Skip to main content

Neurotransmitter-Transporter Proteins

Post-Translational Modifications

  • Chapter
Neurotransmitter Transporters

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 259 Accesses

Abstract

The neurotransmitter-transporter protein or reuptake carrier is the most important component in the termination of the synaptic activity. A number of these neurotransmitter transporters have been cloned (1). The cloned transporters contain consensus sequences for multiple N-linked glycosylation sites in the large extracellular loop (EL) between transmembrane regions 3 and 4. Consensus sites for phosphorylation by several protein kinases are located in the putative cytosolic domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amara, S. G. and Kuhar, M. J. (1993) Neurotransmitter transporters, Recent progress. Annu. Rev. Neurosci. 16, 73–93.

    Article  PubMed  CAS  Google Scholar 

  2. Hubbard, S. C. and Ivatt, R. J. (1981) Synthesis and processing of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 50, 555–583.

    Article  PubMed  CAS  Google Scholar 

  3. Kornfeld, R. and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 54, 631–664.

    Article  PubMed  CAS  Google Scholar 

  4. Kobata, A. (1992) Structures and function of the sugar chains of glycoproteins. Eur. J. Biochem. 209, 483–501.

    Article  PubMed  CAS  Google Scholar 

  5. Opdenakker, G., Rudd, P. M., Ponting, C. P., and Dwek, R. A. (1993) Concepts and principles of glycobiology. FASEB J. 7, 1330–1337.

    PubMed  CAS  Google Scholar 

  6. Lis, H. and Sharon, N. (1993) Protein glycosylation, structural and functional aspects. Eur. J. Biochem. 218, 1–27

    Article  PubMed  CAS  Google Scholar 

  7. Dwek, R. A. (1995) Glycobiology: towards understanding the function of sugars. Biochem. Soc. Trans. 23, 1–25.

    PubMed  CAS  Google Scholar 

  8. Hirschberg, C. B. and Snider, M. D. (1987) Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus. Ann. Rev. Biochem. 56, 63–87.

    Article  PubMed  CAS  Google Scholar 

  9. Lehrman, M. A. (1991) Biosynthesis of N-acetylglucosamine-P-P-dolichol, the committed step of asparagine-linked oligosaccharide assembly. Glycobiology 1, 553–562.

    Article  PubMed  CAS  Google Scholar 

  10. Caplin, M. F. and Kennedy, J. F. (eds). (1986) Carbohydrate Analysis, A Practical Approach. IRL Press, Oxford, England.

    Google Scholar 

  11. Radian, R., Bendahan, A., and Kanner, B. I. (1986) Purification and identification of the functional sodium-and chloride-coupled g-aminobutyric acid transport glycoprotein from rat brain. J. Biol. Chem. 261, 15,437–15, 441.

    Google Scholar 

  12. Simantov, R., Vaughan, R., Lew, R., Wilson, A., and Kuhar, M. J. (1991) Dopamine transporter cocaine receptor characterization and purification. Adv. Biosci. 82, 151–154.

    CAS  Google Scholar 

  13. Launay, J.-M., Geoffroy, C., Mutel, V., Buckel, M., Cesura, A., Alouf, J. E., and Da Prada, M. (1992) One-step purification of the serotonin transporter located at the human platelet plasma membrane. J. Biol. Chem. 267, 11,344–11, 351.

    Google Scholar 

  14. Nunez, E. and Aragon, C. (1994) Structural analysis and functional role of the carbohydrate component of glycine transporter. J. Biol. Chem. 269, 16,920–16, 924.

    Google Scholar 

  15. Conradt, M., Storck, T., and Stoffel, W. (1995) Localization of Nglycosylation sites and functional role of the carbohydrate units of GLAST-1, a cloned rat brain L-glutamatefL-aspartate transporter. Eur. J. Biochem. 229, 682–687.

    Article  PubMed  CAS  Google Scholar 

  16. Low, M. G. (1989) Glycosyl-phosphatidylinostiol, a versatile anchor for cell surface proteins. FASEB J. 3, 1600–1608.

    PubMed  CAS  Google Scholar 

  17. Edge, A. S. B., Faltynek, C. R., Hof, L., Reichert, Jr., L. E., and Weber, P. (1981) Deglycosylation of glycoprotein by trifluoromethanesulfonic acid. Analyt. Biochem. 118, 131–137.

    Article  PubMed  CAS  Google Scholar 

  18. Haspel, H. C., Revillame, J., and Rosen, O. M. (1988) Structure, biosynthesis, and function of the hexose transporter in Chinese hamster ovary cells deficient in N-acetylglucosaminyl transferase 1 activity. J. Cell Physiol. 136, 361–366.

    Article  PubMed  CAS  Google Scholar 

  19. Hames, B. D. (1981) An introduction to polyacrylamide gel electrophoresis, in Gel Electrophoresis of Protein: A Practical Approach, (Hames, B. D. and Rickwood, D., eds. ), IRL Press, pp. 1–91.

    Google Scholar 

  20. Grigoriadis, D. E., Wilson, A. A., Lew, R., Sharkey, J. S., and Kuhar, M. J. (1989) Dopamine transporter sites selectively labeled by a novel photoaffinity probe, [1251]DEEP. J. Neurosci. 9, 2664–2670.

    PubMed  CAS  Google Scholar 

  21. Sallee, F. R., Fogel, E. L., Schwartz, E., Choi, S. M., Curran, D. P., and Niznik, H. B. (1989) Photoaffinity labeling of the mammalian dopamine transporter. FEBS Lett. 256, 219–224.

    Article  PubMed  CAS  Google Scholar 

  22. Lew, R., Patel, A., Vaughan, R. A., Wilson, A., and Kuhar, M. J. (1992) Microheterogeneity of dopamine transporters in rat striatum and nucleus accumbens. Brain Res. 584, 266–271.

    Article  PubMed  CAS  Google Scholar 

  23. Berger, P., Martenson, R., Laing, P., Thurcauf, A., DeCosta, B., Rice, K. C., and Paul, S. M. (1991) Photoaffinity labeling of the dopamine reuptake carrier protein with 3-azido[3H]GBR-12935. Mol. Pharmacol. 39, 429–435.

    PubMed  CAS  Google Scholar 

  24. Patel, A., Boja, J. W., Lever, J., Lew, R., Simantov, R., Carroll, F. I., Lewin, A. H., Phillip, A., Gao, Y., and Kuhar, M. J. (1991) A cocaine analog and a GBR analog label the same protein in rat striatal membranes. Brain Res. 576, 173, 174.

    Google Scholar 

  25. Patel, A., Uhl, G., and Kuhar, M. J. (1993) Species differences in dopamine transporters, Postmortem changes and glycosylation differences. J. Neurochem. 61, 496–500.

    Article  PubMed  CAS  Google Scholar 

  26. Vaughan, R. A. (1998) Cocaine and GBR photoaffinity labels as probes of dopamine transporter structure. Methods Enzymol. 296–230.

    Google Scholar 

  27. Agoston, G. E., Vaughan, R., Lever, J. R., Izenwasser, S., Terry, P. D., and Newman, A. H. (1997) A novel photoaffinity label for the dopamine transporter based on N-substituted 3-[bis(4’-fluorophenyl) methoxy] tropane. Bioorg. Med. Chem. Lett. 7, 3027–3032.

    Article  CAS  Google Scholar 

  28. Lew, R., Vaughan, R., Simantov, R., Wilson, A., and Kuhar, M. J. (1991) Dopamine transporters in the nucleus accumbens and the striatum have different apparent molecular weights. Synapse 8, 152, 153.

    Google Scholar 

  29. Vaughan, R. A., Brown, V. L., McCoy, M. T., and Kuhar, M. J. (1996) Species-and brain region-specific dopamine transporters, Immunological and glycosylation characteristics. J. Neurochem. 66, 2146–2152.

    Article  PubMed  CAS  Google Scholar 

  30. Melikian, H. E., McDonald, J. K., Gu, H., Rudnick, G., Moore, K. R., and Blakely, R. D. (1994) Human norepinephrine transporter, biosynthetic studies using a site-directed polyclonal antibody. J. Biol. Chem. 269, 12,290–12, 297.

    Google Scholar 

  31. Blakely, R. D., De Felice, L. J., and Hartzell, H. C. (1994) Molecular physiology of norepinephrine and serotonin transporters. J. Exp. Biol. 196, 263–281.

    PubMed  CAS  Google Scholar 

  32. Burton, L. D., Kippenberger, A. G., Lingen, B., Bruss, M., Bonisch, D., and Christie, D. (1998) A variant of the bovine noradrenaline transporter reveals the importance of the C-terminal region for correct targeting to the membrane and functional expression. Biochem. J. 330, 909–914.

    PubMed  CAS  Google Scholar 

  33. Nguyen, T. T. and Amara, S. G. (1996) N-Linked oligosaccharides are required for cell surface expression of the norepinephrine transporter but do not influence substrate or inhibitor recognition. J. Neurochem. 67, 645–655.

    Article  PubMed  CAS  Google Scholar 

  34. Wennogle, L. P., Ashton, R. A., Schuster, D. I., Murphy, R. B., and Meyerson, L. R. (1985) 2-Nitroimipramine, a photoaffinity probe for the serotonin uptake/tricyclic binding site complex. EMBO J. 4, 971–977.

    Google Scholar 

  35. Qian, Y., Melikian, H. E., Rye, D. B., Levey, A. I., and Blakely, R. D. (1995) Identification and characterization of antidepressant-sensitive serotonin transporter proteins using site-specific antibodies. J. Neurosci. 15, 1261–1274.

    PubMed  CAS  Google Scholar 

  36. Kanner, B. I. (1994) Sodium-coupled neurotransmitter transport, structure, function and regulation. J. Exp. Biol. 196, 237–249.

    PubMed  CAS  Google Scholar 

  37. Guastella, J. Nelson, N., Nelson, H., Czyzyk, L., Keynan, S., Miedel, M. C., et al. (1990) Cloning and expression of a rat brain GABA transporter. Science 249, 1303–1306.

    Article  PubMed  CAS  Google Scholar 

  38. Nelson, H., Mandiyan, S., and Nelson, N. (1990) Cloning of the human brain GABA transporter. FEBS Lett. 269, 181–184.

    Article  PubMed  CAS  Google Scholar 

  39. Danbolt, N. C., Pines, G., and Kanner, B. I. (1990) Purification and reconstitution of the sodium-and potassium-coupled glutamate transport glycoprotein from rat brain. Biochemistry 29, 6734–6740.

    Article  PubMed  CAS  Google Scholar 

  40. Danbolt, N. C., Storm-Mathisen, J., and Kanner, B. I. (1992) A [Na+K+]coupled L-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience 51, 295–310.

    Article  PubMed  CAS  Google Scholar 

  41. Danbolt, N. C. (1994) The high affinity uptake system for excitatory amino acids in the brain. Prog. Neurobiol. 44, 377–396.

    Article  PubMed  CAS  Google Scholar 

  42. Liu, Q. R., Nelson, H., Mandiyan, S., Lopez-Corcuera, B., and Nelson, N. (1992) Cloning and expression of a glycine transporter from mouse brain. FEBS Lett. 305, 110–114.

    Article  PubMed  CAS  Google Scholar 

  43. Liu, Q. R., Lopez-Corcuera, B., Mandiyan, S., Nelson, H., and Nelson, N. (1993) Cloning and expression of a spinal cord-and brain-specific glycine transporter with novel structural features. J. Biol. Chem. 269, 22,802–22, 808.

    Google Scholar 

  44. Zafra, F., Gomeza, J., Olivaries, L., Aragon, C., and Gimenez, C. (1995) Regional distribution and developmental variation of the glycine transporters GLYT1 and GLYT2 in the CNS. Eur. J. Neurosci. 7, 1342–1352.

    Article  PubMed  CAS  Google Scholar 

  45. Aragon, C. and Lopez-Corcuera, B. Purification, hydrodynamic properties, and glycosylation analysis of glycine transporters (1998) Methods Enzymol. 296, 3–17.

    Article  PubMed  CAS  Google Scholar 

  46. Patel, A. P., Martel, J.-C., Vandenbergh, D. J., Uhl, G. R., and Kuhar, M. J. (1995) Cell lines expressing human and rat dopamine transporter cDNAs, Different ligands yield different radiolabeling patterns. Soc. Neurosci. 21, 781.

    Google Scholar 

  47. Li, L.-B., Wang, L. C., Chen, N. and Reith, M. E. A. (2000) Removal of potential consensus sites for N-linked glycosylation of the human dopamine transporter. Soc. Neurosci. Abstr. 26, 1168.

    Google Scholar 

  48. Olivares, L., Aragon, C., Gimenez, C., and Zafra, F. (1995) The role of Nglycosylation in the targeting and activity of the GLYTI glycine transporter. J. Biol. Chem. 270, 9437–9442.

    Article  PubMed  CAS  Google Scholar 

  49. Jenkins, N. (1995) Monitoring and control of recombinant glycoprotein heterogeneity in animal cell cultures. Biochem. Soc. Trans. 23, 171–175.

    PubMed  CAS  Google Scholar 

  50. Tate, C. G. and Blakely, R. D. (1994) The effect of N-linked glycosylation on activity of the Na+ and Cl-dependent serotonin transporter expressed using recombinant baculovirus in insect cells. J. Biol. Chem. 269, 26,303–26, 310.

    Google Scholar 

  51. Melikian, H. E., Ramamoorthy, S., Tate, C. G. and Blakely, R. D. (1996) Inability to N-glycosylate the human norepinephrine transporter reduces protein stability, surface trafficking, and transport activity but not ligand recognition, Mol. Pharmacol. 50, 266–276.

    PubMed  CAS  Google Scholar 

  52. Bruss, M., Hammermann, R., Brimijoin, S., and Bonisch, H. (1995) Antipeptide antibodies confirm the topology of the human norepinephrine transporter. J. Biol. Chem. 270, 9197–9201.

    Article  PubMed  CAS  Google Scholar 

  53. Niznik, H. B., Fogel, E. F., Fasso, F. F., and Seeman, P. (1991) The dopamine transporter is absent in Parkinsonian putamen and reduced in the caudate nucleus. J. Neurochem. 56, 192–198.

    Article  PubMed  CAS  Google Scholar 

  54. Patel, A. P., Cerruti, C., Vaughan, R. A., and Kuhar, M. J. (1994) Developmentally regulated glycosylation of dopamine transporter. Dey. Brain Res. 83, 53–58.

    Article  CAS  Google Scholar 

  55. Furuta, A., Rothstein, J. D., and Martin, L. J. (1997) Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J. Neurosci. 17, 8363–8375.

    PubMed  CAS  Google Scholar 

  56. Gyves, P. W., Gesundheit, N., Stannard, B. S., DeCherney, G. S., and Weintraub, B. D. (1989) Alterations in the glycosylation of secreted thyrotropin during ontogenesis. J. Biol. Chem. 264, 6104–6110.

    PubMed  CAS  Google Scholar 

  57. Fukuda, M., Fukuda, M. N., and Hakomori, S. (1979) Developmental change and defect in the carbohydrate structure of band 3 glycoprotein of human erythrocyte membrane. J. Biol. Chem. 254, 3700–3703.

    PubMed  CAS  Google Scholar 

  58. Codogno, P., Botti, J., Font, J., and Aubery, M. (1985) Modification of the N-linked oligosaccharides in cell surface glycoproteins during chick embryo development. Eur. J. Biochem. 149, 453–460.

    Article  PubMed  CAS  Google Scholar 

  59. Rens-Domiano, S. and Reisine, T. (1991) Structural analysis and functional role of the carbohydrate component of somatostatin receptors. J. Biol. Chem. 266, 20,094–20, 102.

    Google Scholar 

  60. Theveniau, M. and Reisine, T. (1993) Developmental changes in expression of a 60 kDa somatostatin receptor immunoreactivity in the rat brain. J. Neurochem. 60, 1870–1875.

    Article  PubMed  CAS  Google Scholar 

  61. Vannucci, S. (1994) Developmental expression of GLUT1 and GLUT3 glucose transporters in rat brain. J. Neurochem. 62, 240–246.

    Article  PubMed  CAS  Google Scholar 

  62. Biol, M. C., Martin, A., Richard, M., and Louisot, P. (1987) Developmental changes in intestinal glycosyl-transferase activities. Pediatric Res. 22, 250–256.

    Article  CAS  Google Scholar 

  63. Goldberg, D. E. and Kornfeld, S. (1983) Evidence for extensive subcellular organization of asparagine-linked oligosaccharide processing and lysosomal enzyme phosphorylation. J. Biol. Chem. 258, 3159–3165.

    PubMed  CAS  Google Scholar 

  64. Paulson, J. C. (1989) Glycoproteins: What are the sugars chains for? Trends Biochem. Sci. 14, 272–276.

    Article  PubMed  CAS  Google Scholar 

  65. Dwek, R. A. (1995) Glycobiology, More functions for oligosaccharides. Science 269, 1234, 1235.

    Google Scholar 

  66. Zaleska, M. M. and Erecinska, M. (1987) Involvement of sialic acid in high-affinity uptake of dopamine by synaptosomes from rat brain. Neurosci. Lett. 82, 107–112.

    Article  PubMed  CAS  Google Scholar 

  67. Pessin, J. E. and Bell, G. I. (1992) Mammalian facilitative glucose transporter family, structure and molecular regulation. Annu. Rev. Physiol. 54, 911–930.

    Article  PubMed  CAS  Google Scholar 

  68. Brant, A. M., Gibbs, M. E., and Gould, G. W. (1992) Examination of the glycosidation state of five members of the human facilitative glucose transporter family. Biochem Soc. Trans. 20, 235S.

    PubMed  CAS  Google Scholar 

  69. Wheeler, T. J. and Hinkel, P. C. (1981) Kinetic properties of the reconstituted glucose transporter from human erythrocytes. J. Biol. Chem. 256, 8907–8914.

    PubMed  CAS  Google Scholar 

  70. Groves, J. D. and Tanner, M. J. (1994) Role of N-glycosylation in the expression of human band 3-mediated anion transport. Mol. Membr. Biol. 11, 31–38.

    Article  PubMed  CAS  Google Scholar 

  71. Asano, T., Takata, K., Katagiri, H, Ishihara, H., Inukai, K., Anai, M., Hirano, H., Yazaki, Y., and Oka, Y. (1993) The role of N-glycosylation in the targeting and stability of GLUT1 glucose transporter. FEBS Lett. 324, 258–261.

    Article  PubMed  CAS  Google Scholar 

  72. Casey, P. J. and Buss, J. E. (eds.) (1995) Lipid modifications of proteins. Meth. Enzymol. 250.

    Google Scholar 

  73. Saltiel, A. R., Ravetch, A. R., and Aderem, A. A. (1991) Functional consequences of lipid-mediated protein-membrane interactions. Biochem. Pharmacol. 42, 1–11.

    Article  PubMed  CAS  Google Scholar 

  74. Bouvier, M., Loisel, T. P. and Hebert, T. (1995) Dynamic regulation of G-protein coupled receptor palmitoylation, potential role in receptor function. Biochem. Soc. Trans. 23, 577–581.

    PubMed  CAS  Google Scholar 

  75. Milligan, G., Parenti, M., and Magee, A. I. (1995) The dynamic role of palmitoylation in signal transduction. Trends Biochem. Sci. 20, 181–186.

    Article  PubMed  CAS  Google Scholar 

  76. Pouliot, J.-F. and Beliveau, R. (1994) Palmitoylation of the glucose transporter in blood-brain barrier capillaries. Biochimica et Biophysica Acta. 1234, 191–196.

    Article  Google Scholar 

  77. Buss, J. E., Mumby, S. M., Casey, P. J., Gilman, A. G., and Sefton, B. M. (1987) Myristoylated alpha subunits of guanine nucleotide-binding regulatory proteins. Proc. Natl. Acad. Sci. USA 84, 7493–7497.

    Article  PubMed  CAS  Google Scholar 

  78. Mundy, D. I. (1995) Protein palmitoylation in membrane trafficking. Biochem. Soc. Trans. 23, 572–576.

    PubMed  CAS  Google Scholar 

  79. Pickering, D. S., Taverna, F. A., Salter, M. W., and Hampson, D. R. (1995) Palmitoylation of the G1uR6 kainate receptor. Proc. Natl. Acad. Sci. USA 92, 12,090–12, 094.

    Google Scholar 

  80. Muller, S. and Lohse, M. J. (1995) The role of bg subunits in signal transduction. Biochem. Soc. Trans. 23, 141–148.

    PubMed  CAS  Google Scholar 

  81. Sinensky, M. (2000) Recent advances in the study of prenylated proteins. Biochimica et Biophysica Acta 1484, 93–106.

    Article  PubMed  CAS  Google Scholar 

  82. Kemp, B. E. and Pearson, R. B. (1990) Protein kinase recognition sequence motifs. Trends Biochem. Sci. 15, 342–346.

    Article  PubMed  CAS  Google Scholar 

  83. Kennely, P. J. and Krebs, E. G. (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J. Biol. Chem. 266, 15,555–15, 558.

    Google Scholar 

  84. Boja, J. B., Vaughan, R. A., Patel, A., Shaya, E., and Kuhar, M. J. (1994) The dopamine transporter, in Dopamine Receptors and Transporters, ( Niznik, H. B., ed.), Marcel Dekker, New York, pp. 611–644.

    Google Scholar 

  85. Blakely, R. D. and Bauman, A. L. (2000) Biogenic amine transporters, regulation in flux. Curr. Opin. Neurobiol. 10, 328–336.

    Article  PubMed  CAS  Google Scholar 

  86. Copeland, B. J., Neff, N. H., and Hadjiconstantinou, M. (1995) Protein kinase C activators decrease dopamine uptake into striatal synaptosomes. Soc. Neurosci. 21, 1381.

    Google Scholar 

  87. Vaughan, R. A., Huff, R. A., Uhl, G. R., and Kuhar, M. J. (1997) Protein kinase C-mediated phosphorylation and functional regulation of dopamine transporters in striatal synaptosomes. J. Biol. Chem. 272, 15,541–15, 546.

    Google Scholar 

  88. Kitayama, S., Dohi, T., and Uhl, G. R. (1994) Phorbol esters alter functions of the expressed dopamine transporter. Eur. J. Pharmacol. 268, 115–119.

    Article  PubMed  CAS  Google Scholar 

  89. Huff, R. A., Vaughan, R. A., Kuhar, M. J., and Uhl, G. R. (1995) Protein kinase activity modulates dopamine transporter function. Soc. Neurosci. 21, 1380.

    Google Scholar 

  90. Zhang, L. and Reith, M. E. A. (1996) Regulation of the functional activity of the human dopamine transporter by the arachidonic acid pathway. Eur. J. Pharmacol. 315, 345–354.

    Article  PubMed  CAS  Google Scholar 

  91. Melikian, H. E., Buckley, K. M. (1999) Membrane trafficking regulates the activity of the human dopamine transporter. J. Neurosci. 19, 7699–7710.

    PubMed  CAS  Google Scholar 

  92. Daniels, G. M. and Amara, S. G. (1999) Regulated trafficking of the human dopamine transporter. Clathrin-mediated internalization and lysosomal degradation in response to phorbol esters. J. Biol. Chem. 274, 35,794–35, 801.

    Google Scholar 

  93. Ramamoorthy, S. and Blakely, R. D. (1999) Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science 285, 763–766.

    Article  PubMed  CAS  Google Scholar 

  94. Hershko, A. and Ciechanover, A. (1982) Mechanisms of intracellular protein breakdown. Annu. Rev. Biochem. 51, 335–364.

    Article  PubMed  CAS  Google Scholar 

  95. Hicke, L. (1999) Gettin’ down with ubiquitin, turning off cell-surface receptors, transporters and channels. Trends Cell Biol. 9, 107–112.

    Article  PubMed  CAS  Google Scholar 

  96. Hershko, A. and Ciechanover, A. (1992) The ubiquitin system for protein degradation. Annu. Rev. Biochem. 61, 761–807.

    Article  PubMed  CAS  Google Scholar 

  97. Kolling, R. and Losko, S. (1997) The linker region of the ABC-transporter Ste6 mediates ubiquitination and fast turnover of the protein, EMBO J. 16, 2251–2261.

    Article  PubMed  CAS  Google Scholar 

  98. Rubin, D. M. and Finley, D. (1995) Proteolysis. The proteasome, a protein-degrading organelle? Curr. Biol. 5, 854–858.

    Article  PubMed  CAS  Google Scholar 

  99. Tobias, J. W. and Varshaysky, A. (1991) Cloning and functional analysis of the ubiquitin-specific protease gene UBP1 of Saccharomyces cerevisiae, J. Biol. Chem. 266, 12,021–12, 028.

    Google Scholar 

  100. Jensen, T. J., Loo, M. A., Pind, S., Williams, D. B., Goldberg, A. L. and Riordan, J. R. (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing, Cell 83, 129–135.

    Article  PubMed  CAS  Google Scholar 

  101. Biederer, T., Volkwein, C. and Sommer, T. (1996) Degradation of subunits of the Sec6lp complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway, EMBO J. 15, 2069–2076.

    PubMed  CAS  Google Scholar 

  102. Mayer, R. J., Arnold, J., Laszlo, L., Landon, M. and Lowe, J. (1991) Ubiquitin in health and disease, Biochim. Biophys. Acta, 1089, 141–157.

    Article  PubMed  CAS  Google Scholar 

  103. Egner, R. and Kuchler, K. (1996) The yeast multidrug transporter PdrS of the plasma membrane is ubiquitinated prior to endocytosis and degradation in the vacuole, FEBS Lett. 378, 177–181.

    Article  PubMed  CAS  Google Scholar 

  104. Hicke, L. (1997) Ubiquitin-dependent internalization and down-regulation of plasma membrane proteins, FASEB J. 11, 1215–1226.

    PubMed  CAS  Google Scholar 

  105. Meyer, E. M., West, C. M., and Chau, V. (1986) Antibodies directed against ubiqintin inhibit high affinity [3H]choline uptake in rat cerebral cortical synaptosomes. J. Biol. Chem. 261, 14,365–14, 368.

    Google Scholar 

  106. Meyer, E. M., West, C. M., Stevens, B. R., Chau, V., Nguyen, M-t., and Judkins, J. H. (1987) Ubiquitin-directed antibodies inhibit neuronal transporters in rat brain synaptosomes. J. Neurochem. 49, 1815–1819.

    Article  PubMed  CAS  Google Scholar 

  107. Mori, H., Kondo, J. and Ihara, Y. (1987) Ubiquitin is a component of paired helical filaments in Alzheimer’s disease, Science 235, 1641–1644.

    Article  PubMed  CAS  Google Scholar 

  108. Torack, R. M. and Miller, J. W. (1994) Immunoreactive changes resulting from dopaminergic denervation of the dentate gyrus of the rat hippocampal formation, Neurosci. Lett. 169, 9–12.

    Article  PubMed  CAS  Google Scholar 

  109. Okada, M., Ishikawa, M., and Mizushima, Y. (1991) Identification of a ubiquitin-and ATP-dependent protein degradation pathway in rat cerebral cortex, Biochim. Biophys. Acta, 1073, 514–520.

    Article  PubMed  CAS  Google Scholar 

  110. Beesley, P. W., Mummery, R., Tibaldi, J., Chapman, A. P., Smith, S. J., and Rider, C. C. (1995) The post-synaptic density, putative involvement in synapse stabilization via cadherins and covalent modification by ubiquitination. Biochem. Soc. Trans. 23, 59–64.

    PubMed  CAS  Google Scholar 

  111. Adamo, A. M., Moreno, M. B., Soto, E. F. and Pasquini, J. M. (1994) Ubiquitin-protein conjugates in different structures of the central nervous system of the rat, J. Neurosci. Res. 38, 358–364.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Patel, A.P., Reith, M.E.A. (2002). Neurotransmitter-Transporter Proteins. In: Reith, M.E.A. (eds) Neurotransmitter Transporters. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-158-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-158-9_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-267-4

  • Online ISBN: 978-1-59259-158-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics