Skip to main content

Molecular Markers of Chemotherapy Resistance in Colorectal Cancer

  • Chapter
Colorectal Cancer

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

A major obstacle to successful treatment of gastrointestinal (GI) cancer with chemotherapy has been that the majority of tumors prove to be intrinsically resistant to the drugs. The commonly used drug 5-fluorouracil (5-FU), for example, when used as a single agent against colorectal cancer causes tumor shrinkage that would be classified as a response in only about 20–25% of patients (1,2). Thus, the majority of patients not only do not derive any benefit from this drug, but the treatment often does direct harm to the patient in the form of severe toxicity to normal tissues. Nevertheless, without the ability to predict who will or will not respond in advance of the treatment, there has been no recourse but to place all patients suffering from cancer into standard treatment protocols with the full knowledge that many, if not most, will have an unsatisfactory outcome from the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grem JL. 5-Fluorouracil plus leucovorin in cancer therapy. In Principles and Practice of Oncology. De Vita VT Jr., Hellman S, and Rosenberg SA (eds.), UpdateSeries. JB Lippincott, Philadelphia, 1988, Vol. 2(7).

    Google Scholar 

  2. Moertel CG. Chemotherapy for colorectal cancer. N. Engl. J. Med., 330 (1994) 1136–1142.

    Article  PubMed  CAS  Google Scholar 

  3. Saltz LB, Cox JV, Blanke C, Rosen LS. Fehrenbacher L, Moore MJ, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N. Engl. J. Med., 343 (2000) 905–914.

    Article  PubMed  CAS  Google Scholar 

  4. Bleiberg H. and de Gramont A. Oxaliplatin plus 5-FU: clinical experience in patients with advanced colorectal cancer. Semin. Oncol., 25 (1998) 32–39.

    PubMed  CAS  Google Scholar 

  5. Raymond E, Faivre S, Woynarowski JM, and Chaney SG. Oxaliplatin: mechanism of action and antineoplastic activity. Semin. Oncol., 25 (1998) 4–12.

    CAS  Google Scholar 

  6. Soros GA, Grogan LM, and Allegra CJ. Preclinical and clinical aspects of biomodulation of 5-fluorouracil. Cancer Treat. Rev., 20 (1994) 11–49.

    Article  Google Scholar 

  7. Danenberg PV. Thymidylate synthetase: a target enzyme in cancer chemotherapy. Biochim. Biophys. Acta, 473 (1977) 73–92.

    PubMed  CAS  Google Scholar 

  8. Pinedo HM and Peters GF. Fluorouracil: biochemistry and pharmacology. J. Clin. Oncol.,6 (1988) 16,753–16,764.

    Google Scholar 

  9. Heidelberger C, Danenberg PV, and Moran RG. Fluorinated pyrimidines and their nucleosides. Adv. Enzymol. Related Areas Mol. Biol., 54 (1983) 58–119.

    CAS  Google Scholar 

  10. Naguib FNM, El Kouni AM, and Cha S. Enzymes of uracil catabolism in normal and neoplastic human tissues. Cancer Res., 45 (1985) 5405–5412.

    PubMed  CAS  Google Scholar 

  11. Horikoshi T, Danenberg KD, Stadlbauer THW, Volkenandt M, Shea LLC, Aigner K, et al. Quantitation of thymidylate synthase, dihydrofolate reductase, and DT-diaphorase gene expression in human tumors using the polymerase chain reaction. Cancer Res., 52 (1992) 108–116.

    PubMed  CAS  Google Scholar 

  12. Heid CA, Stevens J, Livak KJ, and Williams PPM. Real-time quantitative PCR. Genome Res., 6 (1996) 995–1001.

    Article  PubMed  Google Scholar 

  13. Copur S, Aiba K, Drake JC, et al. Thymidylate synthase gene amplification in human colon cancer cell lines resistant to 5-fluorouracil. Biochem. Pharmacol., 49 (1995) 1419–1426.

    Article  PubMed  CAS  Google Scholar 

  14. Leichman L, Lenz H-J, Leichman CG, Groshen S, Danenberg KD, Baranda J, et al. Quantitation of intratumoral thymidylate synthase expression predicts for resistance to protracted infusion of 5-fluorouracil and weekly leucovorin in disseminated colorectal cancers. Eur. J. Cancer, 31 (1995) 1306–1310.

    Article  Google Scholar 

  15. Leichman CG, Lenz H-J, Leichman L, Danenberg K, Baranda J, Groshen S, et al. Quantitation of intratumoral thymidylate synthase expression predicts for disseminated colorectal cancer response and resistance to protracted infusion 5-fluorouracil and weekly leucovorin. J. Clin Oncol., 15 (1997) 3223–3229.

    PubMed  CAS  Google Scholar 

  16. Graf W, Pahlman L, Beregstrom R, and Glimelius B. The relationship between and objective response to chemotherapy and survival in colorectal cancer. Br. J. Cancer, 70 (1994) 559–563.

    Article  PubMed  CAS  Google Scholar 

  17. Kornmann M, Link KH, Lenz HJ, Pillasch J, Butzer U, Leder G, et al. Quantitation of intratumoral thymidylate synthase predicts response and resistance to hepatic artery infusion with fluoropyrimdines in patients with colorectal liver metastases. Cancer Lett., 118 (1997) 29–35.

    Article  PubMed  CAS  Google Scholar 

  18. Gorlick R, Metzger R, Danenberg KD, Salonga D, Miles JS, Longo GSA, Fu J, et al. Higher levels of thymidylate synthase gene expression are observed in pulmonary as compared to heaptic metastases of colorectal adenocarcinoma. J. Clin. Oncol., 16 (1998) 1465–1469.

    PubMed  CAS  Google Scholar 

  19. Lowe SW, Bodis S, McClatchey A, et al. p53 Status and the efficacy of cancer therapy in vivo. Science, 266 (1994) 807–810.

    Article  PubMed  CAS  Google Scholar 

  20. Ju J-F, Banerjee D, Lenz H-J, Danenberg KD, Schmittgen TC, Spears CP, et al. Restoration of wild-type p53 activity in p53-null HL-60 cells confers multi-drug sensitivity. Clin. Cancer Res., 4 (1998) 1315–1323.

    PubMed  CAS  Google Scholar 

  21. Lenz HJ, Hayashi K, Metzger R, Danenberg K, Salonga D, Banerjee D, et al. p53 Point mutations and thymidylate synthase mRNA levels in disseminated colorectal cancer: an analysis of response and survival. Clin. Cancer Res., 4 (1998a) 1243–1251.

    PubMed  CAS  Google Scholar 

  22. Miller CW, Chumakow A, Said J, Chen DL, Aslo A, and Koeffler HP. Mutant p53 proteins have diverse intracellular abilities to oligomerize and activate transcription. Oncogene, 8 (1993) 1815–1824.

    PubMed  CAS  Google Scholar 

  23. Park DJ, Nakamura H, Chumakov AM, Said JW, Miller CW, Chen DL, et al. Transactivational and DNA binding abilities of endogenous p53 in p53 mutant cell lines. Oncogene, 9 (1994) 1899–1906.

    PubMed  CAS  Google Scholar 

  24. Lenz H-J, Danenberg KD, Leichman CG, Florentine B, Johnston PG, Groshen S, et al. p53 and thymidylate synthase expression in untreated stage II colon cancer: Associations with recurrence, survival and site. Clin. Cancer Res., 4 (1998b) 1227–1235.

    PubMed  CAS  Google Scholar 

  25. Birnie GD, Kroeger H, and Heidelberger C. Studies of fluorinated pyrimidines. XVIII. The degradation of 5-fluoro-2’-deoxyuridine and related compounds by nucleoside phosphorylase. Biochemistry, 2 (1963) 566–572.

    Article  PubMed  CAS  Google Scholar 

  26. Santelli G and Birnie F. In vivo potentiation of 5-fluorouracil toxicity against AKR leukemia by purines, pyrimidines, and their nucleosides and deoxynucleosides. J. Natl. Cancer Inst., 64 (1980) 69–72.

    PubMed  CAS  Google Scholar 

  27. Schwartz EL, Baptiste N, Wadler S, and Makower D. Thymidine phosphorylase mediates the sensitivity of colon carcinoma cells to 5-fluorouracil. J. Biol. Chem., 270 (1995) 19, 073–19077.

    Google Scholar 

  28. Metzger R, Danenberg KD, Leichman CG, Salonga D, Schwartz EL, Wadler S, et al. High basal level gene expression of thymidine phosphorylase (platelet-derived endothelial cell growth factor) in colorectal tumors is associated with non-response to 5-fluorouracil. Clin. Cancer Res., 4 (1998) 2371–2376.

    PubMed  CAS  Google Scholar 

  29. Usuki K, Saras J, Waltenberger J, Miyazono K, Pierce G, Thomason A, et al. Platelet-derived endothelial cell growth factor has thymidine phosphorylase activity. Biochem. Biophys. Res. Commun., 184 (1992) 1311–1316.

    Article  PubMed  CAS  Google Scholar 

  30. Harris BE, Song R, He YJ, Soong SJ, and Diasio RB. Relationship between dihydropyrimidine dehydrogenase activity and plasma drug levels in cancer patients receiving 5-fluorouracil by protracted continuous infusion. Cancer Res., 50 (1990) 197–201.

    Article  Google Scholar 

  31. Beck A, Etienne MC, Cheradame S, Fischel JL, Formento P, Renee N, et al. A role for dihydropyrimidine dehydrogenase and thymidylate synthase in tumor sensitivity to 5-fluorouracil. Eur. J. Cancer, 30 (1994) 1517–1522.

    Article  Google Scholar 

  32. Etienne MC, Cheradame S, Fischel JL, Formento P, Dassonville O, Renee N, et al. Response to fluorouracil therapy in cancer patients: the role of intratumoral dihydropyrimidine dehydrogenase activity. J. Clin. Oncol., 13 (1995) 1663–1670.

    PubMed  CAS  Google Scholar 

  33. Salonga D, Danenberg KD, Johnson M, Metzger R, Groshen S, Tsao-Wei DD, et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin. Cancer Res., 6 (2000) 1322–1327.

    PubMed  CAS  Google Scholar 

  34. Pommier Y. Cellular determinants of sensitivity and resistance to camptothecins. In Camptothecins: New Anticancer Agents. Potmesil M and Pinedo H (eds.), CRC, Boca Raton, FL, 1995.

    Google Scholar 

  35. Saltz L, Danenberg K, Paty P, et al. High thymidylate synthase (TS) expression does not preclude activity of CPT-11 in colorectal cancer (CRC). Proc. Am. Soc. Clin. Oncol., 17 (1998) 281.

    Google Scholar 

  36. Kigawa J, Takahashi M, Minagawa Y, Oishi T, Sugiyama T, Yakushiji M, et al. Topoismerase-I activity and response to second-line chemotherapy consisting of camptothecin-11 and cisplatin in patients with ovarian cancer. Int. J. Cancer, 84 (1999) 521–524.

    Article  PubMed  CAS  Google Scholar 

  37. DeGregori J, Kowalik T, and Nevins JR. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis and Gl/S-regulatory genes. Mol. Cell. Biol., 15 (1995) 4215–4224.

    PubMed  CAS  Google Scholar 

  38. Banerjee D, Schnieders B, Fu JZ, Adhikari D, Zhao SC, and Bertino JR. Role of E2F-1 in chemosensitivity. Cancer Res., 58 (19) (1998) 4292–4296.

    PubMed  CAS  Google Scholar 

  39. Banerjee D, Gorlick R, Liefshitz A, Danenberg K, Danenberg PC, Danenberg PV, et al. Levels of E2F-1 expression are higher in lung metastasis of colon cancer as compared with hepatic metastasis and correlate with levels of thymidylate synthase. Cancer Res., 60 (2000) 2365–2368.

    PubMed  CAS  Google Scholar 

  40. Johnston PG, Liang CM, Henry S, Chabner BA, and Allegra CJ. Production and characterization of monoclonal antibodies that localize human thymidylate synthase in the cytoplasm of human cells and tissue. Cancer Res.,51 (1991) 6668–6676.

    PubMed  CAS  Google Scholar 

  41. Johnston PG, Fisher ER, Rockette HE, Fisher B, Wolmark N, Drake JC, et al. The role of thymidylate synthase expression in prognosis and outcome of adjuvant chemotherapy in patients with rectal cancer. J. Clin. Oncol., 12 (1994) 2640–2647.

    PubMed  CAS  Google Scholar 

  42. Edler D, Kressner U, Ragnhammar P, Johnston PG, Magnusson I, Glimelius B, et al. Immunohistochemically detected thymidylate synthase in colorectal cancer: an independent prognostic factor of survival. Clin. Cancer Res., 6 (2000) 488–492.

    PubMed  CAS  Google Scholar 

  43. Davies MM, Johnston PG, Kaur S, and Allen-Mersh TG. Colorectal liver metastasis thymidylate synthase staining correlates with response to hepatic arterial floxuridine. Clin. Cancer Res., 5 (1999) 325–328.

    PubMed  CAS  Google Scholar 

  44. Paradiso A, Simone G, Petroni S, Leone B, Vallejo C, Lacava J, et al. Thymidilate synthase and p53 primary tumour expression as predictive factors for advanced colorectal cancer patients. Br. J. Cancer, 82 (2000) 560–567.

    Article  PubMed  CAS  Google Scholar 

  45. McKay JA, Lloret C, Murray GI, Johnston PG, Bicknell R, Ahmed FY, et al. Application of the enrichment approach to identify putative markers of response to 5-fluorouracil therapy in advanced colorectal carcinomas. Int. J. Oncol., 17 (2000) 153–158.

    PubMed  CAS  Google Scholar 

  46. Stebbing J, Copson E, and O’Reilly S. Herceptin (trastuzamab) in advanced breast cancer. Cancer Treat. Rev., 26 (2000) 287–290.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Danenberg, P.V. (2002). Molecular Markers of Chemotherapy Resistance in Colorectal Cancer. In: Saltz, L.B. (eds) Colorectal Cancer. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-160-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-160-2_34

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9670-3

  • Online ISBN: 978-1-59259-160-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics