Skip to main content

Estrogen and the Skeleton

  • Chapter
  • 206 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

The crucial role of estrogen in the normal growth and development of the skeleton in girls has been known for decades. Recent case reports in men with estrogen-receptor deficiency (1) or deficiency of aromatase enzyme (2) have underscored an equally important role for estrogen in skeletal development in boys. The role of declining ovarian estrogen production in bone loss in women has been well documented since the initial hypothesis of Albright in the 1940s (3). Several recent studies have now pointed out a potential important role for estrogen in the age-related bone loss in men (4,5). Important studies in the last several years have provided insight into possible mechanisms underlying these clinical observations, particularly the role of estrogen in modulating local cytokine production in skeletal tissue (6). The finding of estrogenreceptor beta (ERβ) as the dominant estrogen receptor in bone (7) answers many questions regarding the previously documented low estrogen-receptor density in this clearly estrogen-dependent tissue. Increasingly sophisticated assays for measurement of circulating estrogen levels in very low concentrations has shed new light on these issues (8).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith EP, Boyd J, Frank GR, et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 1994; 331: 1056–1061.

    Article  PubMed  CAS  Google Scholar 

  2. Bilezikian JP, Morishima A, Bell J, Grumbach MM. Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N Engl J Med 1998; 339: 599–603.

    Article  PubMed  CAS  Google Scholar 

  3. Albright F, Smith PH, Richardson AM. Postmenopause osteoporosis. JAMA 1941; 116: 2465–2474.

    Google Scholar 

  4. Ongphiphadhanakul B, Rajatanavin R, Chanprasertyothin S, Piaseu N, Chailurkit L. Serum oestradiol and oestrogen-receptor gene polymorphism are associated with bone mineral density independently of serum testosterone in normal males. Clin Endocrinol (0x0; 1998; 49: 803–9.

    Article  CAS  Google Scholar 

  5. van den Beid AW, de Jong FH, Grobbee DE, Pols HA, Lamberts SW. Measures of bioavailable serum testosterone and estradiol and their relationships with muscle strength, bone density, and body composition in elderly men. J Clin Endocrinol Metab 2000; 85: 3276–82.

    Article  Google Scholar 

  6. Pacifici R. Cytokines, estrogen, and postmenopausal osteoporosis—the second decade. Endocrinol 1998; 130: 2659–2661.

    Article  Google Scholar 

  7. Grandien K, Berkenstam A, Gustafsson JA. The estrogen receptor gene: promoter organization and expression. Int J Biochem und Cell Biol 1997; 29: 1343–1369.

    Article  CAS  Google Scholar 

  8. Gamero P, Somay-Rendu E, Claustrat B, Delmas PD. Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res 2000; 15: 1526–36.

    Article  Google Scholar 

  9. MacGillivray MH, Morishima A, Conte F, Grumbach M. Smith EP. Pediatric endocrinology update: an overview. The essential roles of estrogens in pubertal growth, epiphyseal fusion and bone turnover: lessons from mutations in the genes for aromatase and the estrogen receptor. Horm Res 1998;49 (Suppl) 1: 2–8.

    Google Scholar 

  10. Sovka LA, Fairfield WP, Klibanski A. Hormonal determinants and disorders of peak bone mass in children. J Clin Endocrinol Metab 2000; 85: 3951–3963.

    Article  Google Scholar 

  11. Nelson DA, Simpson PM, Johnson CC, Barondess DA, Kleerekoper M. The accumulation of whole body skeletal mass in third-and fourth-grade children: effects of age, gender, ethnicity, and body composition. Bone 1997; 20: 73–78.

    Article  PubMed  CAS  Google Scholar 

  12. Gilsanz V, Roe TF, Mora S, Costin G, Goodman WG. Changes in vertebral bone density in black girls and white girls during childhood and puberty. N Engl J Med 1991; 325: 1597–1600.

    Article  PubMed  CAS  Google Scholar 

  13. Gilsanz V, Skaggs DL, Kovanlikaya A, Sayre J, Lore ML, Kaufman F, Korenman SG. Differential effects of race on the axial and appendicular skeletons of children. J Clin Endocrinol Metab 1998; 83: 1420–1427.

    Article  PubMed  CAS  Google Scholar 

  14. Takahashi Y, Minamitani K, Kobayashi Y, Minagawa M, Tasuda T, Niimi H. Spinal and femoral bone mass accumulation during normal adolescence: comparison with female patients with sexual precocity and with hypogonadism. J Clin Endocrinol Metab 1996; 81: 1248–1253.

    Article  PubMed  CAS  Google Scholar 

  15. Theintz G, Buchs B, Rizzoli R, Slosman D, Clavien H, Sizonenko PC, Bonjour JP. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumber spine and femoral neck in female subjects. J Clin Endocrinol Metab 1992; 79: 1060–1065.

    Article  Google Scholar 

  16. Holmes SJ, Shalet SM. Role of growth hormone and sex steroids in achieving and maintaining normal bone mass. Horm Res 1996; 45: 86–93.

    Article  PubMed  CAS  Google Scholar 

  17. Rochira V, Faustini-Fustini M, Balestrieri A, Carani C. Estrogen replacement therapy in a man with congenital aromatase deficiency: effects of different doses of transdermal estradiol on bone mineral density and hormonal parameters. J Clin Endocrinol Metab 2000; 85: 1841–1845.

    Article  PubMed  CAS  Google Scholar 

  18. Schot LP, Schuurs AH. Pathophysiology of bone loss in castrated animals. J Steroid Biochem Mol Biol 1990; 37: 461–465.

    Article  PubMed  CAS  Google Scholar 

  19. Ershler WB, Harman SM, Keller ET. Immunologic aspects of osteoporosis. Dev Comp Immunol 1997; 21: 487–499.

    Article  PubMed  CAS  Google Scholar 

  20. Stein B, Yang MX. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol 1995; 15: 4971–4979.

    PubMed  CAS  Google Scholar 

  21. Lindsay R, Hart DM, Forrest C, Baird C. Prevention of spinal osteoporosis in oophorectomized women. Lancet 1980; 2: 1151–1154.

    Article  PubMed  CAS  Google Scholar 

  22. Slemenda C, Longcope C, Peacock M, Hui S, Johnston CC. Sex steroids, bone mass, and bone loss: A prospective study of pre-, peri-, and postmenopausal women. J Clin Invest 1996; 97: 14–21.

    Article  PubMed  CAS  Google Scholar 

  23. Riggs BL, Melton LJ. Medical process series: Involutional osteoporosis. N Engl J Med 1986; 314: 1676–1686.

    Article  PubMed  CAS  Google Scholar 

  24. Han ZH, Palnitkar S, Rao DS, Nelson D, Parfitt AM. Effects of ethnicity and age or menopause on the remodeling and turnover of iliac bone: implications for mechanisms of bone loss. J Bone Miner Res 1997; 12: 498–508.

    Article  PubMed  CAS  Google Scholar 

  25. Cummings SR, Browner WS, Bauer D, Stone K, Ensrud K, Jamal S, Ettinger B. Endogenous hormones and the risk of hip and vertebral fractures among older women. N Engl J Med 1998; 339: 733–738.

    Article  PubMed  CAS  Google Scholar 

  26. Chapurlat RD, Garnero P, Breart G, Meunier PJ, Delmas PD. Serum estradiol and sex hormone-binding globulin and the risk of hip fracture in elderly women: the EPIDOS study. J Bone Miner Res 2000; 15: 1835–1841.

    Article  PubMed  CAS  Google Scholar 

  27. Stepan JJ, Lachman M, Zverina J, Packovsky V. Castrated men exhibit bone loss: effect of calcitonin treatment on biochemical indices of bone remodeling. J Clin Endocrinol Metab 1989; 69: 523–527.

    Article  PubMed  CAS  Google Scholar 

  28. Riggs BL, Khosla H, Melton LJ. A unitary model for involutional osteoporosis: Estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 1998; 13: 763–773.

    Article  PubMed  CAS  Google Scholar 

  29. Carlsen CG, Soerensen TH, Eriksen EF. Prevalence of low serum estradiol levels in male osteoporosis. Osteoporosis Int 2000; 11: 697–701.

    Article  CAS  Google Scholar 

  30. Zofkova I, Bahbouh R, Hill M. The pathophysiological implications of circulating androgens on bone mineral density in a normal female population. Steroids 2000; 65: 857–61.

    Article  PubMed  CAS  Google Scholar 

  31. Falch JA, Oftebro H, Haug E. Early postmenopausal bone loss is not associated with a decrease in circulating levels of 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D or vitamin D binding protein. J Clin Endocrinol Metab 1987; 64: 836–841.

    Article  PubMed  CAS  Google Scholar 

  32. Anonymous. Effects of hormone therapy on bone mineral density: results of the postmenopausal estrogen/progestin interventions (PEPI) trial. The writing group for PEPI. JAMA 1996; 276: 1389–1396.

    Google Scholar 

  33. Greendale GA, Wells B, Marcus R, Barrett-Connor E. For the Postmenopausal Estrogen/Progestin Interventions Trial Investigators. How many women lose bone mineral density while taking hormone

    Google Scholar 

  34. replacement therapy? Results from the postmenopausal estrogen/progestin interventions trial. Arch Intern Med 2000;160:3065–3071.

    Google Scholar 

  35. Rosen CJ, Chesnut CH, Mallinak NJ. The predictive value of biochemical markers of bone turnover for bone mineral density in early postmenopausal women treated with hormone replacement or calcium supplementation. J Clin Endocrinol Metab 1997; 82: 1904–1910.

    Article  PubMed  CAS  Google Scholar 

  36. Fritsch M, Jordan VC. Long-term Tamoxifen Therapy for the Treatment of Breast Cancer. Cancer Control 1994; 1: 356–366.

    PubMed  Google Scholar 

  37. Prestwood KM, Gunness M, Muchmore DB, Lu Y, Wong M, Raisz LG. A comparison of the effects of raloxifene and estrogen on bone in postmenopausal women. J Clin Endocrinol Metab 2000; 85: 2197–2202.

    Article  PubMed  CAS  Google Scholar 

  38. Looker AC, Orwoll ES, Johnston CC Jr, Lindsay RL, Wainer HW, Dunn WL, et al. Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res 1997; 12: 1761–1768.

    Article  PubMed  CAS  Google Scholar 

  39. Michaelsson K. Baron JA, Farahmand BY, Johnell O, Magnusson C, Persson PG, et al. Hormone replacement therapy and risk of hip fracture: population based case-control study. The Swedish hip fracture study group. BMJ 1998; 316: 1858–1863.

    CAS  Google Scholar 

  40. Felson DT, Zhang Y, Hannan MT, Kiel DP, Wilson PW, Anderson JJ. The effect of postmenopausal estrogen therapy on bone density in elderly women. N Engl J Med 1993; 329: 1141–1145.

    Article  PubMed  CAS  Google Scholar 

  41. Nachtigall LE, Nachtigall RH, Nachtigall RD, Beckman EM. Estrogen replacement therapy I: a 10-year prospective study in the relationship to osteoporosis. Obstet Gynecol 1979; 53: 277–81.

    PubMed  CAS  Google Scholar 

  42. Lufkin EG, Riggs BL. Three-year follow-up on effects of transdermal estrogen. Ann Intern Med 1996; 125: 77.

    PubMed  CAS  Google Scholar 

  43. Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 1999; 282: 637–45.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Kleerekoper, M., Verma, A. (2002). Estrogen and the Skeleton. In: Manni, A., Verderame, M.F. (eds) Selective Estrogen Receptor Modulators. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-157-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-157-2_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9665-9

  • Online ISBN: 978-1-59259-157-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics