Skip to main content

Brain Development and Choline, the Other Methyl Donor

  • Chapter
Folate and Human Development
  • 160 Accesses

Abstract

Choline is needed for synthesis of the phospholipids in cell membranes, methyl metabolism, cholinergic neurotransmission, transmembrane signaling, lipid-cholesterol transport and metabolism (1) (Fig. 1). Cells require choline (2) and die by apoptosis when deprived of this nutrient (3-6). When fed a choline deficient diet, humans and many species of animals deplete choline stores and develop liver dysfunction (7-11). Animals fed a choline-deficient diet may also develop growth retardation, renal dysfunction and hemorrhage, or bone abnormalities (10,12,13). The human diet must contain choline because the only endogenous pathway for synthesis of this nutrient [via the sequential methylation of phosphatidylethanolamine (14)] cannot meet the entire requirement for choline (15,16).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zeisel, S. H. and Blusztajn, J. K. (1994) Choline and human nutrition. Annu. Rev. Nutr. 14, 269 - 296.

    Article  CAS  Google Scholar 

  2. Eagle, H. (1955) The minimum vitamin requirements of the L and Hela cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J. Exp. Med. 102, 595 - 600.

    Article  CAS  Google Scholar 

  3. Albright, C. D., Lui, R., Bethea, T. C., da Costa, K.-A., Salganik, R. I., and Zeisel, S. H. (1996) Choline deficiency induces apoptosis in SV40-immortalized CWSV-1 rat hepatocytes in culture. FASEB J. 10, 510 - 516.

    CAS  Google Scholar 

  4. Shin, O. H., Mar, M. H., Albright, C. D., Citarella, M. T., daCosta, K. A., and Zeisel, S. H. (1997) Methyl-group donors cannot prevent apoptotic death of rat hepatocytes induced by choline-deficiency. J. Cell. Biochem. 64, 196 - 208.

    Article  CAS  Google Scholar 

  5. James, S., Miller, B., Basnakian, A., Pogribny, I., Pogribna, M., and Muskhelishvili, L. (1997) Apoptosis and proliferation under conditions of deoxynucleotide pool imbalance in liver of folate/methyl deficient rats. Carcinogenesis 18 (2), 287 - 293.

    Article  CAS  Google Scholar 

  6. Yen, C. L., Mar, M. H., and Zeisel, S. H. (1999) Choline deficiency-induced apoptosis in PC 12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin, accumulation of ceramide and diacylglycerol, and activation of a caspase. FASEB J. 13 (1), 135 - 142.

    CAS  Google Scholar 

  7. Hershey, J. M. and Soskin, S. (1931) Substitution of “lecithin” for raw pancreas in a diet of depancreatized dog. Am. J. Physiol. 93, 657 - 658.

    Google Scholar 

  8. Hoffbauer, F. W. and Zaki, F. G. (1965) Choline deficiency in the baboon and rat compared. Arch. Pathol. 79, 364 - 369.

    CAS  Google Scholar 

  9. da Costa, K., Cochary, E. F., Blusztajn, J. K., Garner, S. C., and Zeisel, S. H. (1993) Accumulation of 1,2-sn-diradylglycerol with increased membrane-associated protein kinase C may be the mechanism for spontaneous hepatocarcinogenesis in choline deficient rats. J. Biol. Chem. 268 (3), 2100 - 2105.

    Google Scholar 

  10. Newberne, P. M. and Rogers, A. E. (1986) Labile methyl groups and the promotion of cancer. Annu. Rev. Nutr. 6 (407), 407 - 432.

    Article  CAS  Google Scholar 

  11. Lieber, C. S., Robins, S. J., Li, J., DeCarli, L. M., Mak, K. M., Fasulo, J. M. (1994) Phosphatidylcholine protects against fibrosis and cirrhosis in the baboon. Gastroenterology 106, 152 - 159.

    CAS  Google Scholar 

  12. Handler, P. and Bernheim, F. (1949) Choline deficiency in the hamster. Proc. Soc. Exp. Med. 72, 569.

    CAS  Google Scholar 

  13. Fairbanks, B. W. and Krider, J. L. (1945) Significance of B vitamins in swine nutrition. North Am. Vet. 26, 18 - 23.

    Google Scholar 

  14. Bremer, J. and Greenberg, D. (1961) Methyl transfering enzyme system of microsomes in the biosynthesis of lecithin (phosphatidylcholine). Biochim. Biophys. Acta 46, 205 - 216.

    Article  CAS  Google Scholar 

  15. Zeisel, S. H., daCosta, K.-A., Franklin, P. D., Alexander, E. A., Lamont, J. T., Sheard, N. F., et al. (1991) Choline, an essential nutrient for humans. FASEB J. 5 (7), 2093 - 2098.

    CAS  Google Scholar 

  16. Institute of Medicine and National Academy of Sciences USA. (1998) Dietary Reference Intakes for Folate, Thiamin, Riboflavin, Niacin, Vitamin B12, Panthothenic Acid, Biotin, and Choline. National Academy Press: Washington DC, Vol. 1.

    Google Scholar 

  17. Welsch, F. (1976) Studies on accumulation and metabolic fate of (NMe3H)choline in human term placenta fragments. Biochem. Pharmacol. 25 (9), 1021 - 1030.

    Article  CAS  Google Scholar 

  18. Gwee, M. C. and Sim, M. K. Free choline concentration and cephalin-Nmethyltransferase activity in the maternal and foetal liver and placenta of pregnant rats. Clin. Exp. Pharmacol. Physiol. 5(6), 649-653.

    Google Scholar 

  19. Zeisel, S. H., Mar, M.-H., Zhou, Z.-W., and da Costa, K.-A. (1995) Pregnancy and lactation are associated with diminished concentrations of choline and its metabolites in rat liver. J. Nutr. 125, 3049 - 3054.

    CAS  Google Scholar 

  20. Braun, L. D., Cornford, E. M., and Oldendorf, W. H. (1980) Newborn rabbit blood-brain barrier is selectively permeable and differs substantially from the adult. J. Neurochem. 34 (1), 147 - 152.

    Article  CAS  Google Scholar 

  21. Blusztajn, J. K., Zeisel, S. H., and Wurtman, R. J. (1985) Developmental changes in the activity of phosphatidylethanolamine N-methyltransferases in rat brain. Biochem. J. 232(2), 505-511.

    Google Scholar 

  22. Hoffman, D. R., Cornatzer, W. E., and Duerre, J. A. (1979) Relationship between tissue levels of S-adenosylmethionine, S-adenosylhomocysteine, and transmethylation reactions. Can. J. Biochem. 57, 56 - 65.

    Article  CAS  Google Scholar 

  23. Zeisel, S. H., Epstein, M. F., and Wurtman, R. J. (1980) Elevated choline concentration in neonatal plasma. Life Sci. 26 (21), 1827 - 1831.

    Article  CAS  Google Scholar 

  24. Chao, C. K., Pomfret, E. A., and Zeisel, S. H. (1988) Uptake of choline by rat mammary-gland epithelial cells. Biochem. J. 254 (1), 33 - 38.

    CAS  Google Scholar 

  25. Zeisel, S. H., Char, D., and Sheard, N. F. (1986) Choline, phosphatidylcholine and sphingomyelin in human and bovine milk and infant formulas. J. Nutr. 116 (1), 50 - 58.

    CAS  Google Scholar 

  26. Rohlfs, E. M., Garner, S. C., Mar, M.-H., and Zeisel, S. H. (1993) Glycerophosphocholine and phosphocholine are the major choline metabolites in rat milk. J. Nutr. 123, 1762 - 1768.

    CAS  Google Scholar 

  27. Holmes-McNary, M., Cheng, W. L., Mar, M. H., Fussell, S., and Zeisel, S. H. (1996) Choline and choline esters in human and rat milk and infant formulas. Am. J. Clin. Nutr. 64, 572 - 576.

    CAS  Google Scholar 

  28. Meck, W. H., Smith, R. A., and Williams, C. L. (1988) Pre-and postnatal choline supplementation produces long-term facilitation of spatial memory. Dev. Psychobiol. 21 (4), 339 - 353.

    Article  CAS  Google Scholar 

  29. Meck, W. H., Smith, R. A., and Williams, C. L. (1989) Organizational changes in cholinergic activity and enhanced visuospatial memory as a function of choline administered prenatally or postnatally or both. Behay. Neurosci. 103 (6), 1234 - 1241.

    Article  CAS  Google Scholar 

  30. Loy, R., Heyer, D., Williams, C. L., and Meck, W. H. (1991) Choline-induced spatial memory facilitation correlates with altered distribution and morphology of septal neurons. Adv. Exp. Med. Biol. 295, 373 - 382.

    Article  CAS  Google Scholar 

  31. Meck, W. and Williams, C. (1997) Perinatal choline supplementation increases the threshold for chunking in spatial memory. Neuroreport 8, 3053 - 3059.

    Article  CAS  Google Scholar 

  32. Meck, W. and Williams, C. (1997) Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. Neuroreport 8, 2831 - 2835.

    Article  CAS  Google Scholar 

  33. Meck, W. and Williams, C. (1997) Simultaneous temporal processing is sensitive to prenatal choline availability in mature and aged rats. Neuroreport 8, 3045 - 3051.

    Article  CAS  Google Scholar 

  34. Cermak, J. M., Blusztajn, J. K., Meck, W. H., Williams, C. L., Fitzgerald, C. M., Rosene, D. L., et al. (1999) Prenatal availability of choline alters the development of acetylcholinesterase in the rat hippocampus. Dev. Neurosci. 21 (2), 94 - 104.

    Article  CAS  Google Scholar 

  35. Williams, C. L., Meck, W. H., Heyer, D. D., and Loy, R. (1998) Hypertrophy of basal forebrain neurons and enhanced visuospatial memory in perinatally choline-supplemented rats. Brain Res. 794 (2), 225 - 238.

    Article  CAS  Google Scholar 

  36. Meck, W. H. and Williams, C. L. (1999) Choline supplementation during prenatal development reduces proactive interference in spatial memory. Dev. Brain Res. 118 (1-2), 51 - 59.

    Article  CAS  Google Scholar 

  37. Altman, J. and Bayer, S. A. (1995) Atlas of Prenatal Rat Brain Development. CRC: Boca Raton, FL, pp. 423 - 433.

    Google Scholar 

  38. Bayer, S. A., Altman, J., Russo, R. J., and Zhang, X. (1993) Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology 14, 83-144.

    Google Scholar 

  39. Pyapali, G., Turner, D., Williams, C., Meck, W., and Swartzwelder, H. S. (1998) Prenatal choline supplementation decreases the threshold for induction of long-term potentiation in young adult rats. J. Neurophysiol. 79, 1790 - 1796.

    CAS  Google Scholar 

  40. Jones, J. P., Meck, W., Williams, C. L., Wilson, W. A., and Swartzwelder, H. S. (1999) Choline availability to the developing rat fetus alters adult hippocampal long-term potentiation. Dev. Brain Res. 118 (1-2), 159 - 167.

    Article  CAS  Google Scholar 

  41. Holler, T., Cermak, J., and Blusztajn, J. (1996) Dietary choline supplementation in pregnant rats increases hippocampal phospholipase D activity of the offspring. FASER J. 10 (14), 1653 - 1659.

    CAS  Google Scholar 

  42. Chung, S., Moriyama, T., Uezu, E., Uezu, K., Hirata, R, Yohena, N., et al. (1995) Administration of phosphatidylcholine increases brain acetylcholine concentration and improves memory in mice with dementia. J. Nutr. 125 (6), 1484 - 1489.

    CAS  Google Scholar 

  43. Moriyama, T, Uezu, K, Matsumoto, Y, Chung, S, et al. (1996) Effects of dietary phosphatidylcholine on memory in memory deficient mice with low brain acetylcholine concentration. Life Sci. 58, 111 - 118.

    Article  Google Scholar 

  44. Bartus, R. T., Dean, R. D., Sherman, K. A., Friedman, E., and Beer, B. (1981) Profound effects of combining choline and piracetam on memory enhancement and cholinergic function in aged rats. Neurobiol. Aging 2 (2), 105 - 111.

    Article  CAS  Google Scholar 

  45. Davis, K. L., Mohs, R. C., Tinklenberg, J. R., Hollister, L. E., Pfefferbaum, A., and Kopell, B. S. (1980) Cholinomimetics and memory. The effect of choline chloride. Arch. Neurol. 37 (1), 49 - 52.

    Article  CAS  Google Scholar 

  46. Blusztajn, J. K. and Wurtman, R. J. (1983) Choline and cholinergic neurons. Science. 221 (4611), 614 - 620.

    Article  CAS  Google Scholar 

  47. Garner, S. C., Mar, M.-H., and Zeisel, S. H. (1995) Choline distribution and metabolism in pregnant rats and fetuses are influenced by the choline content of the maternal diet. J. Nutr. 125, 2851 - 2858.

    CAS  Google Scholar 

  48. Albright, C. D., Tsai, A. Y., Friedrich, C. B., Mar, M. H., and Zeisel, S. H. (1999) Choline availability alters embryonic development of the hippocampus and septum in the rat. Dev. Brain Res. 113 (1-2), 13 - 20.

    Article  CAS  Google Scholar 

  49. Albright, C. D., Friedrich, C. B., Brown, E. C., Mar, M. H., and Zeisel, S. H. (1999) Maternal dietary choline availability alters mitosis, apoptosis and the localization of TOAD-64 protein in the developing fetal rat septum. Dev. Brain Res. 115 (2), 123 - 129.

    Article  CAS  Google Scholar 

  50. Altman, J. and Bayer, S. A. (1990) Mosaic organization of the hippocampal neuroepithelium and the multiple germinal sources of dentate granule cells. J. Comp. Neurol. 301, 325 - 342.

    Article  CAS  Google Scholar 

  51. Altman, J. and Bayer, S. A. (1988) Development of the rat thalamus. I. Mosaic organization of the thalamic neuroepithelium. J. Comp. Neurol. 275, 346 - 377.

    Article  CAS  Google Scholar 

  52. Altman, J. and Bayer, S. A. (1989) Development of the rat thalamus. IV. The intermediate lobule of the thalamic neuroepithelium, and the time and site of origin and settling pattern of neurons of the ventral nuclear complex. J. Comp. Neurol. 284, 534 - 566.

    Article  CAS  Google Scholar 

  53. Terce, F., Brun, H., and Vance, D. E. (1994) Requirement of phosphatidylcholine for normal progression through the cell cycle in C3H/10T1/2 fibroblasts. J. Lipid Res. 35, 2130 - 2142.

    CAS  Google Scholar 

  54. Takahashi, T., Nowakowski, R., and Caviness, V. J. (1995) Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall. J. Neurosci. 15, 6058 - 6068.

    CAS  Google Scholar 

  55. Turner, D. L. and Cepko, C. L. (1987) A common progenitor for neurons and glia persists in rat retina late in development. Nature 328, 131 - 136.

    Article  CAS  Google Scholar 

  56. Minturn, J., Geschwind, D., Fryer, H., and Hockfield, S. (1995) Early postmitotic neurons transiently express TOAD-64, a neural specific protein. J. Comp. Neurol. 355, 369 - 379.

    Article  CAS  Google Scholar 

  57. Geschwind, D. H., Kelly, G. M., Fryer, H., Feeser-Bhatt, H., and Hockfield, S. (1996) Identification and characterization of novel developmentally regulated proteins in rat spinal cord. Dev. Brain Res. 97, 62 - 75.

    Article  CAS  Google Scholar 

  58. Chandar, N. and Lombardi, B. (1988) Liver cell proliferation and incidence of hepatocellular carcinomas in rats fed consecutively a choline-devoid and a choline-supplemented diet. Carcinogenesis 9 (2), 259 - 263.

    Article  CAS  Google Scholar 

  59. Jackowski, S. (1994) Coordination of membrane phospholipid synthesis with the cell cycle. J. Biol. Chem. 269 (5), 3858 - 3867.

    CAS  Google Scholar 

  60. Albright, C. D. and Zeisel, S. H. (1997) Choline deficiency causes increased localization of TGF(31 signaling proteins and apoptosis in rat liver. Pathobiology 65, 264 - 270.

    Article  CAS  Google Scholar 

  61. Albright, C. D., Tsai, A. Y., Mar, M.-H., and Zeisel, S. H. (1997) Choline availability modulates the expression of TGF(31 and cytoskeletal proteins in the hippocampus of developing rat brain. Neurochem. Res. 23, 751 - 758.

    Article  Google Scholar 

  62. Sherr, C. and Roberts, J. (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dey. 9, 1149 - 1163.

    Article  CAS  Google Scholar 

  63. Deshaies, R. and Jacks, T. (1999) Cell multiplication. Peering in and peering out: regulation of and by the cell cycle. Curr. Opin. Cell Biol. 11, 705 - 707.

    Article  CAS  Google Scholar 

  64. Morgan, D. (1995) Principles of CDK regulation. Nature 374, 131 - 134.

    Article  CAS  Google Scholar 

  65. 64a.Albright, C. D., Mar, M. H., Friedrich, C. B., Brown, E. C., and Zeisel, S. H. (2001) Maternal choline availability alters the localization of p15Ink4B and p27Kip 1 cyclin-dependent kinase inhibitors in the developing fetal rat brain hippocampus. Dey. Neurosci. 23, 100 - 106.

    Article  Google Scholar 

  66. Holmes-McNary, M. Q., Loy, R., Mar, M.-H., Albright, C. D., and Zeisel, S. H. (1997) Apoptosis is induced by choline deficiency in fetal brain and in PC12 cells. Del). Brain Res. 101, 9 - 16.

    Article  CAS  Google Scholar 

  67. Ferrer, I., Tortosa, A., Blanco, R., Martin, F., Serrano, T., Planas, A., et al. (1994) Naturally occurring cell death in the developing cerebral cortex of the rat. Evidence of apoptosis-associated internucleosomal DNA fragmentation. Neurosci. Lett. 182, 77 - 79.

    Article  CAS  Google Scholar 

  68. Spreafico, R., Frassoni, C., Arcelli, P., Selvaggio, M., and De Biasi, S. (1995) In situ labeling of apoptotic cell death in the cerebral cortex and thalamus of rats during development. J. Comp. Neurol. 363, 281 - 295.

    Article  CAS  Google Scholar 

  69. Kaufmann, W. K. and Paules, R. S. (1996) DNA damage and cell cycle checkpoints. FASEB J. 10, 238 - 247.

    CAS  Google Scholar 

  70. King, K. L. and Cidlowski, J. A. (1995) Cell cycle and apoptosis: Common pathways to life and death. J. Cell. Biochem. 58, 175 - 180.

    Article  CAS  Google Scholar 

  71. Endresen, P. C., Eide, T. J., and Aarbakke, J. (1993) Cell death initiated by 3deazaadenosine in HL-60 cells is apoptosis and is partially inhibited by homocysteine. Biochem. Pharmacol. 46 (11), 1893 - 1901.

    Article  CAS  Google Scholar 

  72. Endresen, P. C., Prytz, P. S., Lysne, S., and Aarbakke, J. (1994) Homocysteine increases the relative number of apoptotic cells and reduces the relative number of apoptotic bodies in HL-60 cells treated with 3-deazaadenosine. J. Pharmacol. Exp. Ther. 269 (3), 1245 - 1253.

    CAS  Google Scholar 

  73. Koury, M. J. and Horne, D. W. (1994) Apoptosis mediates and thymidine prevents erythroblast destruction in folate deficiency anemia. Proc. Natl. Acad. Sci. USA 91 (9), 4067 - 4071.

    Article  CAS  Google Scholar 

  74. James, S. J., Basnakian, A. G., and Miller, B. J. (1994) In vitro folate deficiency induces deoxynucleotide pool imbalance, apoptosis, and mutagenesis in Chinese hamster ovary cells. Cancer Res. 54, 5075 - 5080.

    CAS  Google Scholar 

  75. Makarov, P. R., Rotaru, V. K., Polteva, N. A., and Evtodienko, Y. V. (1994) Changes in phospholipids during the cell cycle of myxomycete Physarum polycephalum. FEBS Lett. 344, 47 - 49.

    Article  CAS  Google Scholar 

  76. Meikrantz, W. and Schlegel, R. (1995) Apoptosis and cell cycle. J. Cell. Biochem. 58, 160 - 174.

    Article  CAS  Google Scholar 

  77. Vrablic, A., Albright, C., Craciunescu, C. N., Salganik, R., and Zeisel, S. (2001) Altered mitochondrial function and overgeneration of reactive oxygen species precede the induction of apoptosis by l-O-octadecyl-2-methyl-rac-glycero-3phosphocholine in p53-defective hepatocytes. FASEB J. 15, 1739 - 1744.

    Article  CAS  Google Scholar 

  78. Haug, J. S., Goldner, C. M., Yazlovitskaya, E. M., Voziyan, P. A., and Melnykovych, G. (1994) Directed cell killing (apoptosis) in human lymphoblastoid cells incubated in the presence of farnesol: effect of phosphatidylcholine. Biochim. Biophys. Acta 1223, 133 - 140.

    Article  CAS  Google Scholar 

  79. Boggs, K. P., Rock, C. O., and Jackowski, S. (1995) Lysophosphatidylcholine attenuates the cytotoxic effects of the antineoplastic phospholipid 1-0octadecyl-2-O-methyl-rac-glycero-3-phosphocholine. J. Biol. Chem. 270, 11,612-11, 618.

    Google Scholar 

  80. Boggs, K., Rock, C., and Jackowski, S. (1995) Lysophosphatidylcholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine inhibit the CDPcholine pathway of phosphatidylcholine synthesis at the CTP:phosphocholine cytidylyltransferase step. J. Biol. Chem. 270 (13), 7757 - 7764.

    Article  CAS  Google Scholar 

  81. Jackowski, S. and Boggs, K. (1996) Antineoplastic phospholipids inhibit phosphatidylcholine biosynthesis. In 7th International Congress on Phopholipids. Brussels.

    Google Scholar 

  82. Boggs, K., Rock, C. O., and Jackowski, S. (1998) The antiproliferative effect of hexadecylphosphocholine toward HL60 cells is prevented by exogenous lysophosphatidylcholine. Biochim. Biophys. Acta 1389 (1), 1 - 12.

    Article  CAS  Google Scholar 

  83. Hartfield, P., Mayne, G., and Murray, A. (1997) Ceramide induces apoptosis in PC12 cells. FEBS Lett. 401, 148 - 152.

    Article  CAS  Google Scholar 

  84. Cui, Z., Houweling, M., Chen, M. H., Record, M., Chap, H., Vance, D. E., et al. (1996) Genetic defect in phosphatidylcholine biosynthesis triggers apoptosis in Chinese hamster ovary cells. J. Biol. Chem. 271, 14, 668 - 14, 671.

    Google Scholar 

  85. Jimenez, B., del Peso, L., Montaner, S., Esteve, P., and Lacal, J. C. (1995) Generation of phosphatidylcholine as an essential event in the activation of Raf-1 and MAP-kinases in growth factors-induced mitogenic stimulation. J. Cell. Biochem. 57, 141 - 149.

    Article  CAS  Google Scholar 

  86. Hannun, Y. A. (1994) The sphingomyelin cycle and the second messenger function of ceramide. J. Biol. Chem. 269, 3125 - 3128.

    CAS  Google Scholar 

  87. 85a.Yen, C. L., Mar, M. H., Meeker, R. B., Fernandes, A., and Zeisel, S. H. (2001) Choline deficiency induces apoptosis in primary cultures of fetal neurons. Faseb. J. 15, 1704 - 1710.

    Article  Google Scholar 

  88. Hannun, Y. (1996) Functions of ceramide in coordinating cellular responses to stress. Science 274 (5294), 1855 - 1859.

    Article  CAS  Google Scholar 

  89. Verheij, M., Bose, R., Lin, X., Yao, B., Jarvis, W., Grant, S., et al. (1996) Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380, 75 - 79.

    Article  CAS  Google Scholar 

  90. Paumen, M., Ishida, Y., Muramatsu, M., Yamamoto, M., and Honjo, T. (1997) Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J. Biol. Chem. 272 (6), 3324 - 3329.

    Article  CAS  Google Scholar 

  91. Shimabukuro, M., Zhou, Y., Levi, M., and Unger, R. (1998) Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc. Natl. Acad. Sci. USA 95 (5), 2498 - 2502.

    Article  CAS  Google Scholar 

  92. Oppenheim, R. W. (1991) Cell death during the development of the nervous system. Annu. Rev. Neurosci. 14, 453 - 501.

    Article  CAS  Google Scholar 

  93. Gordon, N. (1995) Apoptosis (programmed cell death) and other reasons for elimination of neurons and axons. Brain Dey. 17, 73 - 77.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zeisel, S.H. (2002). Brain Development and Choline, the Other Methyl Donor. In: Massaro, E.J., Rogers, J.M. (eds) Folate and Human Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-164-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-164-0_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-262-9

  • Online ISBN: 978-1-59259-164-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics