Skip to main content

Vesicular Neurotransmitter Transporters

Pharmacology, Biochemistry, and Molecular Analysis

  • Chapter
Neurotransmitter Transporters

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Synaptic transmission involves the regulated release of transmitter molecules to the synaptic cleft, where they interact with postsynaptic receptors which subsequently transduce the information. Removal of the transmitter from the cleft enables termination of the signal, which usually occurs through reuptake back to the presynaptic terminal or into glial elements in a sodium-dependent process. This process assures constant and high levels of neurotransmitters in the neuron and low concentrations in the cleft.

Chapter authored in August 2000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schuldiner, S., Shirvan, A., and Linial, M. (1995) Vesicular neurotransmitter transporters: from bacteria to human. Phys. Rev. 75, 369–392.

    CAS  Google Scholar 

  2. Johnson, R. (1988) Accumulation of Biological Amines in Chromaffin Granules: A Model for Hormone and Neurotransmitter Transport. Physiol. Rev. 68, 232–307.

    PubMed  CAS  Google Scholar 

  3. Njus, D., Kelley, P. M., and Harnadek, G. J. (1986) Bioenergetics of secretory vesicles. Biochim. Biophys. Acta 853, 237–265.

    Article  PubMed  CAS  Google Scholar 

  4. Njus, D., Knoth, J., and Zallakian, M. (1981) Proton-linked transport in chromaffin granules. Curr. Top. Bioenerg. 11, 107–147.

    CAS  Google Scholar 

  5. Ohya, Y., Umemoto, N., Tanida, I., Ohta, A., lida, H., and Anraku, Y. (1991) Calcium sensitive cls mutants of Saccharomyces cerevisiae showing a Petphenotypeare ascribable to defects of vacuolar membrane H+-ATPase activity. J. Biol. Chem. 266, 13,971–13, 977.

    Google Scholar 

  6. Edwards, R. (1992) The transport of neurotransmitters into synaptic vesicles. Curr. Opin. Neurobiol. 2, 586–594.

    Article  PubMed  CAS  Google Scholar 

  7. Liu, Y. and Edwards, R. H. (1997) The role of vesicular transport proteins in synaptic transmission and neural degeneration. Annu. Rev. Neurosci. 20, 125–156.

    Article  PubMed  CAS  Google Scholar 

  8. Schuldiner, S. (1994) A molecular glimpse of vesicular monoamine transporters. J. Neurochem. 62, 2067–2078.

    Article  PubMed  CAS  Google Scholar 

  9. Usdin, T. B., Eiden, L. E., Bonner, T. I., and Erickson, J. D. (1995) Molecular biology of the vesicular ACh transporter. Trends. Neurosci. 18, 218–224.

    Article  PubMed  CAS  Google Scholar 

  10. Bellocchio, E. E., Reimer, R. J., Fremeau, R. T., Jr., and Edwards, R. H. (2000) Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289, 957–960.

    Article  PubMed  CAS  Google Scholar 

  11. Takamori, S., Rhee, J. S., Rosenmund, C., and Jahn, R. (2000) Identification of a vesicular transporter that defines a glutamatergic phenotype in neurons. Nature 407, 189–194.

    Article  PubMed  CAS  Google Scholar 

  12. Ni, B., Rosteck, P. R., Jr., Nadi, N. S., and Paul, S. M. (1994) Cloning and expression of a cDNA encoding a brain-specific Na(+)-dependent inorganic phosphate cotransporter. Proc. Natl. Acad. Sci. USA 91, 5607–5611.

    Article  PubMed  CAS  Google Scholar 

  13. Lee, R. Y., Sawin, E. R., Chalfie, M., Horvitz, H. R., and Avery, L. (1999) EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in caenorhabditis elegans. J. Neurosci. 19, 159–167.

    PubMed  CAS  Google Scholar 

  14. Bellocchio, E. E., Hu, H., Pohorille, A., Chan, J., Pickel, V. M., and Edwards, R. H. (1998) The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J. Neurosci. 18, 8648–8659.

    PubMed  CAS  Google Scholar 

  15. Kirshner, N. (1962) Uptake of catecholamines by a particulate fraction of the adrenal medulla. J. Biol. Chem. 237, 2311–2317.

    PubMed  CAS  Google Scholar 

  16. Pletscher, A. (1977) Effect of neuroleptics and other drugs on monoamine uptake by membrane of adrenal chromaffin granules. Br. J. Pharmacol. 59, 419–424.

    Article  PubMed  CAS  Google Scholar 

  17. Marshall, I. (1970) Studies on the blocking action of 2-(4-phenyl piperidino) cyclohexanol (AH5183). Br. J. Pharmacol. 38, 503–516.

    Article  PubMed  CAS  Google Scholar 

  18. Marshall, I. and Parsons, S. (1987) The vesicular acetylcholine transport system. Trends. Neurosci. 10, 174–177.

    Article  CAS  Google Scholar 

  19. Parsons, S., Bahr, B., Rogers, G., Clarkson, E., Noremberg, K., and Hicks, B. (1993) Acetylcholine transporter-vesamicol receptor pharmacology and structure. Prog. Brain Res. 98, 175–181.

    Article  PubMed  CAS  Google Scholar 

  20. Darchen, F., Scherman, D., and Henry, J. P. (1989) Reserpine binding to chromaffin granules suggests the existence of two conformations of the monoamine transporter. Biochemistry 28, 1692–1697.

    Article  PubMed  CAS  Google Scholar 

  21. Scherman, D. and Henry, J. P. (1984) Reserpine binding to bovine chromaffin granule membranes. Characterization and comparison with dihydrotetrabenazine binding. Mol. Pharmacol. 25, 113–122.

    PubMed  CAS  Google Scholar 

  22. Rudnick, G., Steiner-Mordoch, S. S., Fishkes, H., Stern-Bach, Y., and Schuldiner, S. (1990) Energetics of reserpine binding and occlusion by the chromaffin granule biogenic amine transporter. Biochemistry 29, 603–608.

    Article  PubMed  CAS  Google Scholar 

  23. Stitzel, R. E. (1977) The Biological Fate of Reserpine. Pharm. Rev. 28, 179–205.

    Google Scholar 

  24. Carlsson, A. (1965) Drugs which block the storage of 5-hydroxytryptamine and related amines. Hand. Exp. Pharmacol. 19, 529–592.

    Google Scholar 

  25. Frize, E. (1954) Mental depression in hypertensive patients treated for long periods with high doses of reserpine. N. Engl. J. Med. 251, 1006–1008.

    Article  Google Scholar 

  26. Weaver, J. A.,and Deupree, J. D. (1982) Conditions required for reserpine binding to the catecholamine transporter on chromaffin granule ghosts. Eur. J. Pharm. 80, 437, 438.

    Google Scholar 

  27. Stern-Bach, Y., Greenberg-Ofrath, N., Flechner, I., and Schuldiner, S. (1990) Identification and purification of a functional amine transporter from bovine chromaffin granules. J. Biol. Chem. 265, 3961–3966.

    PubMed  CAS  Google Scholar 

  28. Darchen, F., Scherman, D., Desnos, C., and Henry, J. P. (1988) Characteristics of the transport of the quaternary ammonium 1-methyl-4-phenylpyridinium by chromaffin granules. Biochem. Pharmacol. 37, 4381–4387.

    Article  PubMed  CAS  Google Scholar 

  29. Scherman, D. and Henry, J. P. (1981) pH-dependence of the ATP-driven uptake of noradrenaline by bovine chromaffin-granule ghosts. Eur. J. Biochem. 116, 535–539.

    Google Scholar 

  30. Henry, J. P. and Scherman, D. (1989) Radioligands of the vesicular monoamine transporter and their use as markers of monoamine storage vesicles. Biochem. Pharmacol. 38, 2395–2404.

    Article  PubMed  CAS  Google Scholar 

  31. Desnos, C., Laran, M. P., and Scherman, D. (1992) Regulation of the chromaffin granule catecholamine transporter in cultured bovine adrenal-medullary cells–stimulus biosynthesis coupling. J. Neurochem. 59, 2105–2112.

    Article  PubMed  CAS  Google Scholar 

  32. Desnos, C., Raynaud, B., Vidal, S., Weber, M. J., and Scherman, D. (1990) Induction of the vesicular monoamine transporter by elevated potassium concentration in cultures of rat sympathetic neurons. Dey. Brain. Res. 52, 161–166.

    Article  CAS  Google Scholar 

  33. Stietzen, M., Schober, M., Fischer-Colbrie, R., Scherman, D., Sperk, G., and Winkler, H. (1987) Rat adrenal medulla: levels of chromogranins, enkephalins, dopamine b-hydroxylase and of the amine transporter are changed by nervous activity and by hypophysectomy. Neuroscience 22, 131–139.

    Article  Google Scholar 

  34. Scherman, D., Jaudon, P., and Henry, J. P. (1983) Characterization of the monoamine carrier of chromaffin granule membrane by binding of [23H]dihydrotetrabenazine. Proc. Natl. Acad. Sci. USA 80, 584–588.

    Article  PubMed  CAS  Google Scholar 

  35. Rogers, G. A. and Parsons, S. M. (1989) Inhibition of acetylcholine storage by acetylcholine analogs in-vitro. Mol. Pharmacol. 36, 333–341.

    PubMed  CAS  Google Scholar 

  36. Rogers, G. A., Parsons, S. M., Anderson, D. C., Nilsson, L. M., Bahr, B. A., Kornreich, W. D., Kaufman, R., Jacobs, R. S., and Kirtman, B. (1989) Synthesis, invitro acetylcholine-storage-blocking activities, and biological properties of derivatives and analogs of trans- 2-(4-phenylpiperidino)cyclohexanol (vesamicol). J. Med. Chem. 32, 1217–1230.

    Article  PubMed  CAS  Google Scholar 

  37. Parsons, S. M., Bahr, B. A., Rogers, G. A., Clarkson, E. D., Noremberg, K., and Hicks, B. W. (1993) Acetylcholine Transporter Vesamicol Receptor Pharmacology and Structure. Prog. Brain Res. 98, 175–181.

    Article  PubMed  CAS  Google Scholar 

  38. Bahr, B., and Parsons, S. (1986) Acetylcholine transport and drug inhibition kinetics in Torpedo synaptic vesicles. J. Neurochem. 46, 1214–1218.

    Article  PubMed  CAS  Google Scholar 

  39. Bahr, B. and Parsons, S. (1986) Demonstration of a receptor in Torpedo synaptic vesicles for the acetylcholine storage blocker L-trans-2-(4-phenyl[3,43H]piperidino) cyclohexanol. Proc. Natl. Acad. Sci. USA 83, 2267–2270.

    Article  PubMed  CAS  Google Scholar 

  40. Bahr, B. A., Clarkson, E. D., Rogers, G. A., Noremberg, K., and Parsons, S. M. (1992) A kinetic and allosteric model for the acetylcholine transportervesamicol receptor in synaptic vesicles. Biochemistry 31, 5752–5762.

    Article  PubMed  CAS  Google Scholar 

  41. Bahr, B. A., Noremberg, K., Rogers, G. A., Hicks, B. W., and Parsons, S. M. (1992) Linkage of the acetylcholine transporter vesamicol receptor to proteoglycan in synaptic vesicles. Biochemistry 31, 5778–5784.

    Article  PubMed  CAS  Google Scholar 

  42. Kaufman, R., Rogers, G. A., Fehlmann, C., and Parsons, S. M. (1989) Fractional vesamicol receptor occupancy and acetylcholine active-transport inhibition in synaptic vesicles. Mol. Pharmacol. 36, 452–458.

    PubMed  CAS  Google Scholar 

  43. Clarkson, E. D., Rogers, G. A., and Parsons, S. M. (1992) Binding and active-transport of large analogs of acetylcholine by cholinergic synaptic vesicles invitro. J. Neurochem. 59, 695–700.

    Article  PubMed  CAS  Google Scholar 

  44. Bahr, B. A. and Parsons, S. M. (1992) Purification of the vesamicol receptor. Biochemistry 31, 5763–5769.

    Article  PubMed  CAS  Google Scholar 

  45. Rogers, G. A. and Parsons, S. M. (1992) Photoaffinity-labeling of the acetylcholine transporter. Biochemistry 31, 5770–5777.

    Article  PubMed  CAS  Google Scholar 

  46. Rogers, G. A. and Parsons, S. M. (1993) Photoaffinity-labeling of the vesamicol receptor of cholinergic synaptic vesicles. Biochemistry 32, 8596–8601.

    Article  PubMed  CAS  Google Scholar 

  47. Erickson, J. D., Varoqui, H., Schafer, M. K., Modi, W., Diebler, M. F., Weihe, E., Rand, J., Eiden, L. E., Bonner, T. I., and Usdin, T. B. (1994) Functional identification of a vesicular acetylcholine transporter and its expression from a “cholinergic” gene locus. J. Biol. Chem. 269, 21,929–21, 932.

    Google Scholar 

  48. Roghani, A., Feldman, J., Kohan, S. A., Shirzadi, A., Gundersen, C. B., Brecha, N., and Edwards, R. H. (1994) Molecular cloning of a putative vesicular transporter for acetylcholine. Proc. Natl. Acad. Sci. USA 91, 10,620–10, 624.

    Google Scholar 

  49. Varoqui, H., Diebler, M. F., Meunier, F. M., Rand, J. B., Usdin, T. B., Bonner, T. I., Eiden, L. E., and Erickson, J. D. (1994) Cloning and expression of the vesamicol binding protein from the marine ray Torpedo. Homology with the putative vesicular acetylcholine transporter UNC-17 from Caenorhabditis elegans. FEBS Lett. 342, 97–102.

    Article  PubMed  CAS  Google Scholar 

  50. Krejci, E., Gasnier, B., Botton, D., Isambert, M. F., Sagne, C., Gagnon, J., Massoulie, J., and Henry, J. P. (1993) Expression and regulation of the bovine vesicular monoamine transporter gene. FEBS Lett. 335, 27–32.

    Article  PubMed  CAS  Google Scholar 

  51. Stern-Bach, Y., Keen, J. N., Bejerano, M., Steiner-Mordoch, S., Wallach, M., Findlay, J. B., and Schuldiner, S. (1992) Homology of a vesicular amine transporter to a gene conferring resistance to 1-methyl-4-phenylpyridinium. Proc. Natl. Acad. Sci. USA 89, 9730–9733.

    Article  PubMed  CAS  Google Scholar 

  52. Erickson, J. D., Eiden, L. E., and Hoffman, B. J. (1992) Expression cloning of a reserpine-sensitive vesicular monoamine transporter. Proc. Natl. Acad. Sci. USA 89, 10, 993–10, 997.

    Google Scholar 

  53. Liu, Y., Peter, D., Roghani, A., Schuldiner, S., Prive, G., Eisenberg, D., Brecha, N., and Edwards, R. (1992) A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell 70, 539–551.

    Article  PubMed  CAS  Google Scholar 

  54. Schuldiner, S., Liu, Y., and Edwards, R. H. (1993) Reserpine binding to a vesicular amine transporter expressed in Chinese hamster ovary fibroblasts. J. Biol. Chem. 268, 29–34.

    PubMed  CAS  Google Scholar 

  55. Vincent, M. and Near, J. (1991) Purification of a [H-3]dihydrotetrabenazinebinding protein from bovine adrenal medulla. Mol. Pharmacol. 40, 889–894.

    PubMed  CAS  Google Scholar 

  56. Isambert, M. F., Gasnier, B., Botton, D., and Henry, J. P. (1992) Characterization and purification of the monoamine transporter of bovine chromaffin granules. Biochemistry 31, 1980–1986.

    Article  PubMed  CAS  Google Scholar 

  57. Howell, M., Shirvan, A., Stern-Bach, Y., Steiner-Mordoch, S., Strasser, J. E., Dean, G. E., and Schuldiner, S. (1994) Cloning and functional expression of a tetrabenazine sensitive vesicular monoamine transporter from bovine chromaffin granules. FEBS Lett. 338, 16–22.

    Article  PubMed  CAS  Google Scholar 

  58. Peter, D., Jimenez, J., Liu, Y., Kim, J., and Edwards, R. H. (1994) The chromaffin granule and synaptic vesicle amine transporters differ in substrate recognition and sensitivity to inhibitors. J. Biol. Chem. 269, 7231–7237.

    PubMed  CAS  Google Scholar 

  59. Scherman, D. and Boschi, G. (1988) Time required for transmitter accumulation inside monoaminergic storage vesicles differs in peripheral and in central systems. Neuroscience 27, 1029–1035.

    Article  PubMed  CAS  Google Scholar 

  60. Scherman, D. (1986) Dihydrotetrabenazine binding and monoamine uptake in mouse brain regions. J. Neurochem. 47, 331–339.

    Article  PubMed  CAS  Google Scholar 

  61. Erickson, J. D., Schafer, M. K., Bonner, T. I., Eiden, L. E., and Weihe, E. (1996) Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc. Natl. Acad. Sci. USA 93, 5166–5171.

    Article  PubMed  CAS  Google Scholar 

  62. Nirenberg, M. J., Chan, J., Liu, Y., Edwards, R. H., and Pickel, V. M. (1997) Vesicular monoamine transporter-2: immunogold localization in striatal axons and terminals. Synapse 26, 194–198.

    Article  PubMed  CAS  Google Scholar 

  63. Peter, D., Liu, Y., Sternini, C., de Giorgio, R., Brecha, N., and Edwards, R. H. (1995) Differential expression of two vesicular monoamine transporters. J. Neurosci. 15, 6179–6188.

    PubMed  CAS  Google Scholar 

  64. Weihe, E., Schafer, M. K., Erickson, J. D., and Eiden, L. E. (1994) Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. J. Mol. Neurosci. 5, 149–164.

    Article  PubMed  CAS  Google Scholar 

  65. Nirenberg, M. J., Liu, Y., Peter, D., Edwards, R. H., and Pickel, V. M. (1995) The vesicular monoamine transporter 2 is present in small synaptic vesicles and preferentially localizes to large dense core vesicles in rat solitary tract nuclei. Proc. Natl. Acad. Sci. USA 92, 8773–8777.

    Article  PubMed  CAS  Google Scholar 

  66. Liu, Y., Schweitzer, E. S., Nirenberg, M. J., Pickel, V. M., Evans, C. J., and Edwards, R. H. (1994) Preferential localization of a vesicular monoamine transporter to dense core vesicles in PC12 cells. J. Cell. Biol. 127, 1419–1433.

    Article  PubMed  CAS  Google Scholar 

  67. Holtje, M., von Jagow, B., Pahner, I., Lautenschlager, M., Hortnagl, H., Nurnberg, B., Jahn, R., and Ahnert-Hilger, G. (2000) The neuronal monoamine transporter VMAT2 is regulated by the trimeric GTPase Go(2). J. Neurosci. 20, 2131–2141.

    PubMed  CAS  Google Scholar 

  68. Mahata, S. K., Mahata, M., Fischercolbrie, R., and Winkler, H. (1993) Reserpine causes differential changes in the messenger RNA levels of chromogranin-B, secretogranin-II, carboxypeptidase-H, alpha-amidating monooxygenase, the vesicular amine transporter and of synaptin/synaptophysin in rat brain. Mol. Brain. Res. 19, 83–92.

    Article  PubMed  CAS  Google Scholar 

  69. Mahata, S. K., Mahata, M., Fischercolbrie, R., and Winkler, H. (1993) Vesicle monoamine transporter-1 and transporter-2-differential distribution and regulation of their messenger RNAs in chromaffin and ganglion cells of rat adrenal medulla. Neurosci. Lett. 156, 70–72.

    Article  PubMed  CAS  Google Scholar 

  70. Sievert, M. K., Thiriot, D. S., Edwards, R. H., and Ruoho, A. E. (1998) High-efficiency expression and characterization of the synaptic-vesicle monoamine transporter from baculovirus-infected insect cells. Biochem. J. 330, 959–966.

    PubMed  CAS  Google Scholar 

  71. Yelin, R. and Schuldiner, S. (2000) Vesicular monoamine transporters heterologously expressed in the yeast Saccharomyces cerevisiae display high affinity tetrabenazine binding. Biochem. Biophys. Acta. 1510, 426–441.

    Google Scholar 

  72. Sievert, M. K. and Ruoho, A. E. (1997) Peptide mapping of the [125I]Iodoazidoketanserin and [1251]2-N-[(3’- iodo-4’-azidophenyl)propionyl]tetrabenazine binding sites for the synaptic vesicle monoamine transporter. J. Biol. Chem. 272, 26,049–26, 055.

    Google Scholar 

  73. Sagne, C., Isambert, M. F., Vandekerckhove, J., Henry, J. P., and Gasnier, B. (1997) The photoactivatable inhibitor 7-azido-8-iodoketanserin labels the N terminus of the vesicular monoamine transporter from bovine chromaffin granules. Biochemistry 36, 3345–3352.

    CAS  Google Scholar 

  74. Alfonso, A., Grundahl, K., Duerr, J. S., Han, H. P., and Rand, J. B. (1993) The Caenorhabditis elegans Unc-17 Gene–A Putative Vesicular Acetylcholine Transporter. Science 261, 617–619.

    Article  PubMed  CAS  Google Scholar 

  75. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71–94.

    CAS  Google Scholar 

  76. Rand, J. (1989) Genetic analysis of the chal-unc17 gene complex in Caenorhabditis. Genetics 122, 73–80.

    CAS  Google Scholar 

  77. Weihe, E., Tao-Cheng, J. H., Schafer, M. K., Erickson, J. D., and Eiden, L. E. (1996) Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles. Proc. Natl. Acad. Sci. USA 93, 3547–3552.

    Article  PubMed  CAS  Google Scholar 

  78. Gilmor, M. L., Nash, N. R., Roghani, A., Edwards, R. H., Yi, H., Hersch, S. M., and Levey, A. I. (1996) Expression of the putative vesicular acetylcholine transporter in rat brain and localization in cholinergic synaptic vesicles. J. Neurosci. 16, 2179–2190.

    PubMed  CAS  Google Scholar 

  79. McIntire, S. L., Jorgensen, E., and Horvitz, H. R. (1993) Genes required for GABA function in Caenorhabditis elegans. Nature 364, 334–337.

    Article  CAS  Google Scholar 

  80. McIntire, S. L., Jorgensen, E., Kaplan, J., and Horvitz, H. R. (1993) The GABAergic nervous system of Caenorhabditis elegans. Nature 364, 337–341.

    Article  PubMed  CAS  Google Scholar 

  81. McIntire, S. L., Reimer, R. J., Schuske, K., Edwards, R. H., and Jorgensen, E. M. (1997) Identification and characterization of the vesicular GABA transporter. Nature 389, 870–876.

    Article  PubMed  CAS  Google Scholar 

  82. Sagne, C., El Mestikawy, S., Isambert, M. F., Hamon, M., Henry, J. P., Giros, B., and Gasnier, B. (1997) Cloning of a functional vesicular GABA and glycine transporter by screening of genome databases. FEBS Lett. 417, 177–183.

    Article  PubMed  CAS  Google Scholar 

  83. Burger, P., Hell, J., Mehl, E., Krasel, C., Lottspeich, F., and Jahn, R. (1991) Gaba and glycine in synaptic vesicles–storage and transport characteristics. Neuron 7, 287–293.

    Article  PubMed  CAS  Google Scholar 

  84. Hell, J. W., Maycox, P. R., and Jahn, R. (1990) Energy dependence and functional reconstitution of the gamma-aminobutyric acid carrier from synaptic vesicles. J. Biol. Chem. 265, 2111–2117.

    PubMed  CAS  Google Scholar 

  85. Kish, P. E., Fischer-Bovenkerk, C., and Ueda, T. (1989) Active transport of gamma-aminobutyric acid and glycine into synaptic vesicles. Proc. Natl. Acad. Sci. USA 86, 3877–3881.

    Article  PubMed  CAS  Google Scholar 

  86. Christensen, H. and Fonnum, F. (1991) Uptake of glycine, GABA and glutamate by synaptic vesicles isolated from different regions of rat CNS. Neurosci. Lett. 129, 217–220.

    Article  PubMed  CAS  Google Scholar 

  87. Christensen, H., Fykse, E. M., and Fonnum, F. (1990) Uptake of glycine into synaptic vesicles isolated from rat spinal cord. J. Neurochem. 54, 1142–1147.

    Article  PubMed  CAS  Google Scholar 

  88. Christensen, H., Fykse, E. M., and Fonnum, F. (1991) Inhibition of gammaaminobutyrate and glycine uptake into synaptic vesicles. Eur. J. Pharmacol. 207, 73–79.

    Article  PubMed  CAS  Google Scholar 

  89. Fykse, E. M. and Fonnum, F. (1988) Uptake of gamma-aminobutyric acid by a synaptic vesicle fraction isolated from rat brain. J. Neurochem. 50, 1237–1242.

    Article  PubMed  CAS  Google Scholar 

  90. Hell, J. W., Maycox, P. R., Stadler, H., and Jahn, R. (1988) Uptake of GABA by rat brain synaptic vesicles isolated by a new procedure. EMBO J. 7, 3023–3029.

    PubMed  CAS  Google Scholar 

  91. Kolston, J., Osen, K. K., Hackney, C. M., Ottersen, O. P., and StormMathisen, J. (1992) An atlas of glycine-and GABA-like immunoreactivity and colocalization in the cochlear nuclear complex of the guinea pig. Anat. Embryol. (Berl) 186, 443–465.

    Article  CAS  Google Scholar 

  92. Ornung, G., Shupliakov, O., Linda, H., Ottersen, O. P., Storm-Mathisen, J., Ulfhake, B., and Cullheim, S. (1996) Qualitative and quantitative analysis of glycine-and GABA-immunoreactive nerve terminals on motoneuron cell bodies in the cat spinal cord: a postembedding electron microscopic study. J. Comp. Neurol. 365, 413–426.

    Article  PubMed  CAS  Google Scholar 

  93. Ornung, G., Shupliakov, O., Ottersen, O. P., Storm-Mathisen, J., and Cullheim, S. (1994) Immunohistochemical evidence for coexistence of glycine and GABA in nerve terminals on cat spinal motoneurones: an ultrastructural study. Neuroreport 5, 889–892.

    Article  PubMed  CAS  Google Scholar 

  94. Ottersen, O. P., Storm-Mathisen, J., and Somogyi, P. (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain. Res. 450, 342–353.

    Article  PubMed  CAS  Google Scholar 

  95. Chaudhry, F. A., Reimer, R. J., Bellocchio, E. E., Danbolt, N. C., Osen, K. K., Edwards, R. H., and Storm-Mathisen, J. (1998) The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J. Neurosci. 18, 9733–9750.

    PubMed  CAS  Google Scholar 

  96. Dumoulin, A., Rostaing, P., Bedet, C., Levi, S., Isambert, M. F., Henry, J. P., Triller, A., and Gasnier, B. (1999) Presence of the vesicular inhibitory amino acid transporter in GABAergic and glycinergic synaptic terminal boutons. J. Cell. Sci. 112, 811–823.

    PubMed  CAS  Google Scholar 

  97. Ahnert-Hilger, G., Nurnberg, B., Exner, T., Schafer, T., and Jahn, R. (1998) The heterotrimeric G protein Go2 regulates catecholamine uptake by secretory vesicles. EMBO J. 17, 406–413.

    Article  PubMed  CAS  Google Scholar 

  98. Liu, Y. and Edwards, R. H. (1997) Differential localization of vesicular acetylcholine and monoamine transporters in PC12 cells but not CHO cells. J. Cell. Biol. 139, 907–916.

    Article  PubMed  CAS  Google Scholar 

  99. Kelly, R. B. (1993) Storage and release of neurotransmitters. Cell 72 Suppl, 43–53.

    Google Scholar 

  100. Varoqui, H. and Erickson, J. D. (1998) The cytoplasmic tail of the vesicular acetylcholine transporter contains a synaptic vesicle targeting signal. J. Biol. Chem. 273, 9094–9098.

    Article  PubMed  CAS  Google Scholar 

  101. Tan, P. K., Waites, C., Liu, Y., Krantz, D. E., and Edwards, R. H. (1998) A leucine-based motif mediates the endocyosis of vesicular monoamine and acetylcholine transporters. J. Biol. Chem. 273, 17,351–17, 360.

    Google Scholar 

  102. Letourneur, F. and Klausner, R. D. (1992) A novel di-leucine motif and a tyrosine-based motif independently mediate lysosomal targeting and endocytosis of CD3 chains. Cell 69, 1143–1157.

    Article  PubMed  CAS  Google Scholar 

  103. Rubin, L. A., Kurman, C. C., Biddison, W. E., Goldman, N. D., and Nelson, D. L. (1985) A monoclonal antibody 7G7/B6, binds to an epitope on the human interleukin-2 (IL-2) receptor that is distinct from that recognized by IL-2 or anti-Tac. Hybridoma 4, 91–102.

    Article  PubMed  CAS  Google Scholar 

  104. Dietrich, J., Kastrup, J., Nielsen, B. L., Odum, N., and Geisler, C. (1997) Regulation and function of the CD3gamma DxxxLL motif: a binding site for adaptor protein-1 and adaptor protein-2 in vitro. J. Cell. Biol. 138, 271–281.

    Article  PubMed  CAS  Google Scholar 

  105. Cho, G. W., Kim, M. H., Chai, Y. G., Gilmor, M. L., Levey, A. I., and Hersh, L. B. (2000) Phosphorylation of the rat vesicular acetylcholine transporter. J. Biol. Chem. 275, 19,942–19, 948.

    Google Scholar 

  106. Krantz, D. E., Waites, C., Oorschot, V., Liu, Y., Wilson, R. I., Tan, P. K., Klumperman, J., and Edwards, R. H. (2000) A phosphorylation site regulates sorting of the vesicular acetylcholine transporter to dense core vesicles. J. Cell. Biol. 149, 379–396.

    Article  PubMed  CAS  Google Scholar 

  107. Barbosa, J., Jr., Clarizia, A. D., Gomez, M. V., Romano-Silva, M. A., Prado, V. F., and Prado, M. A. (1997) Effect of protein kinase C activation on the release of [3H]acetylcholine in the presence of vesamicol. J. Neurochem. 69, 2608–2611.

    Article  PubMed  Google Scholar 

  108. Dietrich, J., Hou, X., Wegener, A. M., and Geisler, C. (1994) CD3 gamma contains a phosphoserine-dependent di-leucine motif involved in down-regulation of the T cell receptor. EMBO J. 13, 2156–2166.

    PubMed  CAS  Google Scholar 

  109. Shin, J., Dunbrack, R. L., Jr., Lee, S., and Strominger, J. L. (1991) Phosphorylation-dependent down-modulation of CD4 requires a specific structure within the cytoplasmic domain of CD4. J. Biol. Chem. 266, 10,658–10, 665.

    Google Scholar 

  110. Yelin, R., Steiner-Mordoch, S., Aroeti, B., and Schuldiner, S. (1998) Glycosylation of a vesicular monoamine transporter: a mutation in a conserved proline residue affects the activity, glycosylation, and localization of the transporter. J. Neurochem. 71, 2518–2527.

    Article  PubMed  CAS  Google Scholar 

  111. Clarizia, A. D., Gomez, M. V., Romano-Silva, M. A., Parsons, S. M., Prado, V. F., and Prado, M. A. M. (1999) Control of the binding of a vesamicol analog to the vesicular acetylcholine transporter. Neuro report 10, 2783–2787.

    CAS  Google Scholar 

  112. Nakanishi, N., Onozawa, S., Matsumoto, R., Kurihara, K., Ueha, T., Hasegawa, H., and Minami, N. (1995) Effects of protein kinase inhibitors and protein phosphatase inhibitors on cyclic AMP-dependent down-regulation of vesicular monoamine transport in pheochromocytoma PC12 cells. FEBS Lett. 368, 411–414.

    Article  PubMed  CAS  Google Scholar 

  113. Krantz, D. E., Peter, D., Liu, Y., and Edwards, R. H. (1997) Phosphorylation of a vesicular monoamine transporter by casein kinase II. J. Biol. Chem. 272, 6752–6759.

    Article  PubMed  CAS  Google Scholar 

  114. Ahnert-Hilger, G., Schafer, T., Spicher, K., Grund, C., Schultz, G., and Wiedenmann, B. (1994) Detection of G-protein heterotrimers on large dense core and small synaptic vesicles of neuroendocrine and neuronal cells. Eur. J. Cell. Biol. 65, 26–38.

    PubMed  CAS  Google Scholar 

  115. Gasnier, B., Scherman, D., and Henry, J. P. (1985) Dicyclohexylcarbodiimide inhibits the monoamine carrier of bovine chromaffin granule membrane. Biochemistry 24, 1239–1244.

    Article  PubMed  CAS  Google Scholar 

  116. Schuldiner, S., Fishkes, H., and Kanner, B. I. (1978) Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles. Proc. Natl. Acad. Sci. USA 75, 3713–3716.

    Article  PubMed  CAS  Google Scholar 

  117. Suchi, R., Stern-Bach, Y., Gabay, T., and Schuldiner, S. (1991) Covalent modification of the amine transporter with N,N’-dicyclohexylcarbodiimide. Biochemistry 30, 6490–6494.

    Article  PubMed  CAS  Google Scholar 

  118. Merickel, A., Rosandich, P., Peter, D., and Edwards, R. H. (1995) Identification of residues involved in substrate recognition by a vesicular monoamine transporter. J. Biol. Chem. 270, 25,798–25, 804.

    Google Scholar 

  119. Kim, M. H., Lu, M., Lim, E. J., Chai, Y. G., and Hersh, L. B. (1999) Mutational analysis of aspartate residues in the transmembrane regions and cytoplasmic loops of rat vesicular acetylcholine transporter. J. Biol. Chem. 274, 673–680.

    Article  PubMed  CAS  Google Scholar 

  120. Merickel, A., Kaback, H. R., and Edwards, R. H. (1997) Charged residues in transmembrane domains II and XI of a vesicular monoamine transporter form a charge pair that promotes high affinity substrate recognition. J. Biol. Chem. 272, 5403–5408.

    Article  PubMed  CAS  Google Scholar 

  121. Steiner-Mordoch, S., Shirvan, A., and Schuldiner, S. (1996) Modification of the pH profile and tetrabenazine sensitivity of rat VMAT1 by replacement of aspartate 404 with glutamate. J. Biol. Chem. 271, 13,048–13, 054.

    Google Scholar 

  122. Song, H., Ming, G., Fon, E., Bellocchio, E., Edwards, R. H., and Poo, M. (1997) Expression of a putative vesicular acetylcholine transporter facilitates quantal transmitter packaging. Neuron 18, 815–826.

    Article  PubMed  CAS  Google Scholar 

  123. Blakely, R. D. and Bauman, A. L. (2000) Biogenic amine transporters: regulation in flux. Curr. Opin. Neurobiol. 10, 328–336.

    Article  PubMed  CAS  Google Scholar 

  124. Gerchman, Y., Olami, Y., Rimon, A., Taglicht, D., Schuldiner, S., and Padan, E. (1993) Histidine-226 is part of the pH sensor of NhaA, a Na+/H+ antiporter in Escherichia coli. Proc. Natl. Acad. Sci. USA 90, 1212–1216.

    Article  PubMed  CAS  Google Scholar 

  125. Puttner, I. B., Sarkar, H. K., Padan, E., Lolkema, J. S., and Kaback, H. R. (1989) Characterization of site-directed mutants in the lac permease of Escherichia coli. 1. Replacement of histidine residues. Biochemistry 28, 2525–2533.

    Article  PubMed  CAS  Google Scholar 

  126. Isambert, M. F. and Henry, J. P. (1981) Effect of diethylpyrocarbonate on pH-driven monoamine uptake by chromaffin granule ghosts. FEBS Lett. 136, 13–18.

    Article  PubMed  CAS  Google Scholar 

  127. Suchi, R., Stern-Bach, Y., and Schuldiner, S. (1992) Modification of arginyl or histidyl groups affects the energy coupling of the amine transporter. Biochemistry 31, 12, 500–12, 503.

    Google Scholar 

  128. Keller, J. E. and Parsons, S. M. (2000) A critical histidine in the vesicular acetylcholine transporter. Neurochem. Int. 36, 113–117.

    Article  PubMed  CAS  Google Scholar 

  129. Kim, M. H., Lu, M., Kelly, M., and Hersh, L. B. (2000) Mutational analysis of basic residues in the rat vesicular acetylcholine transporter. Identification of a transmembrane ion pair and evidence that histidine is not involved in proton translocation. J. Biol. Chem. 275, 6175–6180.

    Article  PubMed  CAS  Google Scholar 

  130. Shirvan, A., Laskar, O., Steiner-Mordoch, S., and Schuldiner, S. (1994) Histidine-419 plays a role in energy coupling in the vesicular monoamine transporter from rat. FEBS Lett. 356, 145–150.

    Article  PubMed  CAS  Google Scholar 

  131. Dunten, R. L., Sahin-Toth, M., and Kaback, H. R. (1993) Role of the charge pair aspartic acid-237-lysine-358 in the lactose permease of Escherichia coli. Biochemistry 32, 3139–3145.

    Article  PubMed  CAS  Google Scholar 

  132. King, S. C., Hansen, C. L., and Wilson, T. H. (1991) The interaction between aspartic acid 237 and lysine 358 in the lactose carrier of Escherichia coli. Biochim. Biophys. Acta 1062, 177–186.

    Article  PubMed  CAS  Google Scholar 

  133. Sahin-Toth, M., Dunten, R. L., Gonzalez, A., and Kaback, H. R. (1992) Functional interactions between putative intramembrane charged residues in the lactose permease of Escherichia coli. Proc. Natl. Acad. Sci. USA 89, 10,54710, 551.

    Google Scholar 

  134. Kitayama, S., Shimada, S., Xu, H., Markham, L., Donovan, D., and Uhl, G. (1992) Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proc. Natl. Acad. Sci. USA 89, 7782–7785.

    Article  PubMed  CAS  Google Scholar 

  135. Peter, D., Vu, T., and Edwards, R. H. (1996) Chimeric vesicular monoamine transporters identify structural domains that influence substrate affinity and sensitivity to tetrabenazine. J. Biol. Chem. 271, 2979–2986.

    Article  PubMed  CAS  Google Scholar 

  136. Erickson, J. D. (1998) A chimeric vesicular monoamine transporter dissociates sensitivity to tetrabenazine and unsubstituted aromatic amines. Adv. Pharmacol. 42, 227–232.

    Article  PubMed  CAS  Google Scholar 

  137. Varoqui, H. and Erickson, J. D. (1998) Dissociation of the vesicular acetylcholine transporter domains important for high-affinity transport recognition, binding of vesamicol and targeting to synaptic vesicles. J. Physiol. Paris 92, 141–144.

    Article  PubMed  CAS  Google Scholar 

  138. Finn, J. P., 3rd and Edwards, R. H. (1997) Individual residues contribute to multiple differences in ligand recognition between vesicular monoamine transporters 1 and 2. J. Biol. Chem. 272, 16,301–16, 307.

    Google Scholar 

  139. Finn, J. P., 3rd and Edwards, R. H. (1998) Multiple residues contribute independently to differences in ligand recognition between vesicular monoamine transporters 1 and 2. J. Biol. Chem. 273, 3943–3947.

    Article  PubMed  CAS  Google Scholar 

  140. Duerr, J. S., Frisby, D. L., Gaskin, J., Duke, A., Asermely, K., Huddleston, D., Eiden, L. E., and Rand, J. B. (1999) The cat-1 gene of Caenorhabditis elegans encodes a vesicular monoamine transporter required for specific monoamine-dependent behaviors. J. Neurosci. 19, 72–84.

    PubMed  CAS  Google Scholar 

  141. Takahashi, N., Miner, L. L., Sora, I., Ujike, H., Revay, R. S., Kostic, V., Jackson-Lewis, V., Przedborski, S., and Uhl, G. R. (1997) VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc. Natl. Acad. Sci. USA 94, 9938–9943.

    Article  PubMed  CAS  Google Scholar 

  142. Fon, E. A., Pothos, E. N., Sun, B. C., Killeen, N., Sulzer, D., and Edwards, R. H. (1997) Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19, 1271–1283.

    Article  PubMed  CAS  Google Scholar 

  143. Wang, Y. M., Gainetdinov, R. R., Fumagalli, F., Xu, F., Jones, S. R., Bock, C. B., Miller, G. W., Wightman, R. M., and Caron, M. G. (1997) Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron 19, 1285–1296.

    Article  PubMed  CAS  Google Scholar 

  144. Rudnick, G. and Wall, S. C. (1992) p-Chloroamphetamine induces serotonin release through serotonin transporters. Biochemistry 31, 6710–6718.

    Google Scholar 

  145. Hansson, S. R., Hoffman, B. J., and Mezey, E. (1998) Ontogeny of vesicular monoamine transporter mRNAs VMAT1 and VMAT2. I. The developing rat central nervous system. Brain. Res. Dev. Brain. Res. 110, 135–158.

    Article  PubMed  CAS  Google Scholar 

  146. Itokawa, K., Sora, I., Schindler, C. W., Itokawa, M., Takahashi, N., and Uhl, G. R. (1999) Heterozygous VMAT2 knockout mice display prolonged QT intervals: possible contributions to sudden death. Brain. Res. Mol. Brain. Res. 71, 354–357.

    Article  PubMed  CAS  Google Scholar 

  147. Travis, E. R., Wang, Y. M., Michael, D. J., Caron, M. G., and Wightman, R. M. (2000) Differential quantal release of histamine and 5-hydroxytryptamine from mast cells of vesicular monoamine transporter 2 knockout mice. Proc. Natl. Acad. Sci. USA 97, 162–167.

    Article  PubMed  CAS  Google Scholar 

  148. Gainetdinov, R. R., Fumagalli, F., Wang, Y. M., Jones, S. R., Levey, A. I., Miller, G. W., and Caron, M. G. (1998) Increased MPTP neurotoxicity in vesicular monoamine transporter 2 heterozygote knockout mice. J. Neurochem. 70, 1973–1978.

    Article  PubMed  CAS  Google Scholar 

  149. Fumagalli, F., Gainetdinov, R. R., Wang, Y. M., Valenzano, K. J., Miller, G. W., and Caron, M. G. (1999) Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. J. Neurosci. 19, 2424–2431.

    PubMed  CAS  Google Scholar 

  150. Henry, J. P., Sagne, C., Bedet, C., and Gasnier, B. (1998) The vesicular monoamine transporter: from chromaffin granule to brain. Neurochem. Int. 32, 227–246.

    Article  PubMed  CAS  Google Scholar 

  151. Reimer, R. J., Fon, E. A., and Edwards, R. H. (1998) Vesicular neurotransmitter transport and the presynaptic regulation of quantal size. Curr. Opin. Neurobiol. 8, 405–412.

    Article  PubMed  CAS  Google Scholar 

  152. Griffith, J. K., Baker, M. E., Rouch, D. A., Page, M. G. P., Skurray, R. A., Paulsen, I., Chater, K. F., Baldwin, S. A., and Henderson, P. J. F. (1992) Evolution of transmembrane transport: relationships between transport proteins for sugars, carboxylate compounds, antibiotics and antiseptics. Curr. Opin. Cell. Biol. 4, 684–695.

    Article  PubMed  CAS  Google Scholar 

  153. Paulsen, I. T. and Skurray, R. A. (1994) Topology, structure and evolution of two families of proteins involved in antibiotic and antiseptic resistance in eukaryotes and prokaryotes-an anlysis. Gene 124, 1–11.

    Article  Google Scholar 

  154. Flowers, T. J., Troke, P. F., and Yeo, A. R. (1977) The mechanism of salt tolerance in halophytes. Ann. Rev. Plant. Physiol. 28, 89–121.

    Article  CAS  Google Scholar 

  155. Wink, M. (1993) The plant vacuole: A multifunctional Compartment. J. Exp. Botany 44, 231–246.

    CAS  Google Scholar 

  156. Yelin, R., Rotem, D., and Schuldiner, S. (1999) EmrE, a small Escherichia coli multidrug transporter, protects Saccharomyces cerevisiae from toxins by sequestration in the vacuole. J. Bacteriol. 181, 949–956.

    PubMed  CAS  Google Scholar 

  157. Yelin, R. and Schuldiner, S. (1995) The pharmacological profile of the vesicular monoamine transporter resembles that of multidrug transporters. FEBS Lett. 377, 201–207.

    Article  PubMed  CAS  Google Scholar 

  158. Gluck, S. L. (1992) The structure and biochemistry of the vacuolar H+ ATPase in proximal and distal urinary acidifcation. J. Bioenerg. Biomemb. 24, 351–359.

    Article  CAS  Google Scholar 

  159. Gogarten, J. P., Kibak, H., Dittrich, P., Taiz, L., Bowman, E. J., Bowman, B. J., et al. (1989) Evolution of the vacuolar H+-ATPase: Implications for the origin of eukaryotes. Proc. Natl. Acad. Sci. USA 86, 6661–6665.

    Article  PubMed  CAS  Google Scholar 

  160. Nelson, N. (1992) Structural Conservation and functional diversity of V-ATPases. J. Bioenerg. Biomemb. 24, 407–414.

    Article  CAS  Google Scholar 

  161. Felsenstein, J. (1989) PHYLIP — phylogeny inference package. Cladistics 5.

    Google Scholar 

  162. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids. Res. 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yelin, R., Schuldiner, S. (2002). Vesicular Neurotransmitter Transporters. In: Reith, M.E.A. (eds) Neurotransmitter Transporters. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-158-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-158-9_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-267-4

  • Online ISBN: 978-1-59259-158-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics