Advertisement

Melanoma pp 325-360 | Cite as

Tumor Angiogenesis

  • Bela Anand-Apte
  • Paul L. Fox
Chapter
Part of the Current Clinical Oncology book series (CCO)

Abstract

As early as the 1960s, the observation of hyperemia and increased vascularity of tumors was considered to be due to a dilation of pre-existing host vessels stimulated by necrotic tumor products (1,2). Despite early reports, that suggested this phenomenon could result from induction of new vessels rather than vasodilation (3,4),a debate persisted about whether tumors were supplied by existing vessels or by neovascularization. Subsequent experiments, in which a transparent chamber was implanted into a rabbit ear, permitted the observation of angiogenesis in vivo (5).Critical experiments which marked a turning point in the field were initiated in 1963 by Folkman and his collaborators (6, 7). They showed that tumors, implanted into isolated perfused organs, were restricted in their growth to spheroids of about 1 mm3 or less. This limited growth was accompanied by a complete absence of angiogenesis, due to a degeneration of capillary endothelium following prolonged perfusion. However, when the tumor spheroid was transplanted to the mouse strain from which it originated, the tumors became vascularized and grew rapidly beyond the 1 mm3 limit and killed their hosts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coman D, Sheldon W. The significance of hyperemia around tumor implants. Am J Pathol 1946; 22: 821 - 831.Google Scholar
  2. 2.
    Warren B, Greenblatt M, Kommineni V. Tumour angiogenesis: ultrastructure of endothelial cells in mitosis. Br J Exp Pathol 1972; 53: 216 - 224.PubMedGoogle Scholar
  3. 3.
    Ide A, Baker N, Warren SL. Vascularization of the Brown-Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am J Roentgenol 1939; 42: 891 - 899.Google Scholar
  4. 4.
    Algire G, Chalkely H, Legallais F, et al. Vascular reactions of normal and malignant tumors in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J Natl Cancer Inst 1945; 6: 73 - 85.Google Scholar
  5. 5.
    Clark E, Clark E. Microscopic observations on the growth of blood capillaries in the living mammal. Am JAnat 1939; 64: 251 - 301.CrossRefGoogle Scholar
  6. 6.
    Folkman J., Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182-1186.PubMedCrossRefGoogle Scholar
  7. 7.
    Folkman J, Cole P, Zimmerman S. Tumor behaviour in isolated perfused organs: in vitro growth and metastasis of biopsy material in rabbit thyroid and canine intestinal segment. Ann Surg 1966; 164: 491 - 502.PubMedCrossRefGoogle Scholar
  8. 8.
    Folkman J. Biology of Endothelial Cells. In: Jaffe E, ed. Martinus Nijhoff, Boston, 1984, pp. 412-428.Google Scholar
  9. 9.
    Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990; 82: 4 - 6.PubMedCrossRefGoogle Scholar
  10. 10.
    Folkman J. Tumor angiogenesis. In: Mendelsohn J, Howley PM, Israel MA, Liotta LA, eds. The Molecular Basis for Cancer. W.B. Saunders, Philadelphia, 1995, pp. 206 - 232.Google Scholar
  11. 11.
    Gimbrone MJ, Cotran R, Leapman S, Folkman J. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst 1974; 52: 413 - 427.PubMedGoogle Scholar
  12. 12.
    Gimbrone MJ, Leapman S, Cotran R, Folkman J. Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 1972; 136: 261 - 276.PubMedCrossRefGoogle Scholar
  13. 13.
    Brem S, Brem H, Folkman J, Finkelstein D, Patz A. Prolonged tumor dormancy by prevention of neovascularization in the vitreous. Cancer Res 1976; 36: 2807 - 2812.PubMedGoogle Scholar
  14. 14.
    Knighton D, Ausprunk D, Tapper D, Folkman J. Avascular and vascular phases of tumour growth in the chick embryo. Br J Cancer 1977; 35: 347 - 356.PubMedCrossRefGoogle Scholar
  15. 15.
    Srivastava A, Laidler P, Davies RP, Horgan K, Hughes LE. The prognostic significance of tumor vascularity in intermediate-thickness (0.76-4.0 mm thick) skin melanoma. A quantitative histologic study. Am J Pathol 1988; 133: 419 - 423.PubMedGoogle Scholar
  16. 16.
    Folkman J, Watson K, Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989; 339: 58 - 61.PubMedCrossRefGoogle Scholar
  17. 17.
    Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353 - 364.PubMedCrossRefGoogle Scholar
  18. 18.
    Hanahan D, Christofori G, Naik P, Arbeit J. Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur J Cancer 1996; 32A: 2386 - 2393.CrossRefGoogle Scholar
  19. 19.
    Thompson WD, Shiach KJ, Fraser RA, McIntosh LC, Simpson JG. Tumours acquire their vasculature by vessel incorporation, not vessel ingrowth. J Pathol 1987; 151: 323 - 332.PubMedCrossRefGoogle Scholar
  20. 20.
    Gross JL, Herblin WF, Dusak BA, Czerniak P, Diamond M, Dexter DL. Modulation of solid tumor growth in vivo by bFGF. Proc Am Assoc Cancer Res 1990; 31: 79.Google Scholar
  21. 21.
    Gross JL, Herblin WF, Eidsvoog K, Horlick R, Brem SS. Tumor growth regulation by modulation of basic fibroblast growth factor. EXS 1992; 61: 421 - 427.PubMedGoogle Scholar
  22. 22.
    Gross JL, Herblin WF, Dusak BA, et al. Effects of modulation of basic fibroblast growth factor on tumor growth in vivo. J Natl Cancer Inst 1993; 85: 121 - 131.PubMedCrossRefGoogle Scholar
  23. 23.
    Hori A, Sasada R, Matsutani E, et al. Suppression of solid tumor growth by immunoneutralizing monoclonal antibody against human basic fibroblast growth factor. Cancer Res 1991; 51: 6180 - 6184.PubMedGoogle Scholar
  24. 24.
    Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993; 362: 841 - 844.PubMedCrossRefGoogle Scholar
  25. 25.
    Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994; 367: 576 - 579.PubMedCrossRefGoogle Scholar
  26. 26.
    Millauer B, Longhi MP, Plate KH, et al. Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res 1996; 56: 1615 - 1620.PubMedGoogle Scholar
  27. 27.
    Folkman J. New perspectives in clinical oncology from angiogenesis research. EurJCancer 1996; 32A: 2534 - 2539.CrossRefGoogle Scholar
  28. 28.
    Folkman J. Angiogenesis research: from laboratory to clinic. Forum (Genova) 1999; 9: 59 - 62.Google Scholar
  29. 29.
    Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27 - 31PubMedCrossRefGoogle Scholar
  30. 30.
    Zetter B. Angiogenesis and tumor metastasis. Annu Rev Med 1998; 49: 407 - 424.PubMedCrossRefGoogle Scholar
  31. 31.
    Fidler IJ. Metastasis: quantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2’-deoxyuridine. J Natl Cancer Inst 1970; 45: 773 - 782.PubMedGoogle Scholar
  32. 32.
    Liotta LA, Kleinerman J, Saidel GM. Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res 1974; 34: 997 - 1004.PubMedGoogle Scholar
  33. 33.
    Taylor S, Folkman J. Protamine is an inhibitor of angiogenesis. Nature 1982; 297: 307 - 312.Google Scholar
  34. 34.
    Crum R, Szabo S, Folkman J. A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 1985; 230: 1375 - 1378.PubMedCrossRefGoogle Scholar
  35. 35.
    D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 1994; 91: 4082 - 4085.PubMedCrossRefGoogle Scholar
  36. 36.
    Ingber D, Fujita T, Kishimoto S, et al. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 1990; 348: 555 - 557.PubMedCrossRefGoogle Scholar
  37. 37.
    Konno H, Tanaka T, Matsuda I, et al. Comparison of the inhibitory effect of the angiogenesis inhibitor, TNP-470, and mitomycin C on the growth and liver metastasis of human colon cancer. Int J Cancer 1995; 61: 268 - 271.PubMedCrossRefGoogle Scholar
  38. 38.
    Mori S, Ueda T, Kuratsu S, Hosono N, Izawa K, Uchida A. Suppression of pulmonary metastasis by angiogenesis inhibitor TNP-470 in murine osteosarcoma. Int J Cancer 1995; 61: 148 - 152.PubMedCrossRefGoogle Scholar
  39. 39.
    Weinstat-Saslow DL, Zabrenetzky VS, VanHoutte K, Frazier WA, Roberts DD, Steeg PS. Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Res 1994; 54: 6504 - 6511.PubMedGoogle Scholar
  40. 40.
    Weinstat-Saslow D, Steeg PS. Angiogenesis and colonization in the tumor metastatic process: basic and applied advances. FASEB J 1994; 8: 401 - 407.PubMedGoogle Scholar
  41. 41.
    O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315 - 328.PubMedCrossRefGoogle Scholar
  42. 42.
    O’Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277 - 285.PubMedCrossRefGoogle Scholar
  43. 43.
    Kolber DL, Knisely TL, Maione TE. Inhibition of development of murine melanoma lung metastases by systemic administration of recombinant platelet factor 4. J Natl Cancer Inst 1995; 87: 304 - 309.PubMedCrossRefGoogle Scholar
  44. 44.
    Watson SA, Morris TM, Robinson G, Crimmin MJ, Brown PD, Hardcastle JD. Inhibition of organ invasion by the matrix metalloproteinase inhibitor batimastat (BB-94) in two human colon carcinoma metastasis models. Cancer Res 1995; 55: 3629 - 3633.PubMedGoogle Scholar
  45. 45.
    Watson SA, Morris TM, Parsons SL, Steele RJ, Brown PD. Therapeutic effect of the matrix metalloproteinase inhibitor, batimastat, in a human colorectal cancer ascites model. Br J Cancer 1996; 74: 1354 - 1358.PubMedCrossRefGoogle Scholar
  46. 46.
    Lien WM, Ackerman NB. The blood supply of experimental liver metastases. II. A micro-circulatory study of the normal and tumor vessels of the liver with the use of perfused silicone rubber. Surgery 1970; 68: 334 - 340.PubMedGoogle Scholar
  47. 47.
    Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995; 1: 149 - 153.PubMedCrossRefGoogle Scholar
  48. 48.
    Claffey KP, Brown LF, del Aguila LF, et al. Expression of vascular permeability factor/ vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res 1996; 56: 172 - 181.Google Scholar
  49. 49.
    Sheidow TG, Hooper PL, Crukley C, Young J, Heathcote JG. Expression of vascular endothelial growth factor in uveal melanoma and its correlation with metastasis. Br Ophthalmol 2000; 84: 750 - 756.CrossRefGoogle Scholar
  50. 50.
    Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 1991; 324: 1 - 8.PubMedCrossRefGoogle Scholar
  51. 51.
    Gasparini G, Harris A. Clinical importance of the determination of tumor angiogenesis in breast carcinoma: much more than a new prognostic tool. J Clin Oncol 1995; 13: 765 - 782.PubMedGoogle Scholar
  52. 52.
    Gasparini G, Bevilacqua P, Bonoldi E, et al. Predictive and prognostic markers in a series of patients with head and neck squamous cell invasive carcinoma treated with concurrent chemoradiation therapy. Clin Cancer Res 1995; 1: 1375 - 1383.PubMedGoogle Scholar
  53. 53.
    Ellis LM, Takahashi Y, Fenoglio CJ, Cleary KR, Bucana CD, Evans DB. Vessel counts and vascular endothelial growth factor expression in pancreatic adenocarcinoma. Eur J Cancer 1998; 34: 337 - 340.PubMedCrossRefGoogle Scholar
  54. 54.
    Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 1993; 143: 401 - 409.PubMedGoogle Scholar
  55. 55.
    Maeda K, Chung YS, Takatsuka S, et al. Tumor angiogenesis as a predictor of recurrence in gastric carcinoma. J Clin Oncol 1995; 13: 477 - 481.PubMedGoogle Scholar
  56. 56.
    Wiggins D, Granai C, Steinhoff M, Calabresi P. Tumor angiogenesis as a prognostic factor in cervical carcinoma. Gynecol Oncol 1995; 56: 353 - 356.PubMedCrossRefGoogle Scholar
  57. 57.
    Gasparini G, Weidner N, Maluta S, et al. Intratumoral microvessel density and p53 protein: correlation with metastasis in head-and-neck squamous-cell carcinoma. Int J Cancer 1993; 55: 739 - 744.PubMedCrossRefGoogle Scholar
  58. 58.
    Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 1991; 64: 327 - 336.PubMedCrossRefGoogle Scholar
  59. 59.
    Risau W. Mechanisms of angiogenesis. Nature 1997; 386: 671 - 674.PubMedCrossRefGoogle Scholar
  60. 60.
    Risau W. Development and differentiation of endothelium. Kidney Int Suppl 1998; 67: S3 - S6.PubMedCrossRefGoogle Scholar
  61. 61.
    Fong GH, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376: 66 - 70.PubMedCrossRefGoogle Scholar
  62. 62.
    Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380: 435 - 439.PubMedCrossRefGoogle Scholar
  63. 63.
    Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380: 439 - 442.PubMedCrossRefGoogle Scholar
  64. 64.
    Breier G, Damert A, Plate KH, Risau W. Angiogenesis in embryos and ischemic diseases. Thromb Haemost 1997; 78: 678 - 683.PubMedGoogle Scholar
  65. 65.
    Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376: 62 - 66.PubMedCrossRefGoogle Scholar
  66. 66.
    Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 1977; 14: 53 - 65.PubMedCrossRefGoogle Scholar
  67. 67.
    Pepper MS. Manipulating angiogenesis. From basic science to the bedside. Arterioscler Thromb Vasc Biol 1997; 17: 605 - 619.PubMedCrossRefGoogle Scholar
  68. 68.
    Patan S, Haenni B, Burri PH. Implementation of intussusceptive microvascular growth in the chicken chorioallantoic membrane (CAM): 1. pillar formation by folding of the capillary wall. Microvasc Res 1996; 51: 80 - 98.PubMedCrossRefGoogle Scholar
  69. 69.
    Pardanaud L, Yassine F, Dieterlen-Lievre F. Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 1989; 105: 473 - 485.PubMedGoogle Scholar
  70. 70.
    Sato TN, Tozawa Y, Deutsch U, et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376: 70 - 74.PubMedCrossRefGoogle Scholar
  71. 71.
    Davis S, Aldrich TH, Jones PF, et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 1996; 87: 1161 - 1169.PubMedCrossRefGoogle Scholar
  72. 72.
    Davis S, Yancopoulos GD. The angiopoietins: Yin and Yang in angiogenesis. Curr Top Microbiol Immunol 1999; 237: 173 - 185.PubMedCrossRefGoogle Scholar
  73. 73.
    Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87: 1171 - 1180.PubMedCrossRefGoogle Scholar
  74. 74.
    Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1995; 1: 1024 - 1028.PubMedCrossRefGoogle Scholar
  75. 75.
    Franke RP, Grafe M, Dauer U, Schnittler H, Mittermayer C. Stress fibres (SF) in human endothelial cells (HEC) under shear stress. Klin Wochenschr 1986; 64: 989 - 992.PubMedCrossRefGoogle Scholar
  76. 76.
    Crocker DJ, Murad TM, Geer JC. Role of the pericyte in wound healing. An ultrastructural study. Exp Mol Pathol 1970; 13: 51 - 65.PubMedCrossRefGoogle Scholar
  77. 77.
    Hirschi KK, Rohovsky SA, Beck LH, Smith SR, D’Amore PA. Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ Res 1999; 84: 298 - 305.PubMedCrossRefGoogle Scholar
  78. 78.
    Hirschi KK, D’Amore PA. Control of angiogenesis by the pericyte: molecular mechanisms and significance. EXS 1997; 79: 419 - 428.PubMedGoogle Scholar
  79. 79.
    Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 1999; 103: 159 - 165.PubMedCrossRefGoogle Scholar
  80. 80.
    Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964 - 967.PubMedCrossRefGoogle Scholar
  81. 81.
    Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999; 85: 221 - 228.PubMedCrossRefGoogle Scholar
  82. 82.
    Holash J, Wiegand SJ, Yancopoulos GD. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 1999; 18: 5356 - 5362.PubMedCrossRefGoogle Scholar
  83. 83.
    Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284: 1994 - 1998.PubMedCrossRefGoogle Scholar
  84. 84.
    Willis RA. Pathology of Tumors. Butterworths, London, 1948, p. 136.Google Scholar
  85. 85.
    Konerding MA, Steinberg F, Streffer C. The vasculature of xenotransplanted human melanomas and sarcomas on nude mice. II. Scanning and transmission electron microscopic studies. Acta Anat (Basel) 1989; 136: 27 - 33.CrossRefGoogle Scholar
  86. 86.
    Warren BA. The vascular morphology of tumors. In: Peterson HI, ed. Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Blood Flow of Experimental and Human Tumors. CRC Press, Boca Raton, 1979, pp. 1 - 48.Google Scholar
  87. 87.
    Francois J, Neetens A. Physico-anatomical studies of spontaneous and experimental ocular new growths: vascular supply. Bibi Anat 1967; 9: 403 - 411.Google Scholar
  88. 88.
    Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 1999; 155: 739 - 752.PubMedCrossRefGoogle Scholar
  89. 89.
    Folberg R, Hendrix M, Maniotis A. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 2000; 156: 361 - 381.PubMedCrossRefGoogle Scholar
  90. 90.
    McDonald DM, Munn L, Jain RK. Vasculogenic mimicry: how convincing, how novel, and how significant? Am J Pathol 2000; 156: 383 - 388.PubMedCrossRefGoogle Scholar
  91. 91.
    Konerding MA, Miodonski AJ, Lametschwandtner A. Microvascular corrosion casting in the study of tumor vascularity: a review. Scanning Microsc 1995; 9: 1233 - 1243.PubMedGoogle Scholar
  92. 92.
    Konerding MA, Malkusch W, Klapthor B, et al. Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br J Cancer 1999; 80: 724 - 732.PubMedCrossRefGoogle Scholar
  93. 93.
    Papadimitrou JM, Woods AE. Structural and functional characteristics of the microcirculation in neoplasms. J Pathol 1975; 116: 65 - 72.PubMedCrossRefGoogle Scholar
  94. 94.
    Peterson HI, Appelgren L. Tumour vessel permeability and transcapillary exchange of large molecules of different size. Bibl Anat 1977; 262 - 265.Google Scholar
  95. 95.
    Peterson HI. Tumor angiogenesis inhibition by prostaglandin synthetase inhibitors. Anticancer Res 1986; 6: 251 - 253.PubMedGoogle Scholar
  96. 96.
    Dvorak HF, Detmar M, Claffey KP, Nagy JA, van de Water L, Senger DR. Vascular permeability factor/vascular endothelial growth factor: an important mediator of angiogenesis in malignancy and inflammation. Int Arch Allergy Immunol 1995; 107: 233 - 235.PubMedCrossRefGoogle Scholar
  97. 97.
    Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 1999; 237: 97 - 132.PubMedCrossRefGoogle Scholar
  98. 98.
    Peterson HI. Modification of tumour blood flow-a review. Int J Radiat Biol 1991; 60: 201 - 210.PubMedCrossRefGoogle Scholar
  99. 99.
    Liotta LA. Cancer cell invasion and metastasis. Sci Am 1992; 266: 54 - 63.PubMedCrossRefGoogle Scholar
  100. 100.
    Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 1988; 133: 95 - 109.PubMedGoogle Scholar
  101. 101.
    Hashizume H, Baluk P, Morikawa S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000; 156: 1363 - 1380.PubMedCrossRefGoogle Scholar
  102. 102.
    Cockerill GW, Gamble JR, Vadas MA. Angiogenesis: models and modulators. Int Rev Cytol 1995; 159: 113 - 160.PubMedCrossRefGoogle Scholar
  103. 103.
    Anand-Apte B, Zetter B. Biological principles of angiogenesis. In: D’Amore P, Voest E, eds. Tumor Angiogenesis and Microcirculation. Marcel Dekker, New York, 2000.Google Scholar
  104. 104.
    Ferrara N, Bunting S. Vascular endothelial growth factor, a specific regulator of angiogenesis. Curr Opin Nephrol Hypertens 1996; 5: 35 - 44.PubMedCrossRefGoogle Scholar
  105. 105.
    Mustonen T, Alitalo K. Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol 1995; 129: 895 - 898.PubMedCrossRefGoogle Scholar
  106. 106.
    Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998; 92: 735 - 745.PubMedCrossRefGoogle Scholar
  107. 107.
    Liu B, Earl HM, Baban D, et al. Melanoma cell lines express VEGF receptor KDR and respond to exogenously added VEGF. Biochem Biophys Res Commun 1995; 217: 721 - 727.PubMedCrossRefGoogle Scholar
  108. 108.
    Namiki A, Brogi E, Kearney M, et al. Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J Biol Chem 1995; 270: 31189 - 31195.PubMedCrossRefGoogle Scholar
  109. 109.
    Minchenko A, Bauer T, Salceda S, Caro J. Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Invest 1994; 71: 374 - 379.PubMedGoogle Scholar
  110. 110.
    Levy AP, Levy NS, Wegner S, Goldberg MA. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 1995; 270: 13333 - 13340.PubMedCrossRefGoogle Scholar
  111. 111.
    Levy AP, Levy NS, Goldberg MA. Hypoxia-inducible protein binding to vascular endothelial growth factor mRNA and its modulation by the von Hippel-Lindau protein. J Biol Chem 1996; 271: 25492 - 25497.PubMedCrossRefGoogle Scholar
  112. 112.
    Takagi H, King GL, Robinson GS, Ferrara N, Aiello LP. Adenosine mediates hypoxic induction of vascular endothelial growth factor in retinal pericytes and endothelial cells. Invest Ophthalmol Vis Sci 1996; 37: 2165 - 2176.PubMedGoogle Scholar
  113. 113.
    Hashimoto E, Kage K, Ogita T, Nakaoka T, Matsuoka R, Kira Y. Adenosine as an endogenous mediator of hypoxia for induction of vascular endothelial growth factor mRNA in U-937 cells. Biochem Biophys Res Commun 1994; 204: 318 - 324.PubMedCrossRefGoogle Scholar
  114. 114.
    Brogi E, Schatteman G, Wu T, et al. Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J Clin Invest 1996; 97: 469 - 476.PubMedCrossRefGoogle Scholar
  115. 115.
    Li J, Perrella MA, Tsai JC, et al. Induction of vascular endothelial growth factor gene expression by interleukin-1 beta in rat aortic smooth muscle cells. J Biol Chem 1995; 270: 308 - 312.PubMedCrossRefGoogle Scholar
  116. 116.
    Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ. Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 1996; 271: 736 - 741.PubMedCrossRefGoogle Scholar
  117. 117.
    Mukhopadhyay D, Tsiokas L, Sukhatme VP. Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res 1995; 55: 6161 - 6165.PubMedGoogle Scholar
  118. 118.
    Mukhopadhyay D, Tsiokas L, Sukhatme VP. High cell density induces vascular endothelial growth factor expression via protein tyrosine phosphorylation. Gene Expr 1998; 7: 53 - 60.PubMedGoogle Scholar
  119. 119.
    Grugel S, Finkenzeller G, Weindel K, Barleon B, Marme D. Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. JBiol Chem 1995; 270: 25915 - 25919.CrossRefGoogle Scholar
  120. 120.
    Rak J, Filmus J, Finkenzeller G, Grugel S, Marme D, Kerbel RS. Oncogenes as inducers of tumor angiogenesis. Cancer Metastasis Rev 1995; 14: 263 - 277.PubMedCrossRefGoogle Scholar
  121. 121.
    Pertovaara L, Kaipainen A, Mustonen T, et al. Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. J Biol Chem 1994; 269: 6271 - 6274.PubMedGoogle Scholar
  122. 122.
    Warren RS, Yuan H, Matli MR, Ferrara N, Donner DB. Induction of vascular endothelial growth factor by insulin-like growth factor 1 in colorectal carcinoma. JBiol Chem 1996; 271: 29483 - 29488.CrossRefGoogle Scholar
  123. 123.
    Hyder SM, Stancel GM. Regulation of angiogenic growth factors in the female reproductive tract by estrogens and progestins. Mol Endocrinol 1999; 13: 806 - 811.PubMedCrossRefGoogle Scholar
  124. 124.
    Hyder SM, Stancel GM. Regulation of VEGF in the reproductive tract by sex-steroid hormones. Histol Histopathol 2000; 15: 325 - 334.PubMedGoogle Scholar
  125. 125.
    Nicosia RF. What is the role of vascular endothelial growth factor-related molecules in tumor angiogenesis? Am J Pathol 1998; 153: 11 - 16.PubMedCrossRefGoogle Scholar
  126. 126.
    Salven P, Lymboussaki A, Heikkila P, et al. Vascular endothelial growth factors VEGF-B and VEGF-C are expressed in human tumors. Am J Pathol 1998; 153: 103 - 108.Google Scholar
  127. 127.
    Shweiki D, Neeman M, Itin A, Keshet E. Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc Natl Acad Sci USA 1995; 92: 768 - 772.PubMedCrossRefGoogle Scholar
  128. 128.
    Asano M, Yukita A, Matsumoto T, Kondo S, Suzuki H. Inhibition of tumor growth and metastasis by an immunoneutralizing monoclonal antibody to human vascular endothelial growth factor/vascular permeability factorl 21. Cancer Res 1995; 55: 5296 - 5301.PubMedGoogle Scholar
  129. 129.
    Goldman CK, Kendall RL, Cabrera G, et al. Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate. Proc Natl Acad Sci USA 1998; 95: 8795 - 8800.PubMedCrossRefGoogle Scholar
  130. 130.
    Warren RS, Yuan H, Matli MR, Gillett NA, Ferrara N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest 1995; 95: 1789 - 1797.PubMedCrossRefGoogle Scholar
  131. 131.
    Benjamin LE, Keshet E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci USA 1997; 94: 8761 - 8766.PubMedCrossRefGoogle Scholar
  132. 132.
    Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277: 55 - 60.PubMedCrossRefGoogle Scholar
  133. 133.
    Davis GE, Camarillo CW. Regulation of endothelial cell morphogenesis by integrins, mechanical forces, and matrix guidance pathways. Exp Cell Res 1995; 216: 113 - 123.PubMedCrossRefGoogle Scholar
  134. 134.
    Vikkula M, Boon LM, Carraway KL 3`d, et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 1996; 87: 1181 - 1190.PubMedCrossRefGoogle Scholar
  135. 135.
    Suri C, McClain J, Thurston G, et al. Increased vascularization in mice overexpressing angiopoietin-1. Science 1998; 282: 468 - 471.PubMedCrossRefGoogle Scholar
  136. 136.
    Papapetropoulos A, Garcia-Cardena G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC. Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 1999; 79: 213 - 223.PubMedGoogle Scholar
  137. 137.
    Papapetropoulos A, Fulton D, Mahboubi K, et al. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 2000; 275: 9102 - 9105.PubMedCrossRefGoogle Scholar
  138. 138.
    Zagzag D, Hooper A, Friedlander DR, et al. In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 1999; 159: 391 - 400.PubMedCrossRefGoogle Scholar
  139. 139.
    Auerbach W, Auerbach R. Angiogenesis inhibition: a review. Pharmacol Ther 1994; 63: 265 - 311.PubMedCrossRefGoogle Scholar
  140. 140.
    Vogel T, Guo NH, Krutzsch HC, et al. Modulation of endothelial cell proliferation, adhesion, and motility by recombinant heparin-binding domain and synthetic peptides from the type I repeats of thrombospondin. J Cell Biochem 1993; 53: 74 - 84.PubMedCrossRefGoogle Scholar
  141. 141.
    Iruela-Arispe ML, Bornstein P, Sage H. Thrombospondin exerts an antiangiogenic effect on cord formation by endothelial cells in vitro. Proc Natl Acad Sci USA 1991; 88: 50265030.Google Scholar
  142. 142.
    Tolsma SS, Volpert OV, Good DJ, Frazier WA, Polverini PJ, Bouck N. Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol 1993; 122: 497 - 511.PubMedCrossRefGoogle Scholar
  143. 143.
    Bouck N. P53 and angiogenesis. Biochim Biophys Acta 1996; 1287: 63 - 66.PubMedGoogle Scholar
  144. 144.
    Grossfeld GD, Ginsberg DA, Stein JP, et al. Thrombospondin-1 expression in bladder cancer: association with p53 alterations, tumor angiogenesis, and tumor progression. J Natl Cancer Inst 1997; 89: 219 - 227.PubMedCrossRefGoogle Scholar
  145. 145.
    Iruela-Arispe ML, Vazquez F, Ortega MA. Antiangiogenic domains shared by thrombospondins and metallospondins, a new family of angiogenic inhibitors. Ann NY Acad Sci 1999; 886: 58 - 66.PubMedCrossRefGoogle Scholar
  146. 146.
    O’Reilly MS. Angiostatin: an endogenous inhibitor of angiogenesis and of tumor growth. EXS 1997; 79: 273 - 294.PubMedGoogle Scholar
  147. 147.
    O’Reilly MS, Holmgren L, Chen C, Folkman J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 1996; 2: 689 - 692.PubMedCrossRefGoogle Scholar
  148. 148.
    Dong Z, Kumar R, Yang X, Fidler IJ. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 1997; 88: 801 - 810.PubMedCrossRefGoogle Scholar
  149. 149.
    Zatterstrom UK, Felbor U, Fukai N, Olsen BR. Collagen XVIII/endostatin structure and functional role in angiogenesis. Cell Struct Funct 2000; 25: 97 - 101.PubMedCrossRefGoogle Scholar
  150. 150.
    Yamaguchi N, Anand-Apte B, Lee M, et al. Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J 1999; 18: 44144423.Google Scholar
  151. 151.
    Felbor U, Dreier L, Bryant RA, Ploegh HL, Olsen BR, Mothes W. Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J 2000; 19: 1187 - 1194.PubMedCrossRefGoogle Scholar
  152. 152.
    Wen W, Moses MA, Wiederschain D, Arbiser JL, Folkman J. The generation of endostatin is mediated by elastase. Cancer Res 1999; 59: 6052 - 6056.PubMedGoogle Scholar
  153. 153.
    Sidky YA, Borden EC. Inhibition of angiogenesis by interferons: effects on tumor-and lymphocyte-induced vascular responses. Cancer Res 1987; 47: 5155 - 5161.PubMedGoogle Scholar
  154. 154.
    Chang E, Boyd A, Nelson CC, et al. Successful treatment of infantile hemangiomas with interferon-alpha-2b. J Pediatr Hematol Oncol 1997; 19: 237 - 244.PubMedCrossRefGoogle Scholar
  155. 155.
    Ezekowitz RA, Mulliken JB, Folkman J. Interferon alfa-2a therapy for life-threatening hemangiomas of infancy. N Engl J Med 1992; 326: 1456 - 1463.PubMedCrossRefGoogle Scholar
  156. 156.
    Singh RK, Gutman M, Bucana CD, Sanchez R, Llansa N, Fidler U. Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc Natl Acad Sci USA 1995; 92: 4562 - 4566.PubMedCrossRefGoogle Scholar
  157. 157.
    Powell WC, Matrisian LM. Complex roles of matrix metalloproteinases in tumor progression. Curr Top Microbiol Immunol 1996; 213: 1 - 21.PubMedCrossRefGoogle Scholar
  158. 158.
    Moses MA. The regulation of neovascularization of matrix metalloproteinases and their inhibitors. Stem Cells 1997; 15: 180 - 189.PubMedCrossRefGoogle Scholar
  159. 159.
    Anand-Apte B, Pepper MS, Voest E, et al. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Invest Ophthal Vis Sci 1997; 38: 817 - 823.PubMedGoogle Scholar
  160. 160.
    Anand-Apte B, Bao L, Smith R, et al. A review of tissue inhibitor of metalloproteinases-3 (TIMP-3) and experimental analysis of its effect on primary tumor growth. Biochem Cell Biol 1996; 74: 853 - 862.PubMedCrossRefGoogle Scholar
  161. 161.
    Moses MA, Sudhalter J, Langer R. Identification of an inhibitor of neovascularization from cartilage. Science 1990; 248: 1408 - 1410.PubMedCrossRefGoogle Scholar
  162. 162.
    Kandel J, Bossy-Wetzel E, Radvanyi F, Klagsbrun M, Folkman J, Hanahan D. Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 1991; 66: 1095 - 1104.PubMedCrossRefGoogle Scholar
  163. 163.
    Smith-McCune KK, Weidner N. Demonstration and characterization of the angiogenic properties of cervical dysplasia. Cancer Res 1994; 54: 800 - 804.PubMedGoogle Scholar
  164. 164.
    Smith-McCune K, Zhu YH, Hanahan D, Arbeit J. Cross-species comparison of angiogenesis during the premalignant stages of squamous carcinogenesis in the human cervix and K14HPV 16 transgenic mice. Cancer Res 1997; 57: 1294 - 1300.PubMedGoogle Scholar
  165. 165.
    Smith-McCune K. Angiogenesis in squamous cell carcinoma in situ and microinvasive carcinoma of the uterine cervix. Obstet Gynecol 1997; 89: 482 - 483.PubMedCrossRefGoogle Scholar
  166. 166.
    Brown LF, Berse B, Jackman RW, et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum Pathol 1995; 26: 86 - 91.PubMedCrossRefGoogle Scholar
  167. 167.
    Guidi AJ, Fischer L, Harris JR, Schnitt SJ. Microvessel density and distribution in ductal carcinoma in situ of the breast. J Natl Cancer Inst 1994; 86: 614 - 619.PubMedCrossRefGoogle Scholar
  168. 168.
    Weidner N, Folkman J, Pozza F, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. JNatl Cancer Inst 1992; 84: 1875 - 1887.CrossRefGoogle Scholar
  169. 169.
    Guidi AJ, Abu-Jawdeh G, Berse B, et al. Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J Natl Cancer Inst 1995; 87: 1237 - 1245.PubMedCrossRefGoogle Scholar
  170. 170.
    Rak JW, St Croix BD, Kerbel RS. Consequences of angiogenesis for tumor progression, metastasis and cancer therapy. Anticancer Drugs 1995; 6: 3 - 18.PubMedCrossRefGoogle Scholar
  171. 171.
    Dameron KM, Volpert OV, Tainsky MA, Bouck N. The p53 tumor suppressor gene inhibits angiogenesis by stimulating the production of thrombospondin. Cold Spring Harb Symp Quant Biol 1994; 59: 483 - 489.PubMedCrossRefGoogle Scholar
  172. 172.
    Volpert OV, Stellmach V, Bouck N. The modulation of thrombospondin and other naturally occurring inhibitors of angiogenesis during tumor progression. Breast Cancer Res Treat 1995; 36: 119 - 126.PubMedCrossRefGoogle Scholar
  173. 173.
    Bissell MJ. Tumor plasticity allows vasculogenic mimicry, a novel form of angiogenic switch. A rose by any other name? Am J Pathol 1999; 155: 675 - 679.PubMedCrossRefGoogle Scholar
  174. 174.
    Vermeulen PB, Gasparini G, Fox SB, et al. Quantification of angiogenesis in solid human tumours: an international consensus on the methodology and criteria of evaluation. Eur J Cancer 1996; 32A: 2474 - 2484.CrossRefGoogle Scholar
  175. 175.
    Barbareschi M, Gasparini G, Morelli L, Forti S, Dalla Palma P. Novel methods for the determination of the angiogenic activity of human tumors. Breast Cancer Res Treat 1995; 36: 181 - 192.PubMedCrossRefGoogle Scholar
  176. 176.
    Fox SB, Leek RD, Weekes MP, Whitehouse RM, Gatter KC, Harris AL. Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, Chalkley count, and computer image analysis. J Pathol 1995; 177: 275 - 283.PubMedCrossRefGoogle Scholar
  177. 177.
    Srivastava A, Laidler P, Hughes LE, Woodcock J, Shedden EJ. Neovascularization in human cutaneous melanoma: a quantitative morphological and Doppler ultrasound study. Eur J Cancer Clin Oncol 1986; 22: 1205 - 1209.PubMedCrossRefGoogle Scholar
  178. 178.
    Macchiarini P, Fontanini G, Hardin MJ, Squartini F, Angeletti CA. Relation of neo-vascularisation to metastasis of non-small-cell lung cancer. Lancet 1992; 340: 145 - 146.PubMedCrossRefGoogle Scholar
  179. 179.
    Toi M, Kashitani J, Tominaga T. Tumor angiogenesis is an independent prognostic indicator in primary breast carcinoma. Int J Cancer 1993; 55: 371 - 374.PubMedCrossRefGoogle Scholar
  180. 180.
    Heimann R, Ferguson D, Powers C, Recant WM, Weichselbaum RR, Hellman S. Angiogenesis as a predictor of long-term survival for patients with node-negative breast cancer. J Natl Cancer Inst 1996; 88: 1764 - 1769.PubMedCrossRefGoogle Scholar
  181. 181.
    Gasparini G, Weidner N, Bevilacqua P, et al. Tumor microvessel density, p53 expression, tumor size, and peritumoral lymphatic vessel invasion are relevant prognostic markers in node-negative breast carcinoma. J Clin Oncol 1994; 12: 454 - 466.PubMedGoogle Scholar
  182. 182.
    Fox SB, Leek RD, Smith K, Hollyer J, Greenall M, Harris AL. Tumor angiogenesis in node-negative breast carcinomas-relationship with epidermal growth factor receptor, estrogen receptor, and survival. Breast Cancer Res Treat 1994; 29: 109 - 116.PubMedCrossRefGoogle Scholar
  183. 183.
    Bosari S, Lee AK, DeLellis RA, Wiley BD, Heatley GJ, Silverman ML. Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol 1992; 23: 755 - 761.PubMedCrossRefGoogle Scholar
  184. 184.
    Hall NR, Fish DE, Hunt N, Goldin RD, Guillou PJ, Monson JR. Is the relationship between angiogenesis and metastasis in breast cancer real? Surg Oncol 1992; 1: 223 - 229.PubMedCrossRefGoogle Scholar
  185. 185.
    Axelsson K, Ljung BM, Moore DH 2’d, et al. Tumor angiogenesis as a prognostic assay for invasive ductal breast carcinoma. J Natl Cancer Inst 1995; 87: 997 – 1008.PubMedCrossRefGoogle Scholar
  186. 186.
    Costello P, McCann A, Carney DN, Dervan PA. Prognostic significance of microvessel density in lymph node negative breast carcinoma. Hum Pathol 1995; 26: 1181 - 1184.PubMedCrossRefGoogle Scholar
  187. 187.
    Goulding H, Abdul Rashid NF, Robertson JF, et al. Assessment of angiogenesis in breast carcinoma: an important factor in prognosis? Hum Pathol 1995; 26: 1196 - 1200.PubMedCrossRefGoogle Scholar
  188. 188.
    Morphopoulos G, Pearson M, Ryder W, Howell A, Harris M. Tumour angiogenesis as a prognostic marker in infiltrating lobular carcinoma of the breast. JPathol 1996; 180: 44 - 49.CrossRefGoogle Scholar
  189. 189.
    Van Hoef ME, Knox WF, Dhesi SS, Howell A, Schor AM. Assessment of tumour vascularity as a prognostic factor in lymph node negative invasive breast cancer. Eur J Cancer 1993; 29A: 1141 - 1145.CrossRefGoogle Scholar
  190. 190.
    Gasparini G, Fox SB, Verderio P, et al. Determination of angiogenesis adds information to estrogen receptor status in predicting the efficacy of adjuvant tamoxifen in node-positive breast cancer patients. Clin Cancer Res 1996; 2: 1191 - 1198.PubMedGoogle Scholar
  191. 191.
    Hirst DG, Denekamp J, Hobson B. Proliferation kinetics of endothelial and tumour cells in three mouse mammary carcinomas. Cell Tissue Kinet 1982; 15: 251 - 261.PubMedGoogle Scholar
  192. 192.
    Hobson B, Denekamp J. Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br J Cancer 1984; 49: 405 - 413.PubMedCrossRefGoogle Scholar
  193. 193.
    Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 2000; 60: 1388 - 1393.PubMedGoogle Scholar
  194. 194.
    Fox SB, Gatter KC, Bicknell R, et al. Relationship of endothelial cell proliferation to tumor vascularity in human breast cancer. Cancer Res 1993; 53: 4161 - 4163.PubMedGoogle Scholar
  195. 195.
    Vartanian RK, Weidner N. Endothelial cell proliferation in prostatic carcinoma and prostatic hyperplasia: correlation with Gleason’s score, microvessel density, and epithelial cell proliferation. Lab Invest 1995; 73: 844 - 850.PubMedGoogle Scholar
  196. 196.
    Mattem J, Koomagi R, Volm M. Association of vascular endothelial growth factor expression with intratumoral microvessel density and tumour cell proliferation in human epidermoid lung carcinoma. Br J Cancer 1996; 73: 931 - 934.CrossRefGoogle Scholar
  197. 197.
    Toi M, Inada K, Hoshina S, Suzuki H, Kondo S, Tominaga T. Vascular endothelial growth factor and platelet-derived endothelial cell growth factor are frequently coexpressed in highly vascularized human breast cancer. Clin Cancer Res 1995; 1: 961 - 964.PubMedGoogle Scholar
  198. 198.
    Takahashi Y, Cleary KR, Mai M, Kitadai Y, Bucana CD, Ellis LM. Significance of vessel count and vascular endothelial growth factor and its receptor (KDR) in intestinal-type gastric cancer. Clin Cancer Res 1996; 2: 1679 - 1684.PubMedGoogle Scholar
  199. 199.
    Takahashi Y, Bucana CD, Cleary KR, Ellis LM. p53, vessel count, and vascular endothelial growth factor expression in human colon cancer. Im J Cancer 1998; 79: 34 - 38.CrossRefGoogle Scholar
  200. 200.
    Salven P, Ruotsalainen T, Mattson K, Joensuu H. High pre-treatment serum level of vascular endothelial growth factor (VEGF) is associated with poor outcome in small-cell lung cancer. Int J Cancer 1998; 79: 144 - 146.PubMedCrossRefGoogle Scholar
  201. 201.
    Salven P, Perhoniemi V, Tykka H, Maenpaa H, Joensuu H. Serum VEGF levels in women with a benign breast tumor or breast cancer. Breast Cancer Res Treat 1999; 53: 161 - 166.PubMedCrossRefGoogle Scholar
  202. 202.
    Guidi AJ, Berry DA, Broadwater G, et al. Association of angiogenesis in lymph node metastases with outcome of breast cancer. J Natl Cancer Inst 2000; 92: 486 - 492.PubMedCrossRefGoogle Scholar
  203. 203.
    Guidi AJ, Schnitt SJ, Fischer L, et al. Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in patients with ductal carcinoma in situ of the breast. Cancer 1997; 80: 1945 - 1953.PubMedCrossRefGoogle Scholar
  204. 204.
    Yamamoto Y, Toi M, Kondo S, et al. Concentrations of vascular endothelial growth factor in the sera of normal controls and cancer patients. Clin Cancer Res 1996; 2: 821 - 826.PubMedGoogle Scholar
  205. 205.
    Gasparini G. Prognostic value of vascular endothelial growth factor in breast cancer. Oncologist 2000; 5: 37 - 44.PubMedCrossRefGoogle Scholar
  206. 206.
    Dirix LY, Vermeulen PB, Pawinski A, et al. Elevated levels of the angiogenic cytokines basic fibroblast growth factor and vascular endothelial growth factor in sera of cancer patients. Br J Cancer 1997; 76: 238 - 243.PubMedCrossRefGoogle Scholar
  207. 207.
    Fujimoto K, Ichimori Y, Kakizoe T, et al. Increased serum levels of basic fibroblast growth factor in patients with renal cell carcinoma. Biochem Biophys Res Commun 1991; 180: 386 - 392.PubMedCrossRefGoogle Scholar
  208. 208.
    Fujimoto K, Ichimori Y, Yamaguchi H, et al. Basic fibroblast growth factor as a candidate tumor marker for renal cell carcinoma. Jpn J Cancer Res 1995; 86: 182 - 186.PubMedCrossRefGoogle Scholar
  209. 209.
    Duensing S, Grosse J, Atzpodien J. Increased serum levels of basic fibroblast growth factor (bFGF) are associated with progressive lung metastases in advanced renal cell carcinoma patients. Anticancer Res 1995; 15: 2331 - 2333.PubMedGoogle Scholar
  210. 210.
    Sliutz G, Tempfer C, Obermair A, Dadak C, Kainz C. Serum evaluation of basic FGF in breast cancer patients. Anticancer Res 1995; 15: 2675 - 2677.PubMedGoogle Scholar
  211. 211.
    Sliutz G, Tempfer C, Obermair A, Reinthaller A, Gitsch G, Kainz C. Serum evaluation of basic fibroblast growth factor in cervical cancer patients. Cancer Lett 1995; 94: 227 - 231.PubMedCrossRefGoogle Scholar
  212. 212.
    Meyer GE, Yu E, Siegal JA, Petteway JC, Blumenstein BA, Brawer MK. Serum basic fibroblast growth factor in men with and without prostate carcinoma. Cancer 1995; 76: 2304 - 2311.PubMedCrossRefGoogle Scholar
  213. 213.
    Nguyen M, Watanabe H, Budson AE, Richie JP, Folkman J. Elevated levels of the angiogenic peptide basic fibroblast growth factor in urine of bladder cancer patients. JNatl Cancer Inst 1993; 85: 241 - 242.CrossRefGoogle Scholar
  214. 214.
    Brooks P, Stromblad S, Klemke R, Visscher D, Sarkar F, Cheresh D. Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 1995; 96: 1815 - 1822.PubMedCrossRefGoogle Scholar
  215. 215.
    Degani H, Gusis V, Weinstein D, Fields S, Strano S. Mapping pathophysiological features of breast tumors by MRI at high spatial resolution. Nat Med 1997; 3: 780 - 782.PubMedCrossRefGoogle Scholar
  216. 216.
    Mori K, Hasegawa M, Nishida M, et al. Expression levels of thymidine phosphorylase and dihydropyrimidine dehydrogenase in various human tumor tissues. Int J Oncol 2000; 17: 33 - 38.PubMedGoogle Scholar
  217. 217.
    Folberg R, Mehaffey M, Gardner LM, Meyer M, Rummelt V, Pe’er J. The microcirculation of choroidal and ciliary body melanomas. Eye 1997; 11: 227 - 238.PubMedCrossRefGoogle Scholar
  218. 218.
    Mehaffey MG, Gardner LM, Folberg R. Distribution of prognostically important vascular patterns across multiple levels in ciliary body and choroidal melanomas. Am J Ophthalmol 1998; 126: 373 - 378.PubMedCrossRefGoogle Scholar
  219. 219.
    Mueller AJ, Folberg R, Freeman WR, et al. Evaluation of the human choroidal melanoma rabbit model for studying microcirculation patterns with confocal ICG and histology. Exp Eye Res 1999; 68: 671 - 678.PubMedCrossRefGoogle Scholar
  220. 220.
    Rummelt V, Mehaffey MG, Campbell RJ, et al. Microcirculation architecture of metastases from primary ciliary body and choroidal melanomas. Am J Ophthalmol 1998; 126: 303 - 305.Google Scholar
  221. 221.
    Makitie T, Summanen P, Tarkkanen A, Kivela T. Microvascular density in predicting survival of patients with choroidal and ciliary body melanoma. Invest Ophthalmol Vis Sci 1999; 40: 2471 - 2480.PubMedGoogle Scholar
  222. 222.
    Makitie T, Summanen P, Tarkkanen A, Kivela T. Microvascular loops and networks as prognostic indicators in choroidal and ciliary body melanomas. J Natl Cancer Inst 1999; 91: 359 - 367.PubMedCrossRefGoogle Scholar
  223. 223.
    Ellis LM, Walker RA, Gasparini G. Is determination of angiogenic activity in human tumours clinically useful? Eur J Cancer 1998; 34: 609 - 618.PubMedCrossRefGoogle Scholar
  224. 224.
    Horak ER, Leek R, Klenk N, et al. Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 1992; 340: 1120 - 1124.PubMedCrossRefGoogle Scholar
  225. 225.
    Boehm T, Folkman J, Browder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 1997; 390: 404 – 407.PubMedCrossRefGoogle Scholar
  226. 226.
    Yoshiji H, Harris SR, Thorgeirsson UP. Vascular endothelial growth factor is essential for initial but not continued in vivo growth of human breast carcinoma cells. Cancer Res 1997; 57: 3924 - 3928.Google Scholar
  227. 227.
    Eatock MM, Schatzlein A, Kaye SB. Tumour vasculature as a target for anticancer therapy. Cancer Treat Rev 2000; 26: 191 - 204.PubMedCrossRefGoogle Scholar
  228. 228.
    Saleh M, Stacker SA, Wilks AF. Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res 1996; 56: 393 - 401.PubMedGoogle Scholar
  229. 229.
    Ramakrishnan S, Olson TA, Bautch VL, Mohanraj D. Vascular endothelial growth factor-toxin conjugate specifically inhibits KDR/flk-1-positive endothelial cell proliferation in vitro and angiogenesis in vivo. Cancer Res 1996; 56: 1324 - 1330.PubMedGoogle Scholar
  230. 230.
    Mitjans F, Sander D, Adan J, et al. An anti-alpha v-integrin antibody that blocks integrin function inhibits the development of a human melanoma in nude mice. J Cell Sci 1995; 108: 2825 - 2838.PubMedGoogle Scholar
  231. 231.
    Gross JL, Moscatelli D, Jaffe EA, Rifkin DB. Plasminogen activator and collagenase production by cultured capillary endothelial cells. J Cell Biol 1982; 95: 974 - 981.PubMedCrossRefGoogle Scholar
  232. 232.
    Moscatelli D, Jaffe E, Rifkin DB. Tetradecanoyl phorbol acetate stimulates latent collage-nase production by cultured human endothelial cells. Cell 1980; 20: 343 - 351.PubMedCrossRefGoogle Scholar
  233. 233.
    Moscatelli DA, Rifkin DB, Jaffe EA. Production of latent collagenase by human umbilical vein endothelial cells in response to angiogenic preparations. Exp Cell Res 1985; 156: 379 - 390.PubMedCrossRefGoogle Scholar
  234. 234.
    Montesano R, Orci L. Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 1985; 42: 469 - 477.PubMedCrossRefGoogle Scholar
  235. 235.
    Zucker S, Conner C, Di Massmo BI, et al. Thrombin induces the activation of progelatinase A in vascular endothelial cells. Physiologic regulation of angiogenesis. J Biol Chem 1995; 270: 23730 - 23738.PubMedCrossRefGoogle Scholar
  236. 236.
    Cornelius LA, Nehring LC, Roby JD, Parks WC, Welgus HG. Human dermal microvascular endothelial cells produce matrix metalloproteinases in response to angiogenic factors and migration. J Invest Dermatol 1995; 105: 170 - 176.PubMedCrossRefGoogle Scholar
  237. 237.
    Shapiro SD, Campbell EJ, Kobayashi DK, Welgus HG. Immune modulation of metalloproteinase production in human macrophages. Selective pretranslational suppression of interstitial collagenase and stromelysin biosynthesis by interferon-gamma. J Clin Invest 1990; 86: 1204 - 1210.PubMedCrossRefGoogle Scholar
  238. 238.
    Mignatti P, Tsuboi R, Robbins E, Rifkin DB. In vitro angiogenesis on the human amniotic membrane: requirement for basic fibroblast growth factor-induced proteinases. J Cell Biol 1989; 108: 671 - 682.PubMedCrossRefGoogle Scholar
  239. 239.
    Johnson MD, Kim HR, Chesler L, Tsao-Wu G, Bouck N, Polverini Pi. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. J Cell Physiol 1994; 160: 194 - 202.PubMedCrossRefGoogle Scholar
  240. 240.
    Takigawa M, Nishida Y, Suzuki F, Kishi J, Yamashita K, Hayakawa T. Induction of angiogenesis in chick yolk-sac membrane by polyamines and its inhibition by tissue inhibitors of metalloproteinases (TIMP and TIMP-2). Biochem Biophys Res Commun 1990; 171: 1264 1271.Google Scholar
  241. 241.
    White CW, Sondheimer HM, Crouch EC, Wilson H, Fan LL. Treatment of pulmonary hemangiomatosis with recombinant interferon alfa-2a. N Engl J Med 1989; 320: 1197 1200.Google Scholar
  242. 242.
    White CW, Wolf SJ, Korones DN, Sondheimer HM, Tosi MF, Yu A. Treatment of childhood angiomatous diseases with recombinant interferon alfa-2a. J Pediatr 1991; 118: 59 - 66.PubMedCrossRefGoogle Scholar
  243. 243.
    Arap W, Pasqualini R, Ruoslahti E. Chemotherapy targeted to tumor vasculature. Curr Opin Oncol 1998; 10: 560 - 565.PubMedCrossRefGoogle Scholar
  244. 244.
    Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 1997; 15: 542 - 546.PubMedCrossRefGoogle Scholar
  245. 245.
    Pasqualini R. Vascular targeting with phage peptide libraries. Q J Nucl Med 1999; 43: 159 - 162.PubMedGoogle Scholar
  246. 246.
    Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998; 279: 377 - 380.PubMedCrossRefGoogle Scholar
  247. 247.
    Pasqualini R, Koivunen E, Kain R, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 2000; 60: 722 - 727.Google Scholar
  248. 248.
    Pezzella F, Pastorino U, Tagliabue E, et al. Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol 1997; 151: 1417 - 1423.PubMedGoogle Scholar
  249. 249.
    Browder T, Butterfield CE, Kraling BM, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 2000; 60: 1878 1886.Google Scholar
  250. 250.
    Kakeji Y, Teicher BA. Preclinical studies of the combination of angiogenic inhibitors with cytotoxic agents. Invest New Drugs 1997; 15: 39 - 48.PubMedCrossRefGoogle Scholar
  251. 251.
    Klement G, Baruchel S, Rak J, et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 2000; 105: R15 - R24.PubMedCrossRefGoogle Scholar
  252. 252.
    Sato TN. A new approach to fighting cancer? Proc Natl Acad Sci USA 1998; 95: 5843 - 5844.CrossRefGoogle Scholar
  253. 253.
    Griscelli F, Li H, Bennaceur-Griscelli A, et al. Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc Natl Acad Sci USA 1998; 95: 6367 - 6372.PubMedCrossRefGoogle Scholar
  254. 254.
    Liu Y, Thor A, Shtivelman E, et al. Systemic gene delivery expands the repertoire of effective antiangiogenic agents. J Biol Chem 1999; 274: 13338 - 13344.PubMedCrossRefGoogle Scholar
  255. 255.
    Hu G, Riordan JF, Vallee BL. Angiogenin promotes invasiveness of cultured endothelial cells by stimulation of cell-associated proteolytic activities. Proc Natl Acad Sci USA 1994; 91: 12096 - 12100.PubMedCrossRefGoogle Scholar
  256. 256.
    Herbert JM, Laplace MC, Maffrand JP. Effect of heparin on the angiogenic potency of basic and acidic fibroblast growth factors in the rabbit cornea assay. Int J Tissue React 1988; 10: 133 - 139.PubMedGoogle Scholar
  257. 257.
    Esch F, Baird A, Ling N, et al. Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proc Natl Acad Sci USA 1985; 82: 6507 - 6511.PubMedCrossRefGoogle Scholar
  258. 258.
    Bussolino F, Ziche M, Wang JM, et al. In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J Clin Invest 1991; 87: 986 - 995.PubMedCrossRefGoogle Scholar
  259. 259.
    Bussolino F, Colotta F, Bocchietto E, Guglielmetti A, Mantovani A. Recent developments in the cell biology of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor: activities on endothelial cells. Intl Clin Lab Res 1993; 23: 8 - 12.CrossRefGoogle Scholar
  260. 260.
    Bussolino F, Di Renzo MF, Ziche M, et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 1992; 119: 629 - 641.PubMedCrossRefGoogle Scholar
  261. 261.
    Grant DS, Kleinman HK, Goldberg ID, et al. Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci USA 1993; 90: 1937 - 1941.PubMedCrossRefGoogle Scholar
  262. 262.
    Polverini PJ, Nickoloff BJ. The role of scatter factor and the c-met proto-oncogene in angiogenic responses. EXS 1995; 74: 51 - 67.PubMedGoogle Scholar
  263. 263.
    Koch AE, Polverini PJ, Kunkel SL, et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 1992; 258: 1798 - 1801.PubMedCrossRefGoogle Scholar
  264. 264.
    Ziche M, Maglione D, Ribatti D, et al. Placenta growth factor-1 is chemotactic, mitogenic, and angiogenic. Lab Invest 1997; 76: 517 - 531.PubMedGoogle Scholar
  265. 265.
    Ishikawa F, Miyazono K, Hellman U, et al. Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature 1989; 338: 557 - 562.PubMedCrossRefGoogle Scholar
  266. 266.
    Jackson D, Volpert OV, Bouck N, Linzer DI. Stimulation and inhibition of angiogenesis by placental proliferin and proliferin-related protein. Science 1994; 266: 1581 - 1584.PubMedCrossRefGoogle Scholar
  267. 267.
    Groskopf JC, Syu LJ, Saltiel AR, Linzer DI. Proliferin induces endothelial cell chemotaxis through a G protein-coupled, mitogen-activated protein kinase-dependent pathway. Endocrinology 1997; 138: 2835 - 2840.PubMedCrossRefGoogle Scholar
  268. 268.
    Grotendorst GR, Soma Y, Takehara K, Charette M. EGF and TGF-alpha are potent chemoattractants for endothelial cells and EGF-like peptides are present at sites of tissue regeneration. J Cell Physiol 1989; 139: 617 - 623.PubMedCrossRefGoogle Scholar
  269. 269.
    Yang EY, Moses HL. Transforming growth factor beta 1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J Cell Biol 1990; 111: 731 - 741.PubMedCrossRefGoogle Scholar
  270. 270.
    Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 1987; 329: 630 - 632.PubMedCrossRefGoogle Scholar
  271. 271.
    Frater-Schroder M, Risau W, Hallmann R, Gautschi P, Bohlen P. Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci USA 1987; 84: 5277 - 5281.PubMedCrossRefGoogle Scholar
  272. 272.
    Olivo M, Bhardwaj R, Schulze-Osthoff K, Sorg C, Jacob HJ, Flamme I. A comparative study on the effects of tumor necrosis factor-alpha (TNF-alpha), human angiogenic factor (h-AF) and basic fibroblast growth factor (bFGF) on the chorioallantoic membrane of the chick embryo. Anat Rec 1992; 234: 105 - 115.PubMedCrossRefGoogle Scholar
  273. 273.
    Koch AE, Harlow LA, Haines GK, et al. Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J Immunol 1994; 152: 41494156.Google Scholar
  274. 274.
    Wilting J, Christ B, Bokeloh M, Weich HA. In vivo effects of vascular endothelial growth factor on the chicken chorioallantoic membrane. Cell Tissue Res 1993; 274: 163 - 172.PubMedCrossRefGoogle Scholar
  275. 275.
    Yoshida A, Anand-Apte B, Zetter BR. Differential endothelial migration and proliferation to basic fibroblast growth factor and vascular endothelial growth factor. Growth Factors 1996; 13: 57 - 64.PubMedCrossRefGoogle Scholar
  276. 276.
    Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM. Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 1998; 273: 18514 - 18521.PubMedCrossRefGoogle Scholar
  277. 277.
    Brouty-Boye D, Zetter BR. Inhibition of cell motility by interferon. Science 1980; 208: 516 - 518.PubMedCrossRefGoogle Scholar
  278. 278.
    Dvorak HF, Gresser I. Microvascular injury in pathogenesis of interferon-induced necrosis of subcutaneous tumors in mice. J Natl Cancer Inst 1989; 81: 497 - 502.PubMedCrossRefGoogle Scholar
  279. 279.
    Maione TE, Gray GS, Petro J, et al. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 1990; 247: 77 - 79.PubMedCrossRefGoogle Scholar
  280. 280.
    Gengrinovitch S, Greenberg SM, Cohen T, et al. Platelet factor-4 inhibits the mitogenic activity of VEGF121 and VEGF165 using several concurrent mechanisms. J Biol Chem 1995; 270: 15059 - 15065.PubMedCrossRefGoogle Scholar
  281. 281.
    D’ Angelo G, Struman I, Martial J, Weiner RI. Activation of mitogen-activated protein kinases by vascular endothelial growth factor and basic fibroblast growth factor in capillary endothelial cells is inhibited by the antiangiogenic factor 16-kDa N-terminal fragment of prolactin. Proc Natl Acad Sci USA 1995; 92: 6374 - 6378.PubMedCrossRefGoogle Scholar
  282. 282.
    Clapp C, Martial JA, Guzman RC, Rentier-Delure F, Weiner RI. The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 1993; 133: 1292 - 1299.PubMedCrossRefGoogle Scholar
  283. 283.
    Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994; 265: 1582 - 1584.PubMedCrossRefGoogle Scholar
  284. 284.
    Good DJ, Polverini PJ, Rastinejad F, et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Nati Acad Sci USA 1990; 87: 6624 - 6628.CrossRefGoogle Scholar
  285. 285.
    Rastinejad F, Polverini PJ, Bouck NP. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 1989; 56: 345 - 355.PubMedCrossRefGoogle Scholar
  286. 286.
    Taraboletti G, Roberts D, Liotta LA, Giavazzi R. Platelet thrombospondin modulates endothelial cell adhesion, motility, and growth: a potential angiogenesis regulatory factor. J Cell Biol 1990; 111: 765 - 772.PubMedCrossRefGoogle Scholar
  287. 287.
    Murphy AN, Unsworth EJ, Stetler-Stevenson WG. Tissue inhibitor of metalloproteinases2 inhibits bFGF-induced human microvascular endothelial cell proliferation. J Cell Physiol 1993; 157: 351 - 358.PubMedCrossRefGoogle Scholar
  288. 288.
    Angiogenesis inhibitors in clinical trials. (http://cancertrials.nci.nih.gov/news/angio/table.html), 2000.Google Scholar

Copyright information

© Humana Press Inc.,Totowa, NJ 2002

Authors and Affiliations

  • Bela Anand-Apte
  • Paul L. Fox

There are no affiliations available

Personalised recommendations