Skip to main content

In Vitro and In Vivo Imaging of the Human Dopamine Transporter in Cocaine Abusers

  • Chapter
Neurotransmitter Transporters

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 255 Accesses

Abstract

Deaths involving psychoactive drugs stem not only from overdose, but also from drug-induced mental states that may lead to serious injuries (1). Mortality data have revealed the virulence of the cocaine epidemic, although other indicators including crime, drug-exposed neonates, drug-related traffic accidents, and drug use by workers provide a fuller view of the nature and extent of the problem of cocaine abuse. The arrival of inexpensive “crack” cocaine has radically changed the nature of the epidemic, and has revealed the serious addictive potential of this drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker S. P. (1992) The Injury Fact Book. 2nd ed. New York Oxford University Press, New York, NY.

    Google Scholar 

  2. Galloway, M. P. (1988) Neurochemical interactions of cocaine with the dopaminergic system. Trends Pharmacol. Sci. 9, 451–454.

    PubMed  CAS  Google Scholar 

  3. Kuhar, M. J., Ritz, M. C., and Boja, J. W. (1991) The dopamine hypothesis of the reinforcing properties of cocaine. TINS 14, 299–302.

    PubMed  CAS  Google Scholar 

  4. Ritz, M. C., Lamb, R. J., Goldberg, S. R., and Kuhar, M. J. (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237, 1219–1223.

    PubMed  CAS  Google Scholar 

  5. Giros, B., Mestikawy, S. E., Godinot, N., Zheng, K., Han, H., and Yan-Feng, T. (1992) Pharmacological characterization and chromosome assignment of the human dopamine transporter. Mol. Pharm. 42, 383–390.

    CAS  Google Scholar 

  6. Pristupa, Z. B., Wilson, J. M., Hoffman, B. J., Kish, S. J., and Niznik, H. B. (1994) Pharmacological heterogeneity of the cloned and native human dopamine transporter: dissociation of [3H]WIN 35,428 and [3H]GBR 12935 binding. Mol. Pharm. 45, 125–135.

    CAS  Google Scholar 

  7. Vandenbergh, S. J., Persico, A. M., and Uhl, G. R. (1992) A human dopamine transporter cDNA predicts reduced glycosylation, displays a novel repetitive element and provides racially-dimorphic Taq I RFLPS. Mol. Brain Res. 15, 161–166.

    PubMed  CAS  Google Scholar 

  8. Rothman, R. B., (1990) High affinity dopamine reuptake inhibitors as potential cocaine antagonists: A strategy for drug development. Life Sci. 46, PL17–PL21.

    PubMed  CAS  Google Scholar 

  9. Giros, B., Wang, Y. M., Suter, S., McLeskey, S. B., Pifl, C., and Caron, M. G. (1994) Delineation of discrete domains for substrate, cocaine, and tricyclic antidepressant interactions using chimeric dopamine-norepinephrine transporters. J. Biol. Chem. 269, 15985–15988.

    PubMed  CAS  Google Scholar 

  10. Kitayama, S., Shimada, S., Xu, H., Markham, L., Donovan, D. M., and Uhl, G. R. (1992) Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proc. Natl. Acad. Sci. USA 89, 7782–7785.

    PubMed  CAS  Google Scholar 

  11. Kitayama, S., Wang, J.-B., and Uhl, G. R. (1993) Dopamine transporter mutants selectively enhance MPP+ transport. Synapse 15, 58–62.

    PubMed  CAS  Google Scholar 

  12. Giros, B. and Caron, M. G. (1993) Molecular characterization of the dopamine transporter. Trends. Pharmacol. Sci. 14, 43–49.

    PubMed  CAS  Google Scholar 

  13. Boja, J. W., Vaughen, R., Patel A., Shaya, E. K., and Kuhar, M. J. (1994) The dopamine transporter, in Dopamine Receptors and Transporters, ( Niznik, H., ed.), Marcel Dekker, New York, NY, pp. 611–644.

    Google Scholar 

  14. Madras, B. K., Spealman, R. D., Fahey, M. A., Neumeyer, J. L., Saha, J. K. and Milius, R. A. (1989) Cocaine receptors labeled by [3H]213-carbomethoxy3(3-(4-fluorophenyl) tropane. Mol. Pharmacol. 36, 518–524.

    PubMed  CAS  Google Scholar 

  15. Staley, J. K., Basile, M., Flynn, D. D., and Mash, D. C. (1994) Visualizing dopamine and serotonin transporters in the human brain with the potent cocaine analogue [125I]RTI-55: in vitro binding and autoradiographic characterization. J. Neurochem. 62, 549–556.

    PubMed  CAS  Google Scholar 

  16. Staley, J. K., Boja, J. W., Carroll, F. I., Seltzman, H. H., Wyrick, C. D., Lewin, A. H., et al. (1995) Mapping dopamine transporters in the human brain with novel selective cocaine analog [125I]RTI-121. Synapse 21, 364–372.

    PubMed  CAS  Google Scholar 

  17. Boja, J. W., Markham, L., Patel, A., Uhl, G., and Kuhar, M. J. (1992) Expression of a single dopamine transporter cDNA can confer two cocaine binding sites. Neuro. Rep. 3, 247–248.

    CAS  Google Scholar 

  18. Reith, M. E. A., De Cosata, B., Rice, K. C., and Jacobsen, A. E., (1992) Evidence for mutually exclusive binding of cocaine, BTCP, GBR 12935, and dopamine to the dopamine transporter. Eur. J. Pharmacol. 227, 417–425.

    PubMed  CAS  Google Scholar 

  19. Reith, M. E. A. and Selmeci, G. (1992) Radiolabeling of dopamine uptake sites in mouse striatum-comparision of bindings -sites for cocaine, mazindol, and GBR 12935. Nauym-Schmeidebergs’s Arch. Pharmacol. 345, 309–318.

    CAS  Google Scholar 

  20. Logan, J., Volkow, N. D., Folwer, J. S., Wang, G.-J., Fischman, M. W., Foltin, R. W., et al. (1997) Concentration and occupancy of dopamine transporters in cocaine abusers with [11C]cocaine and PET. Synapse 27, 347–356.

    PubMed  CAS  Google Scholar 

  21. Little, K. Y., Kirkman, J. A., Carroll, F. I., Breese, G. R., and Duncan, G. E. (1993) [1251]RTI-55 binding to cocaine-sensitive dopaminergic and serotonergic uptake sites in the human brain. J. Neurochem. 61, 1996–2006.

    PubMed  CAS  Google Scholar 

  22. Marcusson, J. and Ericksson, K. (1988) [3H]GBR 12935 binding to dopamine uptake sites in the human brain. Brain Res. 457, 122–129.

    PubMed  CAS  Google Scholar 

  23. Staley, J. K., Hearn, W. L., Ruttenber, A. J., Wetli, C. V., and Mash, D. C. (1995) High affinity cocaine recognition sites on the dopamine transporter are elevated in fatal cocaine overdose victims. J. Pharm. Exp. Therap. 271, 1678–1685.

    Google Scholar 

  24. Little, K. Y., Kirkman, J. A., Carroll, F. I., Clark, T. B., and Duncan, G. E. (1993) Cocaine use increases [3H]WIN 35,428 binding sites in human striatum. Brain Res. 628, 17–25.

    PubMed  CAS  Google Scholar 

  25. Buck, K. J. and Amara, S. G. (1994) Chimeric dopamine-norepinephrine transporters delineate structural domains influencing selectivity for catecholamines and 1-methyl-4-phenylpyridinium. Proc. Natl. Acad. Sci. USA 91, 12584–12588.

    PubMed  CAS  Google Scholar 

  26. Bjorklund A. and Lindvall, O. (1994) Dopamine-containing systems in the CNS, in Handbook of Chemical Neuroanatomy, Vol 2. Classical Transmitters in the CNS, Part I. (Bjorklund, A. and Hokfelt, T., eds. ), pp. 55–122.

    Google Scholar 

  27. Graybiel, A. M. and Ragsdale, C. W. (1978) Histochemically distinct compartments in the striatum of human, monkey and cat demonstrated by acetyl-cholinesterase staining. Proc. Natl. Acad. Sci. USA 75, 5723–5726.

    PubMed  CAS  Google Scholar 

  28. Hurd, Y. L., Pristupa, Z. B., Herman, M. M., Niznik, H. B., and Kleinman, J. E. (1994) The dopamine transporter and dopamine D2 receptor messenger RNAs are differentially expressed in limbic-and motor-related subpopulations of human mesencephalic neurons. Neuroscience 63, 357–362.

    PubMed  CAS  Google Scholar 

  29. Graybiel, A. M. and Moratalla, R. (1989) Dopamine uptake sites in the striatum are distributed differentially in striosome and matrix compartments. Proc. Natl. Acad. Sci. USA 86, 9020–9024.

    PubMed  CAS  Google Scholar 

  30. Lowenstein, P. R., Joyce, J. N., Coyle,J. T., and Marshall, J. F. (1990) Striosomal organization of cholinergic and dopaminergic uptake sites and cholinergic Ml receptors in the adult human striatum: a quantitative receptor autoradiographic study. Brain Res. 510, 122–126.

    PubMed  CAS  Google Scholar 

  31. Ciliax, B. J., Drash, G. W., Staley, J. K., Haber, S., Mobley, C. J., Miller, G. W., et al. (1999) Immunocytochemical localization of the dopamine transporter in human brain. J. Comp. Neurol. 409, 38–56.

    PubMed  CAS  Google Scholar 

  32. Donnan, G. A., Kaczmarczyk, S. J., Paxinos, G., Chilco, P. J., Kalnins, R. M., Woodhouse, D. G., et al. (1991) Distribution of catecholamine uptake sites in human brain as determined by quantitative [3H]mazindol autoradiography. J. Comp. Neurol. 304, 419–434.

    PubMed  CAS  Google Scholar 

  33. Biegon, A., Dillon, K., Volkow, N. D., Hitzemann, R. J., Fowler, J. S., and Wolf, A. P. (1992) Quantitative autoradiography of cocaine binding sites in human brain postmortem. Synapse 10, 126–130.

    PubMed  CAS  Google Scholar 

  34. Kaufman, M. J. and Madras, B. K. (1991) Severe depletion of cocaine recognition sites associated with the dopamine transporter in Parkinson’s diseased striatum. Synapse 9, 43–49.

    PubMed  CAS  Google Scholar 

  35. Madras, B. K., Gracz, L. M., Fahey, M. A., Elmaleh, D., Meltzer, P. C., Liang, A. Y., et al. (1998) Altropane, a SPECT or PET imaging probe for dopamine neurons: III. Human dopamine transporter in postmortem normal and Parkinson’s diseased brain. Synapse 29, 116–1127.

    PubMed  CAS  Google Scholar 

  36. Farde, L., Halldin, C., Muller, L., Suhara, T., Karlsson, P., and Hall, H. (1994) PET Study of [’1C113-CIT binding to monoamine transporters in the monkey and human brain. Synapse 16, 93–103.

    PubMed  CAS  Google Scholar 

  37. Madras, B. K. and Kaufman, M. J. (1994) Cocaine accumulates in dopamine-rich region of primate brain after i.v. administration: comparison with mazindol distribution. Synapse 18, 261–275.

    PubMed  CAS  Google Scholar 

  38. Aquilonius, S. M., Bergstrom, K., Eckernas, S. A., Hartvig, P., Leenders, K. L., Lundquist, H., et al. (1987) In vivo evaluation of striatal dopamine reuptake sites using C-nomifensine and positron emission tomography. Acta. Neurol. Scand. 76, 283–287.

    PubMed  CAS  Google Scholar 

  39. Salmon, E., Brooks, D. J., Leenders, K. L., Turton, D. R., Hume, S. P., Crmer, J. E., et al. (1990) A two-compartment description and kinetic procedure for measuring regional cerebral [11C]nomifensine uptake using positron emission tomography. J. Cereb. Blood Flow Metab. 10, 307–316.

    PubMed  CAS  Google Scholar 

  40. Ding, Y. -S., Fowler, J. S., Volkow, N. D., Gatley, S. J., Logan, J., Dewey, S. L., et al. (1994) Pharmacokinetics and in vivo specificity of [11C]dl-threomethylphenidate for the presynaptic dopaminergic neuron. Synapse 18, 152–160.

    PubMed  CAS  Google Scholar 

  41. Fowler, J. S., Volkow, N. D., Wolf, A. P., Dewey, S. L., Schyler, D. J., Macgregor, R. R., et al. (1989) Mapping cocaine binding sites in human and baboon brain in vivo. Synapse 4, 371–377.

    PubMed  CAS  Google Scholar 

  42. Gatley, S. J., Volkow, N. D., Fowler, J. S., Dewey, S. L., and Logan, J. (1995) Sensitivity of striatal [11C]cocaine binding to decreases in synaptic dopamine. Synapse 20, 137–144.

    PubMed  CAS  Google Scholar 

  43. Telang, F. W., Volkow, N. D., Levy, A., Logan, J., Fowler. J. S., Felder, C., et al. (1999) Distribution of tracer levels of cocaine in the human brain as assessed with averaged [11C]cocaine images. Synapse 31, 290–296.

    PubMed  CAS  Google Scholar 

  44. Wang, G.-J., Volkow, N. D., Fowler, J. S., Ding, Y.-S., Logan, J., Gatley, J. S., et al. (1995) Comparision of two PET radioligands for imaging extrastriatal dopamine transporters in human brain. Life Sci. 57, 187–191.

    Google Scholar 

  45. Wong, D. F., Yung, B., Dannals, R. F., Shaya, E. K., Ravert, H. T., Chen, C. A. et al. (1993) In vivo imaging of baboon and human dopamine transporters by positron emission tomography using [11C]WIN 35,428. Synapse 15, 130–142.

    PubMed  CAS  Google Scholar 

  46. Neumeyer, J. L., Wang, S., Gao, Y., Milius, R. A., Kula, N. S., Campbell, A., et al. (1994) N-w-Fluoroalkyl analogs of (1R)-2(3-carbomethoxy-3(3-(4iodophenyl)-tropane (ß-CIT): Radiotracers for positron emission tomography and single photon emission tomography and single photon emission computed tomography imaging of dopamine transporters. J. Med. Chem. 37, 1558–1561.

    PubMed  CAS  Google Scholar 

  47. Pirker, W., Asenbaum, S., Kasper, S., Walter, H., Angellberger, P., Koc, G., et al. (1995) ß-CIT SPECT demonstrates blockade of 5HT-uptake sites by citalopram in the human brain in vivo. J. Neural. Transm. 100, 247–256.

    CAS  Google Scholar 

  48. Seibyl, J. P., Wallace, E., Smith, E. O., Stabin, M., Baldwin, R. M., Zoghbi„ S., et al. (1994) Whole-body biodistribution, radiation absorbed dose and brain SPECT imaging with iodine-123–13-CIT in healthy human subjects. J. Nucl. Med. 35, 764–770.

    PubMed  CAS  Google Scholar 

  49. Kuikka, J. T., Akerman, K., Bergstrom, K. A., Karhu, J., Hiltunen, J., Haukka, J., et al. (1995) Iodine-123 labelled N-(2-fluoroethyl)-2(3carbomethoxy-3(3-(4-iodophenyl) nortropane for dopamine transporter imaging in the living human brain. Eur. J. Nucl. Med. 22, 682–686.

    PubMed  CAS  Google Scholar 

  50. Kazumata, K, Dhawan, V., Chaly, T., Antonin, A., Margouleff, C., Belakhlef, A., et al. (1998) Dopamine transporter imaging with fluorine-18-FPCIT and PET. J. Nucl. Med. 39, 1521–1530.

    PubMed  CAS  Google Scholar 

  51. Kuikka, J. T., Bergstrom, K. A., Ahonen, A., Hiltunen, J., Haukka, J., Lansimies, E., et al. (1995) Comparison of iodine-123 labelled PE2I for dopamine transporter imaging: influence of age in healthy subjects. Eur. J. Nucl. Med. 26, 1486–1488.

    Google Scholar 

  52. Fischman, A. J., Bonab, A. A., Babich, J. W., Palmer, E. P., Alpert, N. M., Elmaleh, D. R., et al. (1998) Rapid detection of Parkinson’s disease by SPECT with Altropane: a selective ligand for dopamine transporters. Synapse 29, 128–141.

    PubMed  CAS  Google Scholar 

  53. Kung, H. F., Kim, H. J., Kung, M. P., Meegalla, S. K., Plossl, K., and Lee, H. K. (1996) Imaging of dopamine transporters in humans with technetium-99m TRODAT-1. Eur. J. Nucl. Med. 23, 1527–1530.

    PubMed  CAS  Google Scholar 

  54. Childress, A. R., Mozley, P. D., McElgin, W., Fitzgerald J., Reivich, M., and O’Brien, C. P. (1999) Limbic activation during cue-induced cocaine craving. Am. J. Psychiatry 156, 11–18.

    PubMed  CAS  Google Scholar 

  55. Grant, S., London, E. D., Newlin, D. B., Billemagne, V. L., Liu, X., Contoreggis, C., et al. (1996) Activation of memory circuits during cue-elicited cocaine craving. Proc. Natl. Acad. Sci. USA 93, 12040–12045.

    PubMed  CAS  Google Scholar 

  56. Morris, E. D., Babich, J. W., Alpert, N. M., Bonab, A. A., Livini, Weise, S., et al. (1996) Quantification of dopamine transporter density in monkeys by dynamic PET imaging of multiple injections of [11C]-CFT. Synapse 24, 262–272.

    PubMed  CAS  Google Scholar 

  57. Volkow, N. D., Fowler, J. S., Gatley, J. S., Dewey, S. L., MacGregor, R. R., Schlyer, D. J., et al. (1995b) Carbon-11-cocaine binding compared at subpharmacological and pharmacological doses: A PET study. J. Nucl. Med. 36, 1289–1297

    PubMed  CAS  Google Scholar 

  58. Tsukada, H., Nishiyama, T., Kakiuchi, H., Ohba, K., Sato, N., Harada, N., et al. (1999) Isoflurane anesthesia enhances the inhibitory effects of cocaine and GBR 12909 on dopamine transporter: PET studies in combination with microdialysis in the monkey brain. Brain Res. 849, 85–96.

    PubMed  CAS  Google Scholar 

  59. Staley, J. K., Wetli, C. V., Ruttenber, A. J., Hearn, W. L., and Mash, D. C. (1995) Altered dopaminergic synaptic markers in cocaine psychosis and sudden death. NIDA Res. Mono. Ser. 153, 491.

    Google Scholar 

  60. Volkow, N. D., Wang, G. J., Fischman, M. W., Foltin, R. W., Fowler, J. S., Abumrad, N. N., et al. (1997) Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 386, 827–830.

    PubMed  CAS  Google Scholar 

  61. Cook, C. E., Jeffcoat, A. R., and Perez-Reyes, M. (1985) Pharmacokinetic studies of cocaine and phencyclidine in man, in Pharmacokinetics and Pharmacodynamics of Psychoactive Drugs. ( Barnett, G. and Chiang, C. N. eds.), Biomedical Publications, Foster City, CA, pp. 48–74.

    Google Scholar 

  62. Stathis, M., Scheffel, U., Lever, S. Z., Boja, J. W., Carroll, F. I., and Kuhar, M. J. (1995) Rate of binding of various inhibitors at the dopamine transporter in vivo. Psychopharmacology 119, 376–384.

    PubMed  CAS  Google Scholar 

  63. Gatley, S. J., Volkow, N. D., Gifford, A. N., Ding, Y. S., Logan, J., and Wang, G. J. (1996) Model for estimating dopamine transporter occupancy and subsequent increases in synaptic dopamine using positron emission tomography and carbon-11-labeled cocaine. Biochem. Pharmacol. 53, 43–52.

    Google Scholar 

  64. Alim T. N., Rosse R. B., Vocci F. J., Lindquist T., and Deutsch S. I. (1995) Diethylpropion pharmacotherapeutic adjuvant thereapy for inpatient treatment of cocaine dependence. A test of the cocaine-agonist hypothesis. Clin. Neuropharmacol. 18, 183–195.

    PubMed  CAS  Google Scholar 

  65. Gawin, F. H., Riordan, C., and Kleber, H. D. (1985) Methylphenidate use in non-ADD cocaine abusers: a negative study. Am. J. Drug Alcohol Abuser 11, 193–197.

    CAS  Google Scholar 

  66. Freston, K. L., Sullivan, J. T., Berger, P., and Bigelow, G. E. (1993) Effects of cocaine alone and in combination with mazindol in human cocaine abusers. J. Pharmacol. Exp. Therap. 258, 296–307.

    Google Scholar 

  67. Fowler, J. S., Volkow, N. D., Logan, J., Gatley, S. J., Pappas, N., King, P., et al. (1998) Measuring dopamine transporter occupancy by cocaine in vivo: radiotracer considerations. Synapse 28, 111–116.

    PubMed  CAS  Google Scholar 

  68. Malison, R. T., Best, S. E., Wallace, E. A., McCance, E., Laruelle, M., Zogbhi, S. S., et al. (1995) Euphorigenic doses of cocaine reduce [123I]ß-CIT SPECT measures of dopamine transporter availability in human cocaine addicts. Psychopharmacology 122, 358–362.

    PubMed  CAS  Google Scholar 

  69. Malison, R. (1995) SPECT imaging of DA transporters in cocaine dependence with [123I]13-CIT. Natl. Inst. Drug Abuse Res. Monogr. 152, 60.

    Google Scholar 

  70. Villemagne, V. Yuan, J., Wong, D. F., Dannals, R. F., Hatzidimitriou, G., Mathews, W. B., et a.1 (1998) Brain dopamine neurotoxcity in baboons treated with doses of methamphetamine comparable to those recreationally abused by humans: evidence from [11C]WIN35428 positron emission tomgoraphy studies and direct in vitro determination. J. Neurosci. 18, 419–427.

    PubMed  CAS  Google Scholar 

  71. Volkow, N. D., Wang, G. J., Fowler, J. S., Gatley, J. S., Logan, J., Ding, Y. S., et al. (1999a) Blockade of striatal dopamine transporters by intravenous methylphenidate is not sufficient to induce self-reports of “high”. J. Pharmacol. Exp. Therap. 288, 14–20.

    CAS  Google Scholar 

  72. Cragg, S. J., Hille, C. J., and Greenfield, S. A. (2000) Dopamine release and uptake dynamics within nonhuman primate striatum in vitro. J. Neurosci. 29, 8209–8217.

    Google Scholar 

  73. Wilson, J. M., Nobrega, J. N., Carroll, M. E., Niznik, H. B., Shannak, K., Lac, S. T., et al. (1994) Heterogenous subregional binding patterns of 3H-WIN 35,428 and 3H-GBR 12,935 are differentially regulated by chronic cocaine self-administration. J. Neurosci. 14, 2966–2974.

    PubMed  CAS  Google Scholar 

  74. Allard, P. (1994) Questions about the dopaminergic nature of [3H]GBR 12935 binding in the human frontal cortex. J. Neurochem. 63, 1182–1183.

    Google Scholar 

  75. Allard, P., Marcusson, J. O., and Ross, S. B. (1994) [3H]GBR 12935 binding to cytochrome P450 in the human brain. J. Neurochem. 62, 342–348.

    PubMed  CAS  Google Scholar 

  76. Allard, P., Danielsson, M., Papworth, K., and Marcusson, J. O. (1994) [3H]GBR 12935 binding to human cerebral cortex is not to dopamine uptake sites. J. Neurochem. 62, 338–341.

    PubMed  CAS  Google Scholar 

  77. Hitri, A. and Wyatt, R. J. (1994) Questions about the dopaminergic nature of [3H]GBR 12935 binding in the human frontal cortex. J. Neurochem. 63, 1181–1182.

    PubMed  CAS  Google Scholar 

  78. Hitri, A., Venable, D., Nguyen, H.Q., Casanova, M. F., Kleinman, J. E., and Wyatt, R. J., (1991) Characteristics of [3H]GBR 12935 binding in the human and rat frontal cortex. J. Neurochem. 56, 1663–1672.

    PubMed  CAS  Google Scholar 

  79. Hitri, A., Hurd, Y. L., Wyatt, R. J., and Deutsch, S. I. (1994) Molecular, functional, and biochemical characteristics of the dopamine transporter: regional differences and clinical relevance. Clin. Neuropharm. 17, 1–22.

    CAS  Google Scholar 

  80. Niznik, H. B., Tyndale, R. F., Sallee, F. R., Gonzalez, F. J., Hardwick, J. P., Inaba, T., et al. (1990) The dopamine transporter and cytochrome p450IIDI (debrisoquine 4-hydroxylase) in brain: resolution and identification of two distinct [3H]GBR 12935 binding proteins. Arch. Biochem. Biophys. 276, 424–432.

    PubMed  CAS  Google Scholar 

  81. Morissette, M., Di Paolo (1993a) Effect of chronic estradiol and progesterone treatments on ovarectimized rats on brain dopamine uptake sites. J. Neurochem. 60, 1876–1883.

    PubMed  CAS  Google Scholar 

  82. Morissette, M., Di Paolo, T. (1993) Sex and estrous cycle variations of rat striatal dopamine uptake sites. Neuroendocrinology 58, 16–22.

    PubMed  CAS  Google Scholar 

  83. Kuikka, J. T., Tiihonen, J., Karhu, J., Bergstroom, K. A., and Rasanen, P. (1997) Fractal analysis of striatal dopamine re-uptake sites. Eur. J. Nuc. Med. 24, 1085–1090.

    CAS  Google Scholar 

  84. Lavalaye, J., Booij, J., Reneman, L., Habraken, J. B. A., and van Royen, E. A. (2000) Effect of age and gender on dopamine transporter imaging with [123I]FP-CIT SPET in healthy volunteers. Eur. J. Nucl. Med. 27, 867–869.

    PubMed  CAS  Google Scholar 

  85. Staley, J. K., Krishnan-Sarin, S., Zoghbi, S., Tamagnan, G., Fujita, M., Seibyl, J. P., et al. (2001) Sex differences in [l2311ß-CIT SPECT measures of dopamine and serotonin transporter availability in healthy smokers and nonsmokers. Synapse 41, 275–284.

    PubMed  CAS  Google Scholar 

  86. van Dyck, C. H., Seibyl, J. P., Malison, R. T., Laruelle, M., Wallace, E., Zoghbi, S. S., et al. (1995) Age-related decline in striatal dopamine transporter binding with iodine-123-f3-CIT SPECT. J. Nucl. Med. 36, 1175–1181.

    PubMed  Google Scholar 

  87. McCann, U. D., Wong, D. F., Yokoi, F., Villemagne, V., Dannals, R. F., and Ricaurte, G. A. (1998) Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinione users: evidence from positron emission tomography studies with [1C]WIN-35,428. J. Neurosci. 18, 8417–8422.

    PubMed  CAS  Google Scholar 

  88. Kleven, M. S., Woolverton, W. L., and Seiden, L. S. (1988) Lack of longterm monoamine depletions following repeated or continuous exposure to cocaine. Brain. Res. Bull. 21, 233–237.

    PubMed  CAS  Google Scholar 

  89. Malison, R. T., Best, S. E.; van Dyck, C. H., McCAnce, E. F., Wallace, E. A., Laruelle, M., et al. (1998) Elevated striatal dopamine transporters during acute cocaine abstinence as measured by [123 SPECT. SPECT. Am. J. Psy- chiatry 155, 832–834.

    CAS  Google Scholar 

  90. Staley, J. K., Talbot, J. Z., Ciliax, B. J., Miller, G. W., Levey, A. I., Kung, M. P., et al. (1997) Radioligand binding and immunoautoradiographic evidence for a lack of toxicity to dopaminergic nerve terminals in human cocaine overdose victims. Brain Res. 747, 219–229.

    PubMed  CAS  Google Scholar 

  91. Allard, P. and Marcusson, J. O. (1989) Age-correlated loss of dopamine uptake sites with [3H]GBR 12935 in human putamen. Neurobiol. Aging. 10, 661–664.

    PubMed  CAS  Google Scholar 

  92. DeKeyser, J., Ebinger, G., and Vauquelin, G. (1990) Age-related changes in the human nigrostriatal dopaminergic system. Ann. Neurol. 27, 157–161.

    CAS  Google Scholar 

  93. Hitri, A., Casanove, M. F., Kleinman, J. E., Weinberger, D. R., and Wyatt, R. J. (1995) Age-related changes in [3H]GBR 12935 binding site density in the prefrontal cortex of controls and schizophrenics. Biol. Psych. 37, 175–182.

    CAS  Google Scholar 

  94. Zelnik, N., Angel, I. Paul, S. M., and Kleinman, J. E. (1986) Decreased density of human striatal dopamine uptake sites with age. Eur. J. Pharmacol. 126, 175–176.

    PubMed  CAS  Google Scholar 

  95. Volkow, N. D., Fowler, J. S., Wang, G.-J., Logan, ?., Schlyer, D., MacGregor, R., et al. (1994) Decreased dopamine transporters with age in healthy human subjects. Ann. Neuro. 36, 237–238.

    CAS  Google Scholar 

  96. Pirker, W., Asenbaum, S., Hauk, M., Kandlhofer, S., Tauscher, J., Willeit, M., et al. (2000) Imaging serotonin and dopamine transporters with 1231beta-CIT SPECT: binding kinetics and effects of normal aging. J. Nucl. Med. 41, 36–44.

    PubMed  CAS  Google Scholar 

  97. Kuikka, J. T., Tupala, E., Bergstrom, K. A., Hiltunen, J., and Tiihonen, J. (1999) Iodine-123 labelled PE2I for dopamine transporter imaging: influence of age in healthy subjects. Eur. J. Nucl. Med. 26, 1486–1488.

    PubMed  CAS  Google Scholar 

  98. Mozley, P. D., Kim, H. J., Gur, R. C., Tatsch, K., Muenz, L. R., McElgin, W. T., et al. (1996) Iodine-123-IPT SPECT imaging of CNS dopamine transporters: Nonlinear effects of normal aging on striatal uptake values. J. Nucl. Med. 37, 1965–1970.

    PubMed  CAS  Google Scholar 

  99. Tedroff, J., Aquilonius, S. M., Hartvig, P., Lundquist, H., Gee, A. G., Uhlin, J., et al. (1988) Monoamine reuptake sites in the human brain evaluated in vivo by means of [i ‘C]nomifensine and positron emission tomography:the effects of age and Parkinson’s disease. Acta. Neurol. Scand. 77, 192–201.

    PubMed  CAS  Google Scholar 

  100. Wang, G. J., Volkow, N. D., Fowler, J. S., Fischman, M., Foltin, R., Abumrad, N. N., et al (1997) Cocaine abusers do not show loss of dopamine transporters with age. Life Sci. 61, 1059–1065.

    PubMed  CAS  Google Scholar 

  101. Bannon, M. J., Poosch, M. S., Xia, Y., Goebel, D. J., Cassin, B., and Kapatos, G. (1992) Dopamine transporter mRNA content in human substantia nigra decreases precipitously with age. Proc. Natl. Acad. Sci. USA 89, 7095–7099.

    PubMed  CAS  Google Scholar 

  102. McGeer, P. L., McGeer, E. G., and Suzuki, J. S. (1977) Aging and extrapyramidal function. Arch Neurol. 34, 33–35.

    PubMed  CAS  Google Scholar 

  103. Adolfsson, R., Gottfries, C.-G., Roos, B.-E., and Winblad, B. (1979) Postmortem distribution of dopamine and homovanillic acid in human brain, variations related to age, and a review of the literature. J. Neural. Transm. 45, 81–105.

    PubMed  CAS  Google Scholar 

  104. Hornykiewicz, O. (1983) Dopamine changes in the aging human brain, in Aging Brain and Ergot Alkaloids, Vol. 23, ( Agnoli A., Grepaldi, G., Spano P. F., and Trabucchi, M. eds.), Raven Press, New York, NY, pp. 9–14.

    Google Scholar 

  105. Staley, J. K., Basile, M., Wetli, C. V., Hearn, W. L., Flynn, D. D., Ruttenber, A. J., et al. (1994) Differential regulation of the dopamine transporter in cocaine overdose deaths. NIDA Res. Mono. Ser. 141, 32.

    Google Scholar 

  106. Hurd, Y. L. and Herkanham, M. (1993) Molecular alterations in the neostriatum of human cocaine addicts Synapse 13, 357–369.

    PubMed  CAS  Google Scholar 

  107. Penis, J., Boyson, S. J., Cass, W. A., Curella, R., Dwoskin, L. P., Larson, G., et al. (1990) Persistence of neurochemical changes in dopamine systems after repeated cocaine administration. J. Pharmacol. Exp. Therap. 253, 38–44.

    Google Scholar 

  108. Izenwasser, S. and Cox, B. M. (1990) Daily cocaine treatment produces a persistent reduction of [3H]dopamine uptake in vitro in rat nucleus accumbens but not in the striatum. Brain Res. 531, 338–341.

    PubMed  CAS  Google Scholar 

  109. Katz, J. L., Griffiths, J. W., Sharpe, L. G., De Souza, E. B., and Witkin, J. M. (1993) Cocaine tolerance and cross-tolerance. J. Pharm. Exp. Therap. 264, 183–192.

    CAS  Google Scholar 

  110. Kula, N. S. and Baldessarini, R. J. (1991) Lack of increase in dopamine transporter binding or function in rat brain tissue after treatment with blockers of neuronal uptake of dopamine. Neuropharmacology 30, 89–92.

    PubMed  CAS  Google Scholar 

  111. Yi, S.-J. and Johnson, K. M. (1990) Effects of acute and chronic administration of cocaine on striatal uptake, compartmentalization and release of [3H]dopamine. Neuropharmacology 29, 475–486.

    PubMed  Google Scholar 

  112. Alburges, M. E., Narang, N., and Wamsley, J. K. (1993) Alterations in the dopaminergic receptor system after chronic administration of cocaine. Synapse 14, 314–323.

    PubMed  CAS  Google Scholar 

  113. Aloyo, V. J., Harvey, J. A., and Kirifides, A. L. (1993) Chronic cocaine increases WIN 35,428 binding in rabbit caudate. Soc. Neurosci. Abstr. 19, 1843.

    Google Scholar 

  114. Koff, J. M., Shuster, L., and Miller, L. G. (1994) Chronic cocaine administration is associated with behavioral sensitization and time-dependent changes in striatal dopamine transporter binding. J. Pharm. Exp. The rap. 268, 277–282.

    CAS  Google Scholar 

  115. Farfel, G. M., Kleven, M. S., Woolverton, W. L., Seiden, L. S., and Perry, B. D. (1992) Effects of repeated injections of cocaine on catecholamine receptor binding sites, dopamine transporter binding sites and behavior in rhesus monkey. Brain Res. 578, 235–243.

    PubMed  CAS  Google Scholar 

  116. Sharpe, L. G., Pilotte, N. S., Mitchell, W. M., and De Souza, E. B. (1991) Withdrawal of repeated cocaine decreases autoradiographic [3H]mazindollabelling of dopamine transporter in rat nucleus accumbens. Eur. J. Pharm. 203, 141–144.

    CAS  Google Scholar 

  117. Jacobsen, L. K., Staley, J. K., Malison, R. T., Baldwin, R. M., Seibyl, J. P., Kosten, T. R., et al. (2000) Elevated central serotonin transporter binding availability in acutely abstinent cocaine dependent patients. Am. J. Psychiatry 157, 1134–1140.

    PubMed  CAS  Google Scholar 

  118. Bowers, M. B., Malison, R. T., Seibyl, J. P., and Kosten, T. R. (1998) Plasma homovanillic acid and dopamine transporter during cocaine withdrawal. Biol. Psychiatry 278–281.

    Google Scholar 

  119. Volkow, N. D., Fowler, J. S., Logan, J., Wang, G.-J. Hitzemann, R., MacGregor, R., et al. (1992) Decreased binding of 1 1 -C-cocaine in the brain of cocaine addicts. J. Nucl. Med. 33, 888.

    Google Scholar 

  120. Wetli, C. V. and Fishbain D. A. (1985) Cocaine-Induced psychosis and sudden death in recreational cocaine users. J. Foresci. Sci. 30, 873–880.

    CAS  Google Scholar 

  121. Volkow, N. D., Ding, Y.-S., Fowler, J. S., Wang, G.-J., Logan, J., Gatley, J. S., et al. (1995a) Is methylphenidate like cocaine. Arch. Gen. Psychiatry 52, 456–463.

    PubMed  CAS  Google Scholar 

  122. Rothman, R. B., and Glowa, J. R. (1995) A review of the eddects of dopaminergic agents on humans, animals, and drug-seeking behavior, and its implications for medication development. Mol. Neurobiol. 11, 1–19.

    PubMed  CAS  Google Scholar 

  123. Rocha, B. A., Fumagalli, F., Gainetdinov, R. R., Jones, S. R., Ator, R., Giros, B., et al. (1998) Cocaine self-administration in dopamine-transporter knockout mice. Nature Neurosci. 132–137.

    Google Scholar 

  124. Kuhar, M. J., Ritz, M. C., and Boja, J. W. (1991) The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci. 14, 299–302.

    PubMed  CAS  Google Scholar 

  125. Gerasimov, M. R., Franceschi, M., Volkow, N. D., Rice, O., Schiffer, W. K., and Dewey, S. L. (2000) Synergistic interactions between nicotine and cocaine or methylphenidate depend on the dose of dopamine transport inhibitor. Synapse 38, 432–437.

    PubMed  CAS  Google Scholar 

  126. Izenwasser, S., Jacocks, H. M., Rosenberger, J. G., and Cox, B. M., (1991) Nicotine indirectly inhibits [3H]dopamine uptake at concentrations that do not directly promote [3H]dopamine release in rat striatum. J. Neurochem. 56, 603–610.

    PubMed  CAS  Google Scholar 

  127. Izenwasser, S. and Cox, B. M. (1992) Inhibition of dopamine uptake by cocaine and nicotine: tolerance to chronic treatments. Brain Res. 573, 119–125.

    PubMed  CAS  Google Scholar 

  128. Kleber, H. D. (1995) Pharmacotherapy, current and potential, for the treatment of cocaine dependence. Clin. Neuropharm. 18, S96 - S109.

    Google Scholar 

  129. Weiss, R. D. and Mirin, S. M. (1990) Psychological and pharmacological treatment strategies in cocaine dependence. Ann. Clin. Psych. 2, 239–243.

    Google Scholar 

  130. Dackis, C. A. and Gold, M. S. (1985) Bromocriptine as a treatment of cocaine abuse. Lancet 1, 1151–1152.

    PubMed  CAS  Google Scholar 

  131. Gawin, F. H. and Ellinwood, E. H. (1988) Cocaine and other stimulants. N. Engl. J. Med. 318, 1173–1182.

    PubMed  CAS  Google Scholar 

  132. Schweri, M. M. (1993) Rapid increase of stimulant binding to the dopamine transporter after acute cocaine administration: physiological basis of drug craving. Soc. Neurosci. Abstr. 19, 936.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mash, D.C., Staley, J.K. (2002). In Vitro and In Vivo Imaging of the Human Dopamine Transporter in Cocaine Abusers. In: Reith, M.E.A. (eds) Neurotransmitter Transporters. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-158-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-158-9_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-267-4

  • Online ISBN: 978-1-59259-158-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics