy metabolism during apoptosis. bcl-2 promotes survival in hematopoietic cells induced to apoptose by growth factor withdrawal by stabilizing a form of metabolic arrest. J Biol Chem1997; 272:4680–4688.

    Article  PubMed  CAS  Google Scholar 

  107. Biroccio A, Candiloro A, Mottolese M, Sapora O, Albini A, Zupi G, Del Bufalo D. Bcl-2 overexpres–sion and hypoxia synergistically act to modulate vascular endothelial growth factor expression and in vivo angiogenesis in a breast carcinoma line. FASEB J2000; 14:652–660.

    PubMed  CAS  Google Scholar 

  108. Koong AC, Denko NC, Hudson KM, Schindler C, Swiersz L, Koch C, et al. Candidate genes for the hypoxic tumor phenotype. Cancer Res2000; 60:883–887.

    PubMed  CAS  Google Scholar 

  109. Batchelder R, Wilson W, Hay M, Denny W. (1996) Oxygen dependence of the cytotoxicity of the enediyne anti–tumor antibiotic esperamicin Al. Br J Cancer, Suppl1996; 74:S52–S56.

    CAS  Google Scholar 

  110. Teicher BA. Hypoxia and drug resistance. Cancer Metastasis Rev1994b; 13:139–168.

    Article  PubMed  CAS  Google Scholar 

  111. Teicher BA. Combination of perfluorochemical emulsions and carbogen breathing with cancer chemotherapy. Artif Cells Blood Substitutes Immobilization Biotechnol1994a; 22:1109–1120.

    Article  CAS  Google Scholar 

  112. Sartorelli AC, Hodnick WF, Belcourt MF, Tomasz M, Haffty B, Fischer JJ, Rockwell S. Mitomycin C: a prototype bioreductive agent. Oncol Res1994; 6:501–508.

    PubMed  CAS  Google Scholar 

  113. Denny WA, Wilson WR, Hay MR. Recent developments in the design of bioreductive drugs. Br J Cancer1996; 74:S32–S38.

    CAS  Google Scholar 

  114. Brown JM. Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today2000; 6:157–162.

    Article  PubMed  CAS  Google Scholar 

  115. Shibata T, Giaccia AJ, Brown JM. Development of a hypoxia-sensitive vector for tumor-specific gene therapy. Gene Ther2000; 7:493–498.

    Article  PubMed  CAS  Google Scholar 

  116. Ballou B, Jaffe R, Persiani S, Shen WC, Langone JJ, Sands H, Reilandu JM, Curley J, Hakala TR. Tissue localization of methotrexate–monoclonal–IgM immunoconjugates: anti-SSEA-1 and MOPC 104E in mouse teratocarcinomas and normal tissues. Cancer Immunol Immunother1992; 35:251–256.

    Article  PubMed  CAS  Google Scholar 

  117. Ohta S, Igarashi S, Honda A, Sato S, Hanai N. Cytotoxicity of adriamycin-containing immunolipo–somes targeted with anti-ganglioside monoclonal antibodies. Anticancer Res1993; 13:331–336.

    PubMed  CAS  Google Scholar 

  118. Hoes CJT, Ankone M, Grootoonk J, Feijen J, Vanderstruik E, Vandoornmalen A, et al. Synthesis and biological evaluation of immunoconjugates of adriamycin and a human IgM linked by poly[N–5–(2–hydroxyethyl)-L-glutamine]. J Control Release1996; 38:245–266.

    Article  CAS  Google Scholar 

  119. Padlan EA. Anatomy of the antibody molecule. Mol Immunol1994; 31:169–217.

    Article  PubMed  CAS  Google Scholar 

  120. Baxter LT, Zhu H, Mackensen DG, Jain RK. Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res1994; 54:1517–1528.

    PubMed  CAS  Google Scholar 

  121. Otsuji E, Yamaguchi T, Tsuruta H, Yata Y, Nishi H, Okamoto K, et al. Effects of neocarzinostatin-chimeric Fab conjugates on the growth of human pancreatic carcinoma xenografts. Br J Cancer1996; 73:1178–1182.

    Article  PubMed  CAS  Google Scholar 

  122. Hansson Y, Paulie S, Ben-Aissa H, Rudberg U, Karlsson A, Perlmann P. Radioimmunolocalisation of bladder tumors xenotransplanted in nude mice. Anticancer Res1988; 8:435–41.

    PubMed  CAS  Google Scholar 

  123. Kirpotin D, Park JW, Hong K, Zalipsky S, Li WL, Carter P, et al. Sterically stabilized anti–HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry1997; 36:66–75.

    Article  PubMed  CAS  Google Scholar 

  124. Siemers NO, Kerr DE, Yarnold S, Stebbins M, Vrudhula VM, Hellstrom I, Hellstrom KE, Senter PD. Construction, expression, and activities of L49–sFv-p-lactamase, a single-chain antibody fusion pro­tein for anticancer prodrug activation. Bioconjugate Chem1997; 8:510–519.

    Article  CAS  Google Scholar 

  125. Seymour LW, Flanagan PA, Al-Shamkhani A, Subr V, Ulbrich K, Cassidy J, Duncan R. Synthetic polymers conjugated to monoclonal antibodies: vehicles for tumor–targeted drug delivery. Sel Cancer Ther1991; 7:59–73.

    Article  PubMed  CAS  Google Scholar 

  126. Schneck DW, Butler F, Dugan W. Phase 1 studies with a murine monoclonal antibody vinca conju­gate (KS1/4–DAVLB) in patients with adenocarcinoma. Antibody Immunoconjugates Radiopharm1989; 2:93–100.

    Google Scholar 

  127. Schreiber GJ, Hellstrom KE, Hellstrom I. An unmodified anticarcinoma antibody, BR96, localizes to and inhibits the outgrowth of human tumors in nude mice. Cancer Res1992; 52:3262–3266.

    PubMed  CAS  Google Scholar 

  128. Sivam GP, Martin PJ, Reisfeld RA, Mueller BM. Therapeutic efficacy of a doxorubicin immunoconjugate in a preclinical model of spontaneous metastatic human melanoma. Cancer Res1995; 55:2352–2356.

    PubMed  CAS  Google Scholar 

  129. DeNardo GL, Mirick GR, Kroger LA, O’Donnell RT, Meares CF, DeNardo SJ. Antibody responses to macrocycles in lymphoma. JNuclMed1996; 37:451–56.

    PubMed  CAS  Google Scholar 

  130. Petersen BH, DeHerdt SV, Schneck DW, Bumol TF. The human immune response to KS1/4–desacetylvinblastine (LY256787) and KSl/4–desacetylvinblastine hydrazide (LY203728) in single and multiple dose clinical studies. Cancer Res1991; 51:2286–2290.

    PubMed  CAS  Google Scholar 

  131. Khazaeli MB, Conry RM, Lobuglio AF. Human immune response to monoclonal antibodies. J Immunother1994; 15:42–52.

    Article  CAS  Google Scholar 

  132. Oldham RK, Lewis M, Orr DW, Liao SK, Ogden JR, Hubbard WH, Birch R. Individually specified drug immunoconjugates in cancer treatment. Intl J Biol Markers1989; 4:65–77.

    CAS  Google Scholar 

  133. Pietersz GA, Mckenzie IFC. Antibody conjugates for the treatment of cancer. Immunol Rev1992; 129:57–80.

    Article  PubMed  CAS  Google Scholar 

  134. Takahashi T, Yamaguchi T, Kitamura K, Noguchi A, Honda M, Otsuji E. Follow-up study of patients treated with monoclonal antibody–drug conjugate: report of 77 cases with colorectal cancer. Jpn J Cancer Res1993; 84:976–981.

    Article  PubMed  CAS  Google Scholar 

  135. Petersen BH, Barrett P, Labus J, Woodworm J, Zimmermann J, Butler F, et al. Murine monoclonal antibody–vinca conjugate KS1/4–DAVLB hydrazide - phase 1 studies in patients with adenocarcinoma. Antibody Immunoconj Radiopharm1993; 6:127–139.

    Google Scholar 

  136. Muto MG, Finkler NJ, Kassis Al, Lepisto EM, Knapp RC. Human anti-murine antibody responses in ovarian cancer patients undergoing radioimmunotherapy with the murine monoclonal antibody OC–125. Gynecol Oncol1990; 38:244–248.

    Article  PubMed  CAS  Google Scholar 

  137. Sjogren HO, Isaksson M, Willner D, Hellstrom I, Hellstrom KE, Trail PA. Antitumor activity of car­cinoma–reactive BR96–doxorubicin conjugate against human carcinomas in athymic mice and rats and syngeneic rat carcinomas in immunocompetent rats. Cancer Res1997; 57:4530–4536.

    PubMed  CAS  Google Scholar 

  138. Hayden MS, Gilliland LK, Ledbetter JA. Antibody engineering. Curr Opin Immunol 1997; 9:201–212.

    Article  PubMed  CAS  Google Scholar 

  139. Co MS, Baker J, Bednarik K, Janzek E, Neruda W, Mayer P, et al. Humanized anti-Lewis Y antibod­ies: in vitro properties and pharmacokinetics in rhesus monkeys. Cancer Res1996; 56:1118–1125.

    PubMed  CAS  Google Scholar 

  140. Slichenmyer WJ, Bookman MA, Gilewski TA, Murray JL, Saleh MN, Dougan M, et al. Phase-I clinical trials with the immunoconjugate BR96–doxorubicin, in Abstracts of the 211th ACS Conference, March 1996, 32–CARB, American Chemical Society, Washington, DC.

    Google Scholar 

  141. Yelton DE, Rosok MJ, Cruz G, Cosand WL, Bajorath J, Hellstrom I, et al. Affinity maturation of the BR96 anti–carcinoma antibody by codon–based mutagenesis. J Immunol1995; 155:1994–2004.

    PubMed  CAS  Google Scholar 

  142. Carter P, Merchant AM. Engineering antibodies for imaging and therapy. Curr Opin Biotechnol 1991; 8:449–454.

    Article  Google Scholar 

  143. Brinkley M. A brief survey of methods for preparing protein conjugates with dyes, haptens, and cross-linking reagents. Bioconjugate Chem1992; 3:2–13.

    Article  CAS  Google Scholar 

  144. Mattson G, Conklin E, Desai S, Nielander G, Savage MD, Morgensen S. A practical approach to crosslinking. Mol Biol Rep1993; 17:167–183.

    Article  PubMed  CAS  Google Scholar 

  145. Sinkule JA, Rosen ST, Radosevich JA. Monoclonal antibody 44–3A6 doxorubicin immunoconjugates: comparative in vitro anti–tumor efficacy of different conjugation methods. Tumour Biol1991; 12:198–206.

    Article  PubMed  CAS  Google Scholar 

  146. Arnon R, Sela M. In vitro and in vivo efficacy of conjugates of daunomycin with anti-tumor antibodies. Immunol Rev1982; 62:5–27.

    Article  PubMed  CAS  Google Scholar 

  147. Kratz F, Beyer U, Roth T, Tarasova N, Collery P, Lechenault F, et al. Transferrin conjugates of doxoru­bicin: synthesis, characterization, cellular uptake, and in vitro efficacy. J Pharm Sci1998; 87:338–346.

    Article  PubMed  CAS  Google Scholar 

  148. Endo N, Takeda Y, Umemoto N, Kishida K, Watanabe K, Saito M, Kato Y, Hara T. Nature of linkage and mode of action of methotrexate conjugated with antitumor antibodies: implications for future preparation of conjugates. Cancer Res1988; 48:3330–3335.

    PubMed  CAS  Google Scholar 

  149. Gallego J, Price MR, Baldwin RW. Preparation of four daunomycin–monoclonal antibody 791T/36 conjugates with anti-tumor (s) activity. Intl J Cancer1984; 33:737–744.

    Article  CAS  Google Scholar 

  150. Yang HM, Reisfeld RA. Doxorubicin conjugated with a monoclonal antibody directed to a human melanoma–associated proteoglycan suppresses the growth of established tumor xenografts in nude mice. Proc Natl Acad Sci USA1988; 85:1189–1193.

    Article  PubMed  CAS  Google Scholar 

  151. Dillman RO, Johnson DE, Shawler DL, Koziol JA. Superiority of an acid–labile daunorubicin–mono–clonal antibody immunoconjugate compared to free drug. Cancer Res1988; 48:6097–6102.

    PubMed  CAS  Google Scholar 

  152. Zhu ZP, Kralovec J, Ghose T, Mammen M. Inhibition of Epstein-Barr-virus-transformed human chronic lymphocytic leukaemic B cells with monoclonal antibody adriamycin (doxorubicin) conjugates. Cancer Immunol Immunother1995; 40:257–267.

    PubMed  CAS  Google Scholar 

  153. Hudecz F, Ross H, Price MR, Baldwin RW. Immunoconjugate design: a predictive approach for cou­pling of daunomycin to monoclonal antibodies. Bioconjugate Chem1990; 1:197–204.

    Article  CAS  Google Scholar 

  154. Trail PA, Willner D, Lasch SJ, Henderson AJ, Hofstead S, Casazza AM, et al. Cure of xenografted human carcinomas by BR96–doxorubicin immunoconjugates. Science1993; 261:212–215.

    Article  PubMed  CAS  Google Scholar 

  155. Trail PA, Willner D, Bianchi AB, Henderson AJ, TrailSmith MD, Girit E, et al. Enhanced antitumor activity of paclitaxel in combination with the anticarcinoma immunoconjugate BR96–doxorubicin. Clin Cancer Res1999; 5: 3632–3638.

    PubMed  CAS  Google Scholar 

  156. Keppler D, Sameni M, Moin K, Mikkelsen T, Diglio CA, Sloane BE Tumor progression and angio-genesis: cathepsin B and Co. Biochem Cell Biol1996; 74:799–810.

    Article  PubMed  CAS  Google Scholar 

  157. Trouet A, Masquelier M, Baurain R, Deprez-de Campeneere D. A covalent linkage between daunorubicin and proteins that is stable in serum and reversible by lysosomal hydrolases, as required for a lysosomotropic drug–carrier conjugate: in vitro and in vivo studies. Proc Natl Acad Sci USA1982; 79:626–629.

    Article  PubMed  CAS  Google Scholar 

  158. Kopecek J, Duncan R. Targetable polymeric prodrugs. J Control Release1987; 6:315–327.

    Article  CAS  Google Scholar 

  159. Seymour LW, Soyez H, Demarre A, Shoaibi MA, Schacht EH. Polymeric prodrugs of mitomycin C designed for tumour tropism and sustained activation. Anticancer Drug Des1996; 11:351–365.

    PubMed  CAS  Google Scholar 

  160. Duncan R, Seymour LW, Ohare KB, Flanagan PA, Wedge S, Hume IC, et al. Preclinical evaluation of polymer–bound doxorubicin. J Control Release1992; 19:331–346.

    Article  CAS  Google Scholar 

  161. Minko T, Kopeckova P, Kopecek J. Efficacy of the chemotherapeutic action of HPMA copolymer–bound doxorubicin in a solid tumor model of ovarian carcinoma. Intl J Cancer2000; 86:108–117.

    Article  CAS  Google Scholar 

  162. Nichifor M, Schacht EH, Seymour LW. Polymeric prodrugs of 5–fluorouracil. J Control Release1997;48:165–178.

    Article  CAS  Google Scholar 

  163. Oudard S, Boitier E, Miccoli L, Rousset S, Dutrillaux B, Poupon MF. Gliomas are driven by glycolysis: putative roles of hexokinase, oxidative phosphorylation and mitochondrial ultrastructure. Anticancer Res1997; 17:1903–1911.

    PubMed  CAS  Google Scholar 

  164. Soyez H, Schacht E. Macromolecular derivatives of N,N–di–(2–chloroethyl)–4–phenylenediamine mustard 1. Synthesis and in vitro hydrolytic stability. J Control Release1997r; 45:235–247.

    Article  CAS  Google Scholar 

  165. Loadman PM, Bibby MC, Double JA, Al-Shakhaa WM, Duncan R. Pharmacokinetics of PK1 and doxorubicin in experimental colon tumor models with differing responses to PK1. Clin Cancer Res1999; 5:3682–3688.

    PubMed  CAS  Google Scholar 

  166. Dubowchik GM, Mosure K, Knipe JO, Firestone RA. Cathepsin B-sensitive dipeptide prodrugs. 2. Models of anticancer drugs paclitaxel (taxol®), mitomycin C and doxorubicin. Bioorg Med Chem Lett1998a; 8:3347–3352.

    Article  PubMed  CAS  Google Scholar 

  167. Dubowchik GM, Firestone RA, Willner DA, Hofstead SJ, Trail PA, Lasch S, et al. Peptide linkers for selective intralysosomal release of anticancer drugs from monoclonal antibody conjugates, in Peptides 1996Proceedings of the 24th European Peptide Symposium(Ramage R, Epton R. eds). Mayflower Scientific Ltd., Kingswinford, UK, 1998b; pp 349–350.

    Google Scholar 

  168. Trail PA, Willner D, Knipe J, Henderson AJ, Lasch SJ, Zoeckler ME, et al. Effect of linker variation on the stability, potency, and efficacy of carcinoma–reactive BR64–doxorubicin immunoconjugates. Cancer Res1997; 57:100–105.

    PubMed  CAS  Google Scholar 

  169. Mikolajczyk SD, Meyer DL, Fagnani R, Hagan MS, Law KL, Starling JJ. Dextran modification of a Fab’–beta–lactamase conjugate modulated by variable pretreatment of Fab’ with amine–blocking reagents. Bioconjugate Chem1996; 7:150–158.

    Article  CAS  Google Scholar 

  170. Omelyanenko V, Gentry C, Kopeckova P, Kopecek J. (1998) HPMA copolymer anticancer drug OV–TL16 antibody conjugates. II. Processing in epithelial ovarian carcinoma cells in vitro. Intl J Cancer1998; 75:600–608.

    Article  Google Scholar 

  171. Maruyama K, Ishida O, Takizawa T, Moribe K. Possibility of active targeting to tumor tissues with liposomes. Adv Drug Del Rev1999; 40:89–102.

    Article  CAS  Google Scholar 

  172. Forssen E, Willis M. Ligand–targeted liposomes. Adv Drug Del Rev1998; 29:249–271.

    Article  CAS  Google Scholar 

  173. Bagshawe KD, Sharma SK, Burke PJ, Melton RG, Knox RJ Developments with targeted enzymes in cancer therapy. Curr Opin Immunol1999; 11:579–583.

    Article  PubMed  CAS  Google Scholar 

  174. Niculescu-Duvaz I, Friedlos F, Niculescu-Duvaz D, Davies L, Springer CJ. Prodrugs for antibody–and gene–directed enzyme prodrug therapies (ADEPT and GDEPT). Anticancer Drug Des 1999; 14: 517–538

    PubMed  CAS  Google Scholar 

  175. Dubowchik GM, Walker MA. Receptor–mediated and enzyme-dependent targeting of cytotoxic anticancer drugs. Pharm Ther1999; 83:67–123.

    Article  CAS  Google Scholar 

  176. Yan S, Sameni M, Sloane BF. Cathepsin B and human tumor progression. Biol Chem1998; 379:113–123.

    Google Scholar 

  177. Ren WP, Sloane BF. Cathepsins D and B in breast cancer. Cancer Treat Res1996; 83: 325–352.

    Article  PubMed  CAS  Google Scholar 

  178. Castiglioni T, Merino MJ, Eisner B, Lah TT, Sloane BF, Emmertbuck MR. Immunohistochemical analysis of cathepsins D, B, and L in human breast cancer. Hum Pathol1994; 25:857–862.

    Article  PubMed  CAS  Google Scholar 

  179. Heath EI, Grochow LB. Clinical potential of matrix metalloprotease inhibitors in cancer therapy. Drugs2000; 59:1043–1055.

    Article  PubMed  CAS  Google Scholar 

  180. Devries TJ, Vanmuijen GNP, Ruiter DJ. The plasminogen activation system in tumour invasion and metastasis. Pathol Res Pract1996; 192:718–733.

    Article  CAS  Google Scholar 

  181. Robert C, Bolon I, Gazzeri S, Veyrenc S, Brambilla C, Brambilla E. Expression of plasminogen acti­vator inhibitors 1 and 2 in lung cancer and their role in tumor progression. Clin Cancer Res1999; 5:2094–2102.

    PubMed  CAS  Google Scholar 

  182. Boyd D. Invasion and metastasis. Cancer Metastasis Rev1996; 15:77–89.

    Article  PubMed  CAS  Google Scholar 

  183. Price JT, Bonovich MT, Kohn EC. The biochemistry of cancer dissemination. Crit Rev Biochem Mol Biol1997;32:175–253.

    Article  PubMed  CAS  Google Scholar 

  184. Yip D, Ahmad A, Karapetis CS, Hawkins CA, Harper PG. Matrix metalloprotease inhibitors: applica­tions in oncology. Invest New Drugs1999; 17:387–399.

    Article  PubMed  CAS  Google Scholar 

  185. Velasco-Velazquez MA, Molina-Guarneros JA, Mendoza-Patino N, Lopez GJ, Mandoki JJ. Integrins and integrin–associated molecules: targets for the development of antimetastatic therapies. Rev Invest Clin1999; 51:183–193.

    PubMed  CAS  Google Scholar 

  186. Kwon CH. Metabolism–based anticancer drug design. Arch Pharmacol Res1999; 22:533–541.

    Article  CAS  Google Scholar 

  187. Melton R, Connors T, Knox RJ. STP Pharm Sci1999; 9:13–33.

    CAS  Google Scholar 

  188. Akiyama SK, Olden K, Yamada KM. Fibronectin and integrins in invasion and metastasis. Cancer Metastasis Rev1995; 14:173–189.

    Article  PubMed  CAS  Google Scholar 

  189. Varner JA, Cheresh DA. Integrins and cancer. Curr Opin Cell Biol1996; 8:724–730.

    Article  PubMed  CAS  Google Scholar 

  190. Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol1997; 15:542–546.

    Article  PubMed  CAS  Google Scholar 

  191. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science1998; 279:377–380.

    Article  PubMed  CAS  Google Scholar 

  192. Komazawa H, Fujii H, Kojima M, Mori H, Ono M, Itoh I, Azuma I, Saiki I. Combination of anti-cell adhesive synthetic Arg–Gly–Asp–Ser analogue and anticancer drug doxorubicin heightens their original antimetastatic activities. Oncol Res1995; 7:341–351.

    PubMed  CAS  Google Scholar 

  193. Jiang WG, Mansel RE. Progress in anti-invasion and anti-metastasis research and treatment. Int J Oncol1996; 9:1013–1028.

    PubMed  CAS  Google Scholar 

  194. Wang S, Lee RJ, Cauchon G, Gorenstein DG, Low PS. Delivery of antisense oligodeoxyribonu–cleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol. Proc Natl Acad Sci USA1995; 92:3318–3322.

    Article  PubMed  CAS  Google Scholar 

  195. Dachs GU, Dougherty GJ, Stratford IJ, Chaplin DJ. Targeting gene therapy to cancer: a review. Oncol Res1997; 9:313–325.

    PubMed  CAS  Google Scholar 

  196. Mislick KA, Baldeschwieler JD, Kayyem JF, Meade TJ. Transfection of folate-polylysine DNA complexes: evidence for lysosomal delivery. Bioconjugate Chem1995; 6:512–515.

    Article  CAS  Google Scholar 

  197. Cho BK, Roy EJ, Patrick TA, Kranz DM. Single-chain Fv/folate conjugates mediate efficient lysis of folate-receptor-positive tumor cells. Bioconjugate Chem1997; 8:338–346.

    Article  CAS  Google Scholar 

  198. Kranz DM, Patrick TA, Brigle KE, Spinella MJ, Roy EJ. Conjugates of folate and anti-T-cell-receptor antibodies specifically target folate–receptor–positive tumor cells for lysis. Proc Natl Acad Sci USA1995;92:9057–9061.

    Article  PubMed  CAS  Google Scholar 

  199. Leamon CP, Pastan I, Low PS. Cytotoxicity of folate-pseudomonas exotoxin conjugates toward tumor cells: contribution of translocation domain. J Biol Chem1993; 268:24847–24854.

    PubMed  CAS  Google Scholar 

  200. Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A. Nuclear delivery of doxoru­bicin via folate–targeted liposomes with bypass of multidrug–resistance efflux pump. Clin Cancer Res2000;6:1949–1957.

    PubMed  CAS  Google Scholar 

  201. Ladino CA, Chari RVJ, Bourret LA, Kedersha NL, Goldmacher VS. Folate-maytansinoids: target-selective drugs of low molecular weight. Intl J Cancer1997; 73:859–864.

    Article  CAS  Google Scholar 

  202. Lenz M, Miehe WP, Vahrenwald F, Bruchelt G, Schweizer P, Girgert R. Cholesterol based antineoplastic strategies. Anticancer Res1991; 17:1143–1146.

    Google Scholar 

  203. Rao KN. The significance of the cholesterol biosynthetic pathway in cell growth and carcinogenesis. Anticancer Res1995; 15:309–314.

    PubMed  CAS  Google Scholar 

  204. Kreger BE, Anderson KM, Schatzkin A, Splansky GL. Serum cholesterol level, body mass index, and the risk of colon cancer: the Framingham Study. Cancer1992; 70:1038–1043.

    Article  PubMed  CAS  Google Scholar 

  205. Tokui T, Kuroiwa C, Muramatsu S, Tokui Y, Sasagawa K, Ikeda T, Komai T. Plasma lipoproteins as targeting carriers to tumour tissues after administration of a lipophilic agent to mice. Biopharm Drug Dispos1995; 16:91–103.

    Article  PubMed  CAS  Google Scholar 

  206. Sykes E, Woodburn K, Decker D, Kessel D. Effects of cremophor EL on distribution of taxol to serum lipoproteins. Br J Cancer1994; 70:401–404.

    Article  PubMed  CAS  Google Scholar 

  207. Dagan A, Gatt S, Cerbukarabat S, Maziere JC, Maziere C, Santus R, et al. Uptake by cells and photo­sensitizing effectiveness of novel pheophorbide derivatives in vitro. Int J Cancer1995; 63:831–839.

    Article  PubMed  CAS  Google Scholar 

  208. Gal D, Ohashi M, MacDonald PC, Buchsbaum HJ, Simpson ER. Low-density lipoprotein as a poten­tial vehicle for chemotherapeutic agents and radionucleotides in the management of gynecologic neoplasms. Am J Obstet Gynecol1981; 139:877–885.

    PubMed  CAS  Google Scholar 

  209. Firestone RA. Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells. Bioconjugate Chem1994; 5:105–113.

    Article  CAS  Google Scholar 

  210. Firestone RA, Pisano JM, Falck JR, McPhaul MM, Krieger M. Selective delivery of cytotoxic com­pounds to cells by the LDL pathway. J Med Chem1984; 27:1037–1043.

    Article  PubMed  CAS  Google Scholar 

  211. Samadi-Baboli M, Favre G, Canal P, Soula G. Low density lipoprotein for cytotoxic drug targeting: improved activity of elliptinium derivative against B16 melanoma in mice. Br J Cancer1993; 68:319–326.

    Article  PubMed  CAS  Google Scholar 

  212. Dubowchik GM, Firestone RA. Improved cytotoxicity of antitumor compounds deliverable by the LDL pathway. Bioconjugate Chem1995; 6:427–439.

    Article  CAS  Google Scholar 

  213. Kovacs M, Schally AV, Nagy A, Koppan M, Groot K. Recovery of pituitary function after treatment with a targeted cytotoxic analog of luteinizing hormone–releasing hormone. Proc Natl Acad Sci USA1997;94:1420–1425.

    Article  PubMed  CAS  Google Scholar 

  214. Wasan H, Waxman J. Hormonal regulation of cancer cell growth, in Cell Proliferation Cancer(Pusztai LL, Lewis CE and Yap E, eds). Oxford University Press, Oxford, 1996, pp 260–281.

    Google Scholar 

  215. Miyazaki M, Nagy A, Schally AV, Lamharzi N, Halmos G, Szepeshazi K, et al. Growth inhibition of human ovarian cancers by cytotoxic analogues of luteinizing hormone-releasing hormone. J Natl Cancer Inst1997; 89:1803–1809.

    Article  PubMed  CAS  Google Scholar 

  216. Nagy A, Armatis P, Cai RZ, Szepeshazi K, Halmos G, Schally AV. Design, synthesis, and in vitro evaluation of cytotoxic analogs of bombesin-like peptides containing doxorubicin or its intensely potent derivative 2–pyrrolinodoxorubicin. Proc Natl Acad Sci USA1997; 94:652–656.

    Article  PubMed  CAS  Google Scholar 

  217. Nagy A, Schally AV, Halmos G, Armatis P, Cai RZ, Csernus V, et al. Synthesis and biological evaluation of cytotoxic analogs of somatostatin containing doxorubicin or its intensely potent derivative 2–pyrrolinodoxorubicin. Proc Natl Acad Sci USA1998; 95:1794–1799.

    Article  PubMed  CAS  Google Scholar 

  218. Ishiki N, Onishi H, Machida Y. Biological properties of conjugates of mitomycin C with estradiol benzoate and estradiol: their stability characteristics in biological media and their binding abilities to estrogen receptor. Biol Pharm Bull 1991; 20:1096–1102.

    Article  Google Scholar 

  219. Gnewuch CT, Sosnovsky G. A critical appraisal of the evolution of N-nitrosoureas as anticancer drugs. Chem Rev1997; 97:829–1013.

    Article  PubMed  CAS  Google Scholar 

  220. Bjork P, Borg A, Ferno M, Nilsson S. Expression and partial characterization of estramustine-binding protein (EMBP) in human breast cancer and malignant melanoma. Anticancer Res1991; 11:1173–1182.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dubowchik, G.M. (2002). Principles of Antitumor Targeting of Cytotoxic Drugs. In: Pagé, M. (eds) Tumor Targeting in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-167-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-167-1_23

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-251-3

  • Online ISBN: 978-1-59259-167-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics